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Dedicated to the memory of Professor Harry I. Miller

Abstract. C. Stuart proved in [27, Proposition 7] that the Cesàro matrix C1 cannot sum almost every
subsequence of a bounded divergent sequence. At the end of the paper he remarked ‘It seems likely that this
proposition could be generalized for any regular matrix, but we do not have a proof of this’. In [4, Theorem 3.1]
Stuart’s conjecture is confirmed, and it is even extended to the more general case of divergent sequences.
In this note we show that [4, Theorem 3.1] is a special case of Theorem 3.5.5 in [24] by proving that the set
of all index sequences with positive density is of the second category. For the proof of that a decisive hint
was given to the author by Harry I. Miller a few months before he passed away on 17 December 2018.

1. Introduction

Throughout this note we assume familarity with summability and the standard sequence spaces (see
e. g. [3, 28]). So we denote by ω , `∞, c, c0, and ` the set of all sequences in K (K = R or K = C ), of all
bounded sequences, of all convergent sequences, of all sequences converging to 0, and of all absolutely
summable sequences, respectively.

If A = (ank) is an infinite matrix with scalar entries, then we consider the domain

cA :=

(xk) ∈ ω
∞∑

k=1

ank xk converges for each n ∈N and Ax :=

 ∞∑
k=1

ank xk


n

∈ c


of A. The matrix (method) A is called regular, if c ⊆ cA and limA x := lim Ax = lim x (x ∈ c). A characterization
of regular matrices is contained in the wellknown Theorem of Toeplitz, Silverman, Kojima and Schur (cf.
[3, Th. 2.3.7 II]). The Cesàro matrix C1 = (cnk) with cnk := 1

n if 1 ≤ k ≤ n (k,n ∈ N) and cnk := 0 otherwise is
certainly the most famous example of a regular matrix.
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2. Preliminary considerations and known results

Steinhaus stated in [26] that a regular matrix cannot sum all sequences of 0′s and 1′s for which Connor
gave in [7] a very short proof based on the Baire Classification Theorem. In particular, the Steinhaus Theorem
implies obviously that a regular matrix cannot sum all bounded sequences which is also a corollary of the
Schur Theorem (cf. [25] and [3, Corollary 2.4.2]). Moreover, the Hahn Theorem (cf. [10], [3, Theorem 2.4.5])
says that a matrix sums all bounded sequences if it sums all sequences of 0′s and 1′s.

More general we may determine (small) subsets Q of `∞ \ c or of ω \ c such that each regular matrix
cannot sum all x ∈ Q.

A related problem is based on the question ‘How many subsequences of a given divergent sequence can be
summed by a given regular matrix (or by any regular matrix)?’. This question makes sense as the following
result shows.

Proposition 2.1 (cf. [5, Theorem], [27, Theorem 5]). If x is any bounded divergent sequence, then each regular
matrix cannot sum all subsequences of x. (Note, by [24, 3.5.5], the statement holds even for divergent sequences.)

Now, letI denote the set of all index sequences1) (ni) and x = (xn) be any bounded divergent or divergent
sequence. Then we ask for (small) subsetsQ ofI such that a special regular matrix like C1 or, more generally,
each regular matrix cannot sum all subsequences (xni ) of x with (ni) ∈ Q.

Following Stuart in [27] we consider any set of subsequences (of a bounded divergent sequence) that
have index sets with positive density:

Definition 2.2 (positive density). Given a set S ⊆ N and let Sn := S ∩Nn, then the density of S is defined
by2) d(S) := lim supn

|Sn |

n where |Y| denotes the cardinality of any set Y. (Note 0 ≤ d(S) ≤ 1.) A property holds
for almost every subsequence of a given sequence if it holds for all the subsequences that have index sets with
positive density.3) For any (ni) ∈ I and n ∈Nwe set S(ni),n := {i | ni ≤ n}.

In this sense we consider in the following the set

Q :=
{
(ni) ∈ I d({ni | i ∈N}) > 0

}
. (1)

In particular, we get

c
Q =

{
(ni) ∈ I d({ni | i ∈N}) = 0

}
=

{
(ni) ∈ I

(
|S(ni),n|

n

)
∈ c0

}
. (2)

Stuart presented following two results for the case Q:

Proposition 2.3 (cf. [27, Proposition 6]). The matrix C1 cannot sum almost every subsequence of any sequence of
0′s and 1′s.

