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Abstract. We introduce the notion of ideally relative uniform convergence of sequences of real valued
functions. We then apply this notion to prove Korovkin-type approximation theorem, and then construct an
illustrative example by taking (p, q)-Bernstein operators which proves that our Korovkin theorem is stronger
than its classical version as well as statistical relative uniform convergence. The rate of ideal relatively
uniform convergence of positive linear operators by means of modulus of continuity is calculated. Finally,
the Voronovskaya-type approximation theorem is also investigated.

1. Introduction and preliminaries

Moore [36] was the first who introduced the notion of relative uniform convergence of sequence of
functions. Thereafter, Chittenden [13, 14] studied this notion (which is equivalent to Moore’s definition) as
follows: A sequence of function (1n), defined on J = [a, b] converges relatively uniformly to a limit function
1 if there is a function γ(t), called a scale function such that for every ε > 0 there exists an integer m = m(ε)
such that

|1n(t) − 1(t)| < ε|γ(t)| uniformly in t on J, ∀n > m.

Based on this definition, Demirci and Orhan [15] and Dirik and Şahin [16] introduced the concept of
statistical relatively uniform convergence and statistical relatively equal convergence, respectively, and the
authors of both the papers used their notions of convergence to prove approximation results.

The asymptotic density or density of a subset U ofN, denoted by δ(U), is given by

δ(U) = lim
n→∞

1
n
|{k ≤ n : k ∈ U}|,

if this limit exists, where |{k ≤ n : k ∈ U}| denotes the cardinality of the set {k ≤ n : k ∈ U}. With the help of
asymptotic density, Fast [19] introduced the notion of statistical convergence as follows: A sequence x = (xn)
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is said to be statistically convergent to ` if for every ε > 0, the set {n ∈N : |xn − `| ≥ ε} has density zero. For
more details on these type of convergence and their application, we refer to [8, 10, 23–25, 31, 33, 34, 38, 48].

The notion of ideal convergence is the dual (equivalent) to the notion of filter convergence which was
introduced by Cartan [12]. The filter convergence is a generalization of the classical notion of convergence
of sequence and it has been an important tool in general topology and functional analysis. Kostyrko et al.,
[29] and Nuray and Ruckle [41] independently discussed about the ideal convergence which is based on the
structure of the admissible ideal I of subsets of natural numbersN (a similar notion was given by Katětov
[26]). It was further investigated by many authors, e.g. S̆alát et al. [43], Mursaleen and Mohiuddine [39],
Hazarika and Mohiuddine [35] and references therein.

A non empty classI of power sets of a non empty set X is called an ideal on X if and only if (i) φ ∈ I (ii)I
is additive under union (iii) A ∈ I and B ⊆ A, then B ∈ I. An ideal I is called non trivial if I , φ and X < I.
A non-empty family F of power sets of X is called a filter on X if and only if (i) φ < F (ii) F is additive
under intersection (iii) for each U ∈ F and V ⊃ U, implies V ∈ F . A non-trivial ideal I is said to be (i) an
admissible ideal on X if and only if it contains all singletons (ii) maximal, if there cannot exists any non-trivial
ideal K , I containing I as a subset (iii) is said to be a translation invariant ideal if {n + 1 : n ∈ U} ∈ I, for
any U ∈ I. We consider the ideals are proper (, P(N)) and contain all finite sets. We denote Fin for set of
ideals which consists of all finite sets.

We recall that a real sequence x = (xk) is called ideal convergent (in short I-convergent) to the number l
(denoted by I- lim xk = l) if for every ε > 0, the set {k ∈N : |xk − l| ≥ ε} is in I.

Katětov [27] gave a generalization of this notion by assuming sequences of functions into his account
as follows: A sequence 1k : (Y, ρ1) → (Y, ρ2) of functions ((Y, ρ1) and (Y, ρ2) are metric spaces) is said to be
uniform I-convergent to 1 if

(∀ε > 0)

k ∈N : sup
y∈Y

ρ2
(
1k(y) − 1(y)

)
≥ ε

 ∈ I.
The statistical convergence and ideal convergence for sequences of functions in metric space were studied
by Balcerzak et al. [7] while the idea of I-uniformly convergent sequence (1k) of real-valued functions was
discussed by Filipów and Staniszewski [20].

