
Filomat 33:14 (2019), 4561–4571
https://doi.org/10.2298/FIL1914561E

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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aDepartment of Mathematics, Hacettepe University, Ankara, Turkey

Abstract. We investigate the relationships among the weaker forms of the properties “Menger”, “Alster”
and “Lindelöf” in bitopological spaces. We give some counterexamples to show the differences between
these properties. Further we introduce the weak versions of the Alster property in terms of selection
principles and obtain some of their topological properties.

1. Introduction

A topological space X is said to be Lindelöf, or has the Lindelöf property, if every open cover of X has
a countable subcover. It is well known that the product of Lindelöf spaces is not necessarily Lindelöf. A
topological space is productively Lindelöf if its product with every Lindelöf space is Lindelöf.

K. Alster introduced a property called the Alster property in [1] (see also [5]) to characterize the
productively Lindelöf spaces and proved the following theorem.
Theorem: Assuming CH, a space of weight of at most ℵ1 is productively Lindelöf if and only if it is Alster.

Lindelöf property and productively Lindelöfness have been studied for a long time and many results
were obtained by many mathematicians.

There are several weakenings of the Lindelöf property. Unlike the productivity of the Lindelöf property,
there are very few works on productivity of weak Lindelöf properties. Recently in [4] Babinkostova,
Pansera and Scheepers have obtained some results to identify classes of spaces which are productively
weakly Lindelöf and considered the weak versions of the Alster property. Additionally Kocev in [19]
investigated the almost Alster spaces and proved that the product of an almost Menger and almost Alster
spaces is almost Menger.

In this article we study these properties in bitopological context. The idea of bitopological spaces was
first initiated by J.C. Kelly in [14] and many papers have appeared in the literature so far.

The weak versions of the Lindelöf property in bitopological spaces were mostly studied in [15]. Selective
versions of the Lindelöf property for example Menger and Rothberger properties and their weaker forms
as almost Menger and weakly Menger properties in bitopological spaces were discussed in [10, 25].

The layout of the paper is as follows. In Section 2 some necessary background material is recalled. In
Section 3 we will consider the main generalizations of the Lindelöf property such as weakly Lindelöf and
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A.E. Eysen, S. Özçağ / Filomat 33:14 (2019), 4561–4571 4562

almost Lindelöf and investigate how these properties are related to the corresponding covering properties
in bitopological spaces. We will also consider the class of productively almost Lindelöf and productively
weakly Lindelöf bitopological spaces. It is natural to ask a question whether the weak version of the Alster
property plays a role to characterize the weak productively Lindelöf bitopological spaces. Section 4 presents
some properties of weak versions of the Alster property in bitopological spaces. Finally in Section 5 we
characterize almost and weakly Alster properties in bitopological spaces in terms of selection principles.

2. Definitions and Notations

A topological space X is almost Lindelöf (weakly Lindelöf) if for every open coverU of X, there exists
a countable subset V of U such that

⋃
{V : V ∈ V} = X (respectively,

⋃
V = X). Clearly, every Lindelöf

space is almost Lindelöf and every almost Lindelöf space is weakly Lindelöf, but the converses do not hold.
For spaces with the T3 separation axiom, almost Lindelöfness implies Lindelöfness.

Many topological properties are defined or characterized in terms of the following two classical selection
principles [26].

LetA and B be sets consisting of families of subsets of an infinite set X. Then:

S1(A,B) is the selection hypothesis: for each sequence (An : n ∈ N) of elements of A there is a sequence
(bn : n ∈N) such that for each n, bn ∈ An, and {bn : n ∈N} is an element of B.

S f in(A,B) is the selection hypothesis: for each sequence (An : n ∈ N) of elements ofA there is a sequence
(Bn : n ∈N) of finite sets such that for each n, Bn ⊂ An, and

⋃
n∈N Bn ∈ B.

If O denotes the collection of all open covers of X, then the selection principle S f in(O,O) (resp. S1(O,O))
is called the Menger property (Rothberger property)[11, 12, 24, 28].

Let D denote the collection of families of open sets with union dense in the space. Let O denotes the
collection of familiesU of open subsets of the space for which {U : U ∈ U} covers the space. Then S f in(O,D)
denotes the weakly Menger property, while S f in(O,O) denotes the almost Menger property.

For undefined notions regarding selection principles in topological spaces we refer the reader to the
papers [12, 20, 21, 27, 30]. The readers may find the most recent results on weak forms of classical selection
principles of Menger, Hurewicz and Rothberger properties in the survey paper by Kočinac in [22].

Throughout the paper (X, τ1, τ2) will be a bitopological space, i.e. the set X endowed with two topologies
τ1 and τ2. τi-open set means the open set with respect to topology τi in X. By τi-open cover we mean the
cover of X by τi-open sets. For a subset A of X, Intτi (A) and Clτi (A) will denote the interior and the closure
of A in (X, τi), (i = 1, 2) respectively. LetP be some topological property. Then (i, j)−P denotes an analogue
of this property for τi with respect to τ j, and p-P denotes the conjunction (1, 2)-P ∧ (2, 1)-P where p is the
abbreviation for “pairwise”. We note that (X, τi) has a property P if and only if the bitopological space
(X, τ1, τ2) has a property i-P and d-P ⇐⇒ 1-P ∧ 2-P, where “d” is the abbreviation for “double”.

We end this section by recalling from [10, 25] the definitions of almost Menger and weakly Menger
properties in bitopological spaces. Our topological terminology and notations are as in the book [9] and
standard reference for bitopological spaces is [7].