Proposition 2.4 (cf. [27, Proposition 7]). The matrix C1 cannot sum almost every subsequence of any bounded
divergent sequence.

Boos and Zeltser proved in [4] that Stuarts result holds in general for any regular matrix and any
divergent sequence:

Theorem 2.5 (cf. [4, Theorem 3.1]). Let A = (ank) be a regular matrix. Then A cannot sum almost every subse-
quence of any divergent sequence x = (xk).

In this note we’ll show that the last Theorem is a special case of Theorem 3.5.5 in [24].

1)By definition, an index sequence is a strictly increasing sequence of natural numbers. For the sake of simplicity we consider also
finite strictly increasing sequences as members of I

2)Note that d(S) is defined in [27] by d(S) := 1
n lim supn |Sn|which is with certainty an oversight.

3)Note that in some papers d(S) is denoted as ’upper (asymptotic) density’ (cf. [2]).
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3. A general result due to Keogh and Petersen

To quantify the set Q of index sequences we used the positive density of the members of Qwhich leads
us —in case of a given sequence x— to the notion of ‘almost all subsequences’4) of x.

In 1958 Keogh and Petersen trod another path to quantify sets Q of index sequences:

Definition 3.1. Let Q be any set of index sequences. Furthermore, if (xnk ) is a subsequence of (xn), then we
identify the index sequence (nk) with the number α ∈ [0, 1] with binary code .α1α2α3 . . . defined by

αr :=

1 if r = ni (i ∈N),
0 otherwise

(r ∈N). (3)

In this way we identify a set Q̂ of subsequences of (xn) with the set Q of the corresponding index sequences
and —applying correspondingly (3)— Q with the set

Q∗ :=
{
α = .α1α2α3 . . . ∃ (nk) ∈ Q : αr defined by (3)

}
of the corresponding members of [0, 1] in binary code. Now we define Q̂ to be of the second category if Q∗ is
of the second category in the set [0, 1]; otherwise we call it of the first category.

Theorem 3.2 (cf. [24, Theorem 3.5.5] and [15, Theorem on page 1]). Let x = (xn) ∈ ω and A be any given
regular matrix. Then A limits a set of subsequences of x, that is of the second category, if and only if x ∈ c. (More
exactly: If Q̂ is a set of subsequences of x, that is of the second category, then A limits all members of Q̂ if
and only if x ∈ c.)

Remark 3.3. The non-trivial part of the proof of Theorem 3.2 is done in the following way: If x is divergent
and A is regular, then

F :=
{
y ∈ cA y is a subsequence of x

}
is of the first category. (Thus, F cannot contain any set of the second category.)

In Section 5 we proof that the result in Theorem 2.5 is contained in that of Theorem 3.2. More exactly, we
show that, if Q is the set of index sequences defined in (1), then the corresponding set Q̂ of subsequences of
x is of the second category (in the above sense).

4. Some density properties of Q and cQ

First of all, we remark that the set χ of all sequences of 0′s and 1′s is obviously a closed subset of the
FK–space ω because convergence of sequences in χ is equivalent to coordinatewise convergence.

Proposition 4.1. The set Q, identified as set of sequences of 0′s and 1′s, is dense in χ (provided with the topology
induced by the FK–topology τω of ω).

Proof. For any x ∈ χ\Qwe define a sequence (x(n)) with x(n) = (x(n)
k ) ∈ Q converging to an x = (xk) in (χ, τω|χ).

Let x ∈ χ be given, then we set

x(n)
k :=

xk if k ≤ n,
1 if k > n

(k,n ∈N).

Obviously, x(n) is (coordinatewise) convergent to x, and x(n)
∈ Q for all n ∈N since x(n)

k = 1 if k > n.

4)Probably, this notion of ‘almost all subsequences’ is not equivalent to that used in [6].
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In the following considerations we identify the complement

c
Q =

{
(ni) ∈ I d({ni | i ∈N}) = 0

}
of Q in Iwith the corresponding set of sequences of 0′s and 1′s and —applying (3)— c

Q again with the set

c
Q
∗ =

{
α = .α1α2α3 . . . ∃ (nk) ∈ c

Q : αr defined by (3)
}

of the corresponding members of [0, 1] in binary code.

Proposition 4.2. Both, Q∗ and c
Q
∗ are dense5), thus somewhere dense, in [0, 1].

Proof. For that we prove that the closure of Q∗ as well as c
Q
∗ equals [0, 1].