2. Ideal relatively uniform convergence

We assume that C(J) (J = [a, b]) denotes the space of all continuous real-valued functions defined on a
compact subset J of real numbers and is also a Banach space. For 1 ∈ C(J), one obtains

‖1‖C(J) = sup
y∈J
|1(y)|.

We are now introducing the notion of ideal relatively uniform convergence of sequences of real-valued
functions as follows:

Definition 2.1. Let I be an admissible ideal of N. A sequence (1k) of real valued functions defined on J ⊂ R, is
said to be ideally relative uniform convergent to a function 1 on J, if there is a function γ(t), called a scale function
|γ(t)| > 0, such that for every ε > 0,k ∈N : sup

t∈J

∣∣∣∣∣ 1̄k(t) − 1̄(t)
γ(t)

∣∣∣∣∣ ≥ ε
 ∈ I.

We write (1̄k)
I

r,γ
u
−→ 1̄ on J. We denote by Ir,γ

u the set of all ideally relative uniform convergent sequences.

Note that if we take I = Fin, then we obtain the usual notions of relatively uniform convergence due
to Chittenden [13, 14]. Also, if I = Iδ = {B ⊆ N : δ(B) = 0} then Definition 2.1 reduces to statistically
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relative uniform convergence which was given by Demirci and Orhan [15]. Since ideal I is admissible, the
convergence in Definition 2.1 is implied by the classical uniform convergence

(1k) u
−→ 1 (in classical sense of uniform convergence) =⇒ (1k)

I
r,γ
u
−→ 1. (1)

But the converse of implication (1) is not true in general. In order to prove this assertion, we construct the
following example.

Example 2.2. We define hk : [0, 1]→ R by

hk(t) =

{
kt

1+k2t2 (t , 0)
0 (t = 0).

Then we have (hk)
I

r,γ
u
−→ h = 0 relative to the scale function [15] defined by

γ(t) =

{
1
t (0 < t ≤ 1)
1 (t = 0).

But (hk) is not uniformly convergent to h = 0 on [0, 1].

3. Korovkin-type approximation theorem via ideal relatively uniform convergence

For any sequence (Tk) of positive linear operators on C(J), Korovkin [28] was the first who investigated
the sufficient conditions for the uniform convergence of a sequence Tk(1) (k ∈ N) to a function 1 by
considering the test function ei which is defined by ei(s) = si, where i = 0, 1, 2. The Korovkin result, in
statistical sense, firstly was proved in [21]. By considering various convergence methods, Korovkin-type
approximation theorem studied by many researchers (for example see [3, 5, 6, 9, 11, 18, 30, 42, 44–46, 49]).

Theorem 3.1. Suppose that Tk : C(J) → C(J) is a sequence of positive linear operators. Then, for any function
1 ∈ C(J),

Tk(1; t)
I

r,γ
u
−→ 1(t) (2)

if and only if

Tk(e j; t)
I

r,γ
u
−→ e j(t) (3)

where

e j(s) = s j and γ(t) = max{|γ j(t)| : |γ j(t)| > 0} ( j = 0, 1, 2).