Let α = .α1α2α3 . . . ∈ c
Q
∗ be given and v(α) =

∑
r 2−rαr denote the real value of α. For any t ∈Nwe consider

β(t) = .β(t)
1 β

(t)
2 β

(t)
3 . . . ∈ Q∗ defined by

β(t)
i :=

αi if i ≤ t ,
1 otherwise

(i ∈N).

Then we have∣∣∣v(α) − v(β(t))
∣∣∣ ≤ 2 ·

∞∑
i=t+1

2−i = 2−t+1 t→∞
−→ 0,

consequently α ∈ Q∗, thus Q∗ = [0, 1].
Now let α = .α1α2α3 . . . ∈ Q∗ be given and v(α) =

∑
r 2−rαr denote the real value of α. For any t ∈ N we

consider β(t) = .β(t)
1 β

(t)
2 β

(t)
3 . . . ∈ c

Q
∗ defined by

β(t)
i :=

αi if i ≤ t ,
0 otherwise

(i ∈N).

Then we have∣∣∣v(α) − v(β(t))
∣∣∣ ≤ ∞∑

i=t+1

2−i = 2−t t→∞
−→ 0,

thus α ∈ cQ∗, therefore cQ∗ = [0, 1].

Proposition 4.3. For any s ∈]0, 1] let be6)

Ds :=
{
(ni) ∈ I d({ni | i ∈N}) > s

}
, D̃s :=

{
(ni) ∈ I d({ni | i ∈N}) ≥ s

}
and, correspondingly,

D
∗

s :=
{
α = .α1α2α3 . . . ∃ (nk) ∈ Ds : αr defined by (3)

}
,

D̃s
∗

:=
{
α = .α1α2α3 . . . ∃ (nk) ∈ D̃s : αr defined by (3)

}
.

ThenD∗s, D̃s
∗

, c
D
∗
s and c

D̃s
∗

are (everywhere) dense in ]0, 1].

5)In [24] ‘everywhere dense’ is used instead of ‘dense’
6) ObviouslyD1 = ∅ and D̃1 = {(ni) ∈ I | d({ni | i ∈N}) = 1}
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Proof. Obviously,

c
Ds =

{
(ni) ∈ I d({ni | i ∈N}) ≤ s

}
.

Let α = .α1α2α3 . . . ∈ c
D
∗
s be given and v(α) =

∑
r 2−rαr denote the real value of α. For any t ∈Nwe consider

β(t) = .β(t)
1 β

(t)
2 β

(t)
3 . . . ∈ D∗s defined by

β(t)
i :=

αi if i ≤ t ,
1 otherwise

(i ∈N).

Then we have∣∣∣v(α) − v(β(t))
∣∣∣ ≤ 2 ·

∞∑
i=t+1

2−i = 2−t+1 t→∞
−→ 0,

thus α ∈ D∗s, thereforeD∗s = [0, 1].
The proofs of the density of D̃s

∗

, c
D
∗
s and c

D̃s
∗

are quite similar.

Remark 4.4. Note

Q =
⋃

s∈]0,1[

Ds =

∞⋃
k=2

D1/k =

∞⋃
k=2

D̃1/k , thus c
Q =

⋂
s∈]0,1[

c
Ds =

∞⋂
k=2

c
D1/k =

∞⋂
k=2

c
D̃1/k .

5. Proof of the main result

Using similar constructions as in the not yet published draft [21] (cf. also [20] and [19]), we’ll prove the
main result of this note.

Theorem 5.1. The set c
Q
∗ is of the first category in ]0, 1[. In particular, c

Q is of the first category in the sense of
Definition 3.1.

Corollary 5.2 (cf. Theorem 2.5). Let A = (ank) be a regular matrix. Then A cannot sum almost every subsequence
of any divergent sequence x = (xk).

Proof. Apply Theorem 3.2 to the set Q̂ := Q̂ (cf. also Definition 3.1).