Proof. Since each of the functions e j ( j = 0, 1, 2) belongs to C(J), then condition (3) follows immediately
from (2). In order to prove the converse part, suppose that (3) holds. By the continuity of 1 on J, we have
|1(t)| ≤M, where M = supt∈J |1(t)|. Therefore, we find that |1(s)− 1(t)| ≤ 2M. Also, since 1 is continuous on J,
for every ε > 0 there exists δ > 0 such that |1(s)− 1(t)| < ε whenever |s− t| < δ for all t ∈ J. We thus find that

|1(s) − 1(t)| < ε +
2M
δ2 µ(s),

or,

−ε −
2M
δ2 µ(s) < 1(s) − 1(t) < ε +

2M
δ2 µ(s). (4)
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where µ(s) = (s − t)2. Since Tk(1; t) is monotone and linear, we obtain by operating Tk(e0; t) in (4) that

Tk(e0; t)
(
−ε −

2M
δ2 µ(s)

)
< Tk(e0; t)(1(s) − 1(t)) < Tk(e0; t)

(
ε +

2M
δ2 µ(s)

)
. (5)

Here t is fixed and so 1(t) is a constant number. Therefore

−εTk(e0; t) −
2M
δ2 Tk(µ(s); t) < Tk(1; t) − 1(t)Tk(e0; t) < εTk(e0; t) +

2M
δ2 Tk(µ(s); t) (6)

and

Tk(1; t) − 1(t) = Tk(1; t) − 1(t)Tk(e0; t) + 1(t){Tk(e0; t) − e0}. (7)

It follows from (6) and (7) that

Tk(1; t) − 1(t) < εTk(e0; t) +
2M
δ2 Tk(µ; t) + 1(t){Tk(e0; t) − e0}. (8)

We see that

Tk(µ; t) = {Tk(e2; t) − e2(t)} − 2t{Tk(e1; t) − e1(t)} + t2
{Tk(e0; t) − e0(t)}. (9)

Employing (9) in the earlier inequality (8), we obtain

Tk(1; t) − 1(t) < εTk(e0; t) +
2M
δ2

[{
Tk(e2; t) − e2(t)} − 2t{Tk(e1; t) − e1(t)}

+t2
{Tk(e0; t) − e0(t)

}]
+ 1(t){Tk(e0; t) − e0(t)}

= ε + ε{Tk(e0; t) − e0(t)} +
2M
δ2

[{
Tk(e2; t) − e2(t)} − 2t{Tk(e1; t) − e1(t)}

+t2
{Tk(e0; t) − e0(t)

}]
+ 1(t){Tk(e0; t) − e0(t)}.

which gives

|Tk(1; t) − 1(t)| ≤ ε +
(
ε + M +

2M
δ2 ||e2||C(J)

)
|Tk(e0; t) − e0(t)|

+
4M
δ2 ||e1||C(J)|Tk(e1; t) − e1(t)| +

2M
δ2 |Tk(e2; t) − e2(t)|

≤ ε + L[|Tk(e0; t) − e0(t)| + |Tk(e1; t) − e1(t)| + |Tk(e2; t) − e2(t)|],

where

L = ε + M +
2M
δ2

{
||e2||C(J) + 2||e1||C(J) + 1

}
.

We thus have

sup
t∈J

∣∣∣∣∣Tk(1; t) − 1(t)
γ(t)

∣∣∣∣∣ ≤ sup
t∈J

ε
γ(t)

+ L
[

sup
t∈J

∣∣∣∣∣Tk(e0; t) − e0(t)
γ0(t)

∣∣∣∣∣ + sup
t∈J

∣∣∣∣∣Tk(e1; t) − e1(t)
γ1(t)

∣∣∣∣∣
+ sup

t∈J

∣∣∣∣∣Tk(e2; t) − e2(t)
γ2(t)

∣∣∣∣∣ ]. (10)

For a given q > 0, choose ε > 0 such that ε1 = supt∈J
ε
|γ(t)| < q. Then, upon setting

H =

k ∈N : sup
t∈J

∣∣∣∣∣Tk(1; t) − 1(t)
γ(t)

∣∣∣∣∣ ≥ q


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H0 =

k ∈N : sup
t∈J

∣∣∣∣∣Tk(e0; t) − e0(t)
γ0(t)

∣∣∣∣∣ ≥ q − ε1

3M


H1 =

k ∈N : sup
t∈J

∣∣∣∣∣Tk(e1; t) − e1(t)
γ1(t)

∣∣∣∣∣ ≥ q − ε1

3M


and

H2 =

k ∈N : sup
t∈J

∣∣∣∣∣Tk(e2; t) − e2(t)
γ2(t)

∣∣∣∣∣ ≥ q − ε1

3M

 ,
We thus have H ⊆

2⋃
j=0

H j. It follows from our assumption (3) that H j ∈ I for j = 0, 1, 2, that is,
2⋃

j=0
H j is in I.

Consequently, from the definition of ideal, we have H ∈ I. Hence, the proof is complete.

We are now going to construct an example in support of our Theorem 3.1 with the help of (p, q)-Bernstein
operators which were constructed by Mursaleen et al. [37]. For recent work on quantum and post-quantum
calculus and related operators, one may refer to [1, 2, 4, 32, 40, 47]

Example 3.2. Assume that J = [0, 1]. For any given k ∈N, let us consider the (p, q)-Bernstein operators as

Bk,p,q(1; t) =

k∑
n=0

Bk,n,p,q(t) 1

pk−n[n]p,q

[k]p,q

 (t ∈ [0, 1]),

where 0 < q < p ≤ 1 and

Bk,n,p,q(t) =

[
k
n

]
p,q

p
n(n−1)−k(k−1)

2 tn
k−n−1∏

s=0

(ps
− qst).

Recall, as in [22], that [k]p,q denotes a (p, q)-integer, defined as

[k]p,q =
pk
− qk

p − q
(0 < q < p ≤ 1)

and the (p, q)-binomial coefficient
[ k

n
]

p,q is defined by[
k
n

]
p,q

=
[k]p,q!

[k − n]p,q![n]p,q!
(∀k,n ∈N, k ≥ n),

where (p, q)-factorial [k]p,q! is given by

[k]p,q! = [1]p,q![2]p,q! . . . [k]p,q! f or k ≥ 1 and [0]p,q! = 1.

Let I be an admissible ideal of N. Suppose that p = (pk) and q = (qk) such that qk ∈ (0, 1), pk ∈ (qk, 1], and also
pk → 1, qk → 1, pk

k → a, qk
k → b as k→ ∞ (a , b). We are now defining the sequence of positive linear operator Pk

on C[0, 1] by

Pk(1; t) = (1 + hk(t))Bk,pk ,qk (1; t)
(
1 ∈ C[0, 1]

)
, (11)

where the sequence (hk(t)) of functions as defined in Example 2.2. We thus find that

Pk(e0; t) = (1 + hk(t))e0(t), Pk(e1; t) = (1 + hk(t)) e1(t)
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and

Pk(e2; t) = (1 + hk(t))

 pk−1
k

[k]pk ,qk

e1(t) +
qk[k − 1]pk ,qk

[k]pk ,qk

e2(t)


= (1 + hk(t))

 pk−1
k

[k]pk ,qk

e1(t) +
pk−1

k qk − qk
k

pk − qk

e2(t)
[k]pk ,qk


= (1 + hk(t))

 pk−1
k

[k]pk ,qk

e1(t) −
pk−1

k

[k]pk ,qk

e2(t) + e2(t)

 .
It is easy to see that

pk−1
k

[k]pk ,qk

e1(t) u
−→ 0 and

pk−1
k

[k]pk ,qk

e2(t) u
−→ 0 (t ∈ [0, 1]).

Since

(hk)
I

r,γ
u
−→ h = 0

for the sequence (hk) of functions and scale function γ(t) as defined in Example 2.2, and together with our assumption
that I is an admissible ideal of N and so ideal relatively uniform convergence is implied by the uniform (usual)
convergence, we thus obtain

Pk(e j; t)
I

r,γ
u
−→ e j(t) ( j = 0, 1, 2).

We therefore obtain by Theorem 3.1 that

Pk(1; t)
I

r,γ
u
−→ 1(t) (∀1 ∈ C[0, 1] and t ∈ [0, 1]).