Proof of Theorem 5.1 . First of all, we remark

c
Q
∗ =

{
α = .α1α2α3 . . . | ∃ (nk) ∈ c

Q : αr defined by (3)
}

=̂

{
(n j) ∈ I lim sup

n

|S(n j),n|

n
= 0

}
=

{
(n j) ∈ I lim

n

|S(n j),n|

n
= 0

}
(cf. (2))

=

{
(n j) ∈ I ∀ k ≥ 2 ∃Θk ≥ 1 ∀n ≥ Θk :

|S(n j),n|

n
<

1
k

}
=

∞⋂
k=2

∞⋃
Θ=1

∞⋂
n=Θ

{
(n j) ∈ I

|S(n j),n|

n
<

1
k

}
.
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Motivated by that, we define for Θ, k ∈N, k ≥ 2 the sets

PΘ,k :=
∞⋂

n=Θ

{
(n j) ∈ I

|S(n j),n|

n
<

1
k

}
=

{
(n j) ∈ I ∀n ≥ Θ :

|S(n j),n|

n
<

1
k

}
,

thus

c
PΘ,k =

{
(n j) ∈ I ∃n ≥ Θ :

|S(n j),n|

n
≥

1
k

}
,

and

P
∗

Θ,k :=
{
α = .α1α2α3 . . . ∃ (n j) ∈ PΘ,k : αr defined by (3)

}
.

Now, we are going to prove thatP∗
Θ,k is nowhere dense for all Θ, k ∈N, k ≥ 2. (Consequently, as a countable

union of nowhere dense subsets,

∞⋃
Θ=1

P
∗

Θ,k (k ≥ 2)

is of the first category in [0, 1] (cf. [3, Remark 6.2.27]) and therefore, as a countable intersection of these

sets of the first category, c
Q
∗ =

∞⋂
k=2

∞⋃
Θ=1
P
∗

Θ,k is also of the first category in ]0, 1[.) For that, it is sufficient to

prove that for all Θ, k ∈ N, k ≥ 2, and each Interval I = ]a, b[⊂ [0, 1] there exists an Interval J ⊆ I such that
J ∩ P∗

Θ,k = ∅.
Now, let any k ∈ N, k ≥ 2, and Θ ∈ N be given, and let I = ]a, b[⊂ [0, 1] be an interval with midpoint

α0 := .α1α2α3 . . . . Then we choose a p ∈ N such that all extensions of α̃0 := .α1 . . . αp0 . . . are members of I
(note α̃0 ≤ α0). Now we extend α̃0 to β̃0 := .β1 . . . βpβp+1 . . . βp+q0 . . . where

βr :=


αr if 1 ≤ r ≤ p,
0 if r = p + 1 or r > p + q,
1 if p + 1 < r ≤ p + q

(r ∈N)

such that

n := p + q > Θ and
|{r ∈Nn | βr = 1}|

n
>

3
4
.

After this, we consider the set

J :=
{
γ̃ = .γ1γ2 . . . γν . . . γν := βν (ν ∈Nn) and γν ∈ {0, 1} (ν > n)

}
of all extensions of β̃0. Obviously, J is a subinterval of I (containing more than one element) and each γ̃ ∈ J
fulfills obviously

|{ν ∈Nn | γν = 1}|
n

>
3
4

(n ∈N) .

Therefore, J ⊆ cP∗
Θ,k, thus J ∩ P∗

Θ,k = ∅. Alltogether, P∗
Θ,k is nowhere dense in ]0, 1[. �

We close this section with some remarks and a question.
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Remarks 5.3. Given a set S ⊆ N and let Sn := S ∩ Nn, then we may set du(S) := d(S) (upper density),
dl(S) := lim infn

|Sn |

n (lower density), and

dc(S) := lim
n

|Sn|

n
provided that the limit exists (convergent density).

Moreover, we may consider Qu := Q,

Ql :=
{
(ni) ∈ I dl({ni | i ∈N}) > 0

}
,

and

Qc :=
{
(ni) ∈ I dc({ni | i ∈N}) exists and dc({ni | i ∈N}) > 0

}
.

Obviously, Qc ( Ql ( Qu.
(a) The set c

Q
∗
u is dense in [0, 1] by 4.2, and therefore c

Q
∗
r (r = c or r = l) are also dense in [0, 1].

(b) The set Q∗c, thus c
Q
∗
r (r = l and r = u), are dense in [0, 1].

Proof. (b) Let us prove that the closure of Q∗c equals [0, 1]. Obviously,

c
Qc = c

Qu ∪ P with P :=
{
(ni) ∈ Qu du({ni | i ∈N}) > dl({ni | i ∈N})

}
,

therefore
c
Q
∗

c = c
Q
∗

u ∪ P
∗ =

{
α = .α1α2α3 . . . ∃ (nk) ∈ c

Qu : αr defined by (3)
}

∪
{
α = .α1α2α3 . . . | ∃ (nk) ∈ P : αr defined by (3)

}
.

In the first step of the proof we consider α = .α1α2α3... ∈ c
Q
∗
u with corresponding (ni) ∈ c

Qu and αr
defined by (3).

Let α = .000 . . .. Then v(α) = 0, α ∈ c
Q
∗
u, and β(r) = .β(r)

1 β
(r)
2 β

(r)
3 . . . with

β(r)
k :=

0 if 1 ≤ k ≤ r,
1 if r < k < ∞

(r, k ∈N)

satisfies β(r)
∈ Q

∗
u and∣∣∣v(α) − v(β(r))

∣∣∣ =

∞∑
k=r+1

2−k = 2−r r→∞
−→ 0.

Consequently, α = .000 . . . is a member of the closure of Q∗c in [0, 1].
Now, let α = .α1α2α3... ∈ c

Q
∗
u with v(α) ∈]0, 1[ be given. Moreover, we choose r ∈ N with 2−r <

min{1 − v(α), v(α)} and define β(r) = .β(r)
1 β

(r)
2 β

(r)
3 . . . with

β(r)
k :=

αk if 1 ≤ k ≤ r,
1 if r < k < ∞

(k ∈N) (4)

satisfies β(r)
∈ Q

∗
u and∣∣∣v(α) − v(β(r))

∣∣∣ ≤ 2 ·
∞∑

k=r+1

2−k = 2−r+1 r→∞
−→ 0. (5)

Therefore, the chosen α = .α1α2α3... is a member of the closure of Q∗c in [0, 1].
In the second step of the proof we consider α = .α1α2α3... ∈ P∗ with corresponding (ni) ∈ Qu satisfying

du({ni | i ∈ N}) > dl({ni | i ∈ N}), and αr defined by (3). Note, v(α) ∈]0, 1[. Choosing as above r ∈ N
with 2−r < min{1 − v(α), v(α)} and define β(r) = .β(r)

1 β
(r)
2 β

(r)
3 . . . ∈ Q∗u as in (4), then by (5) we get again that

α = .α1α2α3... is a member of the closure of Q∗c in [0, 1].

Problem 5.4. Does Theorem 5.1 also hold in the cases c
Q
∗
r (r = c or r = l)?
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6. Further Problems

Buck and Pollard proved:

Theorem 6.1 (cf. [6, Theorem 4]). A bounded sequence x is (C, 1) summable7) if and only if almost all of its
subsequences are (C, 1) summable, that is, the set of all subsequences of x being not (C, 1) summable is a Lebesgue
nullset. (Thereby ‘almost all of its subsequences’ is used in the sense of the Lebesgue measure, cf. [6, page
1].)

Problems 6.2. (a) Does the statement in Theorem 6.1 hold if we consider unbounded sequences instead of
bounded sequences?
(b) Is the statement in Theorem 6.1 true if we consider almost every subsequence (in the sense of positive
density)?
(c) Does the statement in Theorem 6.1 hold in the case of bounded or even unbounded sequences x if
we consider any regular matrix method instead of (C, 1)? Note that Keogh and Petersen proved (cf. [16,
Theorem 7]) that Theorem 6.1 holds too for a special matrix G introduced by Garreau in [9].
(d) The corresponding question as in (c), but by considering almost every subsequence (in the sense of positive
density) instead almost all of its subsequences used in the sense of the Lebesgue measure.
(e) Does c

Q
∗ (or Q∗) have Lebesque measure 0?

(f) Let Q be a set of subsequences of a sequence x. Is it of the second category in the sense of Theorem 3.2 if
and only if the complement of it has Lebesque measure 0? (Cf. [23, Chapter 1].)

Concerning Problem 6.2(f) we should take into account the following results.

Theorem 6.3 (cf. [23, Theorem 1.6]). The (real) line can be decomposed into two complementary sets V and W
such that V is of the first category and W is of measure zero.

Theorem 6.4 (cf. [23, Corollary 1.7]). Every subset of the line, in particular the interval [0, 1], can be represented
as the union of a Lebesgue nullset V and a set W of the first category. In particular, V is of the second category.

In the following remark we show that the answer to the question in Problem 6.2(f) is negative.

Remark 6.5. Let V and W be a decomposition of [0, 1] such that V is a Lebesgue nullset and W is of the
first category (and thus V is of the second category). We identify V with the setV∗ of the members of V in
binary code. Then the corresponding setV of index sequences and thus for any divergent sequence x the
corresponding setV(x) of subsequences of x are of the second category. Consequently, any regular matrix
sums all elements ofV(x) if and only if x ∈ c (cf. Theorem 3.2).
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