Moreover, since (hk) is not ideally (or classical) uniform convergent to the function h = 0 on [0, 1], we can say that
our Theorem 3.1 is a non-trivial generalizations of the classical and ideal cases of the Korovkin results discussed in
[17] and [28], respectively. For

I = Iδ = {B ⊆N : δ(B) = 0},

Iδ is a non-trivial admissible ideal ofN, then Theorem 3.1 reduced to statistical relative uniform version of Korovkin
result obtained in [15].

4. Rate of ideal relatively uniform convergence

Using the concept of modulus of continuity, we investigate the rate of ideal relatively uniform conver-
gence of a sequence of positive linear operators defined on C(J). We first recall the modulus of continuity
of a function 1 ∈ C(J) is defined by

ω(1, δ) = sup
|s−t|≤δ,s,t∈J

|1(s) − 1(t)| (δ > 0).

We introduce the following definition in order to compute the rate of ideal relatively uniform convergence.

Definition 4.1. Let I be an admissible ideal ofN. A sequence (1k) of functions is said to be ideally relative uniform
convergent to 1 on J with the rate ν ∈ (0, 1) if there exists a scale function γ(t), |γ(t)| > 0, such that for every ε > 0,
we havek ∈N : sup

t∈J

∣∣∣∣ 1k(t)−1(t)
γ(t)

∣∣∣∣
k1−ν ≥ ε

 ∈ I.



S. A. Mohiuddine et al. / Filomat 33:14 (2019), 4549–4560 4555

Here, in this case, we write

1k − 1 = I
r,γ
u -o(k−ν) on J.

Lemma 4.2. Let I be an admissible ideal ofN, and let (1k) and (hk) are two sequence of functions defined on C(J).
Suppose also that

1k − 1 = I
r,γ1
u -o(k−ν1 ) on J (12)

and

hk − h = I
r,γ2
u -o(k−ν2 ) on J. (13)

Let ν = min{ν1, ν2} and γ(t) = max{|γi(t)| : |γi(t)| > 0}, i = 1, 2. Then each of the following statements holds true:

(i) (1k ± hk) − (1 ± h) = I
r,γ
u -o(k−ν) on J;

(ii) (λ(1k − 1)) = I
r,γ1
u -o(k−ν1 ) on J for any scalar λ;

(iii) (1k − 1)(hk − h) = I
r,γ0
u -o(k−ν), where γ0(t) = γ1(t)γ2(t) on J

(iv)
√
|1k − 1| = I

r,γ1
u -o(k−ν1 ) on J.

Proof. Suppose that 1k − 1 = I
r,γ1
u -o(k−ν1 ) and hk − h = I

r,γ2
u -o(k−ν2 ) on J. In order to prove (i), we define the

following sets for every ε > 0 and t ∈ J:

A(t, ε) =

k ∈N : sup
t∈J

∣∣∣∣ (1k±hk)(t)−(1±h)(t)
γ(t)

∣∣∣∣
k1−ν ≥ ε

 ,

A1(t, ε) =

k ∈N : sup
t∈J

∣∣∣∣ 1k(t)−1(t)
γ1(t)

∣∣∣∣
k1−ν ≥

ε
2


and

A2(t, ε) =

k ∈N : sup
t∈J

∣∣∣∣ hk(t)−h(t)
γ2(t)

∣∣∣∣
k1−ν ≥

ε
2


where γ(t) = max{|γi(t)| : |γi(t)| > 0} (i = 1, 2). Clearly, we have A(t, ε) ⊆ A1(t, ε) ∪ A2(t, ε). Since ν =
min{ν1, ν2}, then we obtain

A(t, ε) ⊆ B1(t, ε) ∪ B2(t, ε) (14)

where

B1(t, ε) =

k ∈N : sup
t∈J

∣∣∣∣ 1k(t)−1(t)
γ1(t)

∣∣∣∣
k1−ν1

≥
ε
2


and

B2(t, ε) =

k ∈N : sup
t∈J

∣∣∣∣ hk(t)−h(t)
γ2(t)

∣∣∣∣
k1−ν2

≥
ε
2

 .
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By our assumptions (12) and (13), we find that the right-hand side of the inequality (14) is in I and
consequently, from the definition of ideal, we havek ∈N : sup

t∈J

∣∣∣∣ (1k±hk)(t)−(1±h)(t)
γ(t)

∣∣∣∣
k1−ν ≥ ε

 ∈ I,
which completes the proof of statement (i). The proof of the other statements of lemma follows in a similar
way.

Theorem 4.3. Let I be an admissible ideal of N. Suppose that Tk : C(J) → C(J) is a sequence of positive linear
operators. Suppose also that

(i) Tk(e0; t) − e0 = I
r,γ1
u -o(k−ν1 ).

(ii) ω(1, δk) = I
r,γ2
u -o(k−ν2 ), where δk(t) =

√
Tk(µ2; t) with µ(s) = (s − t).

Then

Tk(1; t) − 1 = I
r,γ
u -o(k−ν) on J (∀1 ∈ C(J)) (15)

where

ν = min{ν1, ν2} and γ(t) = max{|γi(t) : |γi(t) > 0|} (i = 1, 2).

Proof. Let 1 ∈ C(J) and t ∈ J. Since (Tk) (k ∈N) ia linear and monotone, we can write

|Tk(1; t) − 1(t)| ≤ Tk(|1(s) − 1(t)|; t) + |1(t)||Tk(e0; t) − e0(t)|

≤ Tk

((
1 +
|µ(s)|
δ

)
ω(1, δ); t

)
+ C|Tk(e0; t) − e0(t)|

= ω(1, δ)Tk(e0; t) +
ω(1, δ)
δ

Tk(|µ(s)|; t) + C|Tk(e0; t) − e0(t)|,

where C = ‖1‖. It follows from Cauchy-Schwarz inequality that

Tk(|µ(s)|; t) ≤
√

Tk(µ2(s); t)
√

Tk(e0; t).

We therefore find that

|Tk(1; t) − 1(t)| ≤ ω(1, δ)Tk(e0; t) +
ω(1, δ)
δ

√
Tk(µ2; t)

√
Tk(e0; t) + C|Tk(e0; t) − e0(t)|.

If we take

δ := δk(t) =
√

Tk(µ2; t)

in the last inequality, we obtain

|Tk(1; t) − 1(t)| ≤ ω(1, δk)Tk(e0; t) + ω(1, δk)
√

Tk(e0; t) + C|Tk(e0; t) − e0(t)|

which yields

|Tk(1; t) − 1(t)| ≤ ω(1, δk)
{
|Tk(e0; t) − e0(t)| + 2e0(t) +

√
Tk(e0; t) − e0(t)

}
+ C|Tk(e0; t) − e0(t)|

Therefore, we have

sup
t∈J

∣∣∣∣∣Tk(1; t) − 1(t)
γ(t)

∣∣∣∣∣ ≤ C sup
t∈J

∣∣∣∣∣ |Tk(e0; t) − e0(t)|
γ1(t)

∣∣∣∣∣ + 2e0 sup
t∈J

ω(1, δk)
|γ2(t)|

+ sup
t∈J

ω(1, δk)
|γ2(t)|

∣∣∣∣∣Tk(e0; t) − e0(t)
|γ1(t)|

∣∣∣∣∣ + sup
t∈J

ω(1, δk)
|γ2(t)|

√∣∣∣∣∣Tk(e0; t) − e0(t)
|γ1(t)|

∣∣∣∣∣. (16)

Employing our hypotheses (i) and (ii) together with Lemma 4.2 in the last inequality (16) gives us (15). The
proof of the theorem is thus completed.
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5. Voronovskaya-type approximation theorem

We obtain a Voronovskaya-type approximation theorem by taking our positive linear operator Pk(1; t)
defined by (11) through ideal relatively uniform convergence. Before proceeding further, let us prove
following lemma which will be used to prove our next approximation result.

Lemma 5.1. Let I be an admissible ideal ofN. Assume that the following assumptions hold:

(C1) Let p = (pk) and q = (qk) satisfy qk ∈ (0, 1), pk ∈ (qk, 1] with pk → 1, qk → 1, pk
k → a, qk

k → b as k→∞, where
a , b.

Assume also that t ∈ [0, 1]. Then, for the scale function γ(t) such that |γ(t)| > 0, we have

[k]pk,qkPk

(
(s − t)2 ; t

)
I

r,γ
u
−→ pk−1

k t(1 − t) on [0, 1].

Proof. We shall obtain by (11) that

Pk

(
(s − t)2 ; t

)
= (1 + hk (t)) Bk,pk ,qk

(
s2
− 2st + t2; t

)
= (1 + hk (t))

{
Bk,pk,qk

(
s2; t

)
− 2tBk,pk ,qk (s; t) + t2Bk,pk ,qk (1; t)

}
= (1 + hk (t))

{ pk−1
k

[k]pk ,qk

t +
qk[k − 1]pk ,qk

[k]pk ,qk

t2
− t2

}
which yields

[k]pk,qkPk

(
(s − t)2 ; t

)
= (1 + hk (t))

{
pk−1

k t +
pk−1

k qk − qk
k

pk − qk
t2
− [k]pk ,qk t

2
}

= (1 + hk (t))
(
pk−1

k t − pk−1
k t2

)
= (1 + hk (t)) pk−1

k t(1 − t)

or,

[k]pk,qkPk

(
(s − t)2 ; t

)
− pk−1

k t(1 − t) = pk−1
k t(1 − t)hk (t) (17)

In view of implication (1) and Example 2.2, we see that the right-hand side of inequality (17) is ideal
relatively uniform convergent to zero on [0, 1]. Consequently, we have

[k]pk,qkPk

(
(s − t)2 ; t

)
I

r,γ
u
−→ pk−1

k t(1 − t) on [0, 1],

which proves the lemma completely.

Corollary 5.2. Let I be an admissible ideal ofN. Assume also that t ∈ [0, 1]. Then there exist a positive constant
C(t) depending only on t, such that

[k]2
pk,qk

Pk

(
(s − t)4 ; t

)
I

r,γ
u
−→ C(t) on [0, 1],

where γ(t) is a scale function satisfying |γ(t)| > 0.

Theorem 5.3. Let I be an admissible ideal of N. Assume that condition (C1) holds. If for every 1 ∈ C[0, 1] such
that 1′ and 1′′ in C[0, 1] then

[k]pk,qk

(
Pk

(
1(s); t

)
− 1(t)

) Ir,γ
u
−→

pk−1
k t(1 − t)

2
1′′(t) on [0, 1],

where γ(t) = max{|γi(t)| : i = 1, 2}, |γi(t)| > 0.
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Proof. Let 1, 1′, 1′′ ∈ C[0, 1] and t ∈ [0, 1]. Define

Ωt (s) =

 1(s)−1(t)−(s−t)1′(t)− 1
2 (s−t)2

1′′(t)
(s−t)2 (s , t)

0 (s = t) .

We then have Ωt (s) = 0 and the function Ωt belonging to C[0, 1]. By Taylor’s formula, one writes

1 (s) = 1 (t) + (s − t) 1′ (t) +
1
2

(s − t)2
1′′ (t) + (s − t)2 Ωt (s) . (18)

Since the operator Pk is linear, by operating this operator on both sides of last inequality, we have

Pk(1 (s) ; t) = Pk
(
1 (t) ; t

)
+ 1′ (t)Pk(s − t; t) +

1
2
1′′ (t)Pk((s − t)2 , t) +Pk

(
(s − t)2 Ωt (s) ; t

)
= 1(t)(1 + hk(t))Bk,pk ,qk (1; t) + 1′ (t) (1 + hk(t))

[
Bk,pk ,qk (s; t) − tBk,pk ,qk (1; t)

]
+

1
2
1′′ (t) (1 + hk(t))

[
Bk,pk ,qk (s

2; t) − 2tBk,pk ,qk (s; t) + t2Bk,pk ,qk (1; t)
]

+Pk

(
(s − t)2 Ωt (s) ; t

)
,

or,

Pk(1 (s) ; t) − 1(t) = 1(t)hk(t) +
1
2
1′′ (t) (1 + hk(t))

{ pk−1
k

[k]pk,qk

t +
qk[k − 1]pk,qk

[k]pk,qk

t2
− t2

}
+Pk

(
(s − t)2 Ωt (s) ; t

)
Multiplying above equality by [k]pk ,qk , we obtain

[k]pk,qk

(
Pk(1 (s) ; t) − 1(t)

)
= [k]pk ,qk1(t)hk(t) +

1
2
1′′ (t) (1 + hk(t))

(
pk−1

k t − pk−1
k t2

)
+[k]pk ,qkPk

(
(s − t)2 Ωt (s) ; t

)
which gives∣∣∣∣∣∣[k]pk,qk

(
Pk(1 (s) ; t) − 1(t)

)
−

pk−1
k t(1 − t)

2
1′′ (t)

∣∣∣∣∣∣ ≤ M
(
[k]pk ,qk + pk−1

k

)
hk(t)

+[k]pk ,qk

∣∣∣∣Pk

(
(s − t)2 Ωt (s) ; t

)∣∣∣∣ , (19)

where M = ‖1(t)‖C[0,1] + ‖1′′(t)‖C[0,1]. Employing the Cauchy-Schwarz inequality in the last term on the
right-hand side of (19), we obtain

[k]pk,qk

∣∣∣Pk((s − t)2 Ωt (s) ; t)
∣∣∣ ≤ √

Pk

(
Ω2

t (s) ; t
)√

[k]2
pk ,qk

Pk

(
(s − t)4 ; t

)
. (20)

Let

θt (s) = Ω2
t (s) .

Clearly, we see that

θt (t) = 0 and θt (.) ∈ C[0, 1].

It follows from Theorem 3.1 that

Pk (θt (s) ; t)
I

r,γ
u
−→ θt (t) = 0 on [0, 1]. (21)
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We thus have from (20) that

[k]pk,qkPk

(
(s − t)2 Ωt (s) ; t

)
I

r,γ
u
−→ 0. (22)

Now, for given ε > 0, we define

Jk(t) =

k ∈N : sup
t∈[0,1]

∣∣∣∣∣∣∣∣ [k]pk,qk

(
Pk(1 (s) ; t) − 1(t)

)
−

pk−1
k t(1−t)

2 1′′ (t)
γ(t)

∣∣∣∣∣∣∣∣ ≥ ε


J′k(t) =

k ∈N : sup
t∈[0,1]

∣∣∣∣∣∣∣
(
[k]pk,qk + pk−1

k

)
hk(t)

γ1(t)

∣∣∣∣∣∣∣ ≥ ε
2M


and

J′′k (t) =

k ∈N : sup
t∈[0,1]

∣∣∣∣∣∣∣ [k]pk ,qkPk

(
(s − t)2 Ωt (s) ; t

)
γ2(t)

∣∣∣∣∣∣∣ ≥ ε2
 ,

where γ(t) = max{|γi(t)| : i = 1, 2}. We then find from (19) that Jk(t) ⊂ J′k(t) ∪ J′′k (t). Since (hk)
I

r,γ
u
−→ h = 0, we

have (
[k]pk,qk + pk−1

k

)
hk(t)

I
r,γ
u
−→ 0 (t ∈ [0, 1]). (23)

Finally, by using the (22) and (23) together with the definition of ideal, we have

[k]pk,qk

(
Pk(1 (s) ; t) − 1(t)

) Ir,γ
u
−→

pk−1
k t(1 − t)

2
1′′ (t) on [0, 1].

Hence, the proof is complete.
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