Definition 2.1. ([25]) A bitopological space (X, τ1, τ2) is said to be (i, j)-almost Menger, if for each sequence
(Un : n ∈N) of τi-open covers of X, there exists a sequence (Vn : n ∈N) of finite families such that for each
n,Vn ⊆ Un and X =

⋃
n∈N

⋃
V∈Vn

Clτ j (V).

Definition 2.2. ([25]) A bitopological space (X, τ1, τ2) is said to be (i, j)-weakly Menger, if for each sequence
(Un : n ∈N) of τi-open covers of X, there exists a sequence (Vn : n ∈N) of finite families such that for each
n,Vn ⊆ Un and X = Clτ j (

⋃
n∈N

⋃
Vn).

From the definitions, it is clear that every (i, j)-almost Menger bitopological space is (i, j)-weakly Menger
but the converse does not hold (see, Exp.2.3 in [10]).
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3. Weak Versions of the Alster Property and Related Bitopological Spaces

In 1988, K. Alster [1] characterized the productivity of Lindelöf spaces by introducing a very nice
property which is known as (∗) property in the literature.

In [6] we have the definition of “amply Lindelöf space” which is actually the definition of Alster spaces.
In [4] Babinkostova, Pansera and Scheepers used Gδ compact cover ( A family F of Gδ subsets of a space X
is called Gδ compact cover if there is for each compact subset K of X a set F ∈ F such that K ⊂ F ) to define
the Alster space, i.e. each Gδ compact cover of the space has a countable subset covering the space. They
underlined the fact that this definition is not identical to the definition in [5] but it is equivalent and also it
is equivalent to the (∗) property given by Alster.

The reader is referred to [1–6] for more background material on Alster spaces. We will use the following
definition and terminology used by Aurichi and Dias in [3].

Definition 3.1. Let (X, τ) be a topological space. A coverU of X by Gδ subsets is said to be an Alster cover
if every compact subset of X is included in some element ofU. A topological space X is an Alster space if
every Alster coverU of X has a countable subcover.

Alster spaces were introduced to characterize the class of productively Lindelöf spaces. As mentioned in
the introduction, Alster spaces are productively Lindelöf and under the continuum hypothesis, productively
Lindelöf spaces of weight not exceeding ℵ1 are Alster spaces [1].

In [4] the authors investigated the weak productively Lindelöf properties specially focused on weakly
properties and obtained that weakly Alster spaces are productively weakly Lindelöf. Furthermore it is
proven that every productively Lindelöf space of weight at most ℵ1 is productively weakly Lindelöf. The reader is
suggested to refer [4, 19] for detailed informations on weakly Alster and almost Alster spaces.

Now let us turn to bitopological spaces. The generalization of the Lindelöf property in bitopological
spaces namely pairwise almost Lindelöf, pairwise weakly Lindelöf spaces were introduced and studied in
[15–17]. We recall the followings:

Definition 3.2. ([15]) A bitopological space (X, τ1, τ2) is said to be (i, j)-almost Lindelöf if for every τi-open
coverU of X, there exists a countable subfamily {Un : n ∈N} ofU such that

⋃
n∈N

Clτ j (Un) = X.

It is clear that if (X, τ1) is a Lindelöf space, then (X, τ1, τ2) is (1, 2)-almost Lindelöf.

Proposition 3.3. ([17]) An (i, j)-regular bitopological space is (i, j)-almost Lindelöf if and only if it is i-Lindelöf.

We first start by giving an example that the product of two (i, j)-almost Lindelöf bitopological spaces
need not be (i, j)-almost Lindelöf.

Example 3.4. Consider (R, τ1, τ2) where R is the real line, τ1 is the Sorgenfrey topology and τ2 is the usual
topology. Thus (R, τ1, τ2) is an (1, 2)-almost Lindelöf bitopological space since (R, τ1) is Lindelöf. Now
consider the product bitopological space (R × R, τ1 × τ1, τ2 × τ2). It is clear that (R × R, τ1 × τ1, τ2 × τ2) is
(1, 2)-regular and (R × R, τ1 × τ1) is not Lindelöf [29]. Thus we observe that (R × R, τ1 × τ1, τ2 × τ2) is not
(1, 2)-almost Lindelöf by Proposition 3.3 (see Exp. 3.24 in [18]).

Definition 3.5. ([15]) A bitopological space (X, τ1, τ2) is said to be (i, j)-weakly Lindelöf, if for every τi-open
coverU of X there is a countable subsetV ⊆ U such that Clτ j (

⋃
V) = X

It is clear that every (i, j)-almost Lindelöf bitopological space is (i, j)-weakly Lindelöf, but the converse
is not true (see Exp.3.24 in [18]).

In order to investigate the productivity of almost Lindelöf bitopological spaces we need the following
definition:

Definition 3.6. A bitopological space (X, τ1, τ2) is said to be (i, j)-almost Alster, if for every τi-Alster cover
U of X there is a countable subfamilyV ⊆ U such that

⋃
V∈V

Clτ j (V) = X.
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A bitopological space (X, τ1, τ2) is (i, j)-almost σ-compact if it is a union of τ j-closures of countably many
τi-compact subsets. Clearly if (X, τ1) is σ-compact then the bitopological space (X, τ1, τ2) is (1, 2)-almost
σ-compact.

Theorem 3.7. Let (X, τi) be a metrizable topological space. Then (X, τ1, τ2) is (i, j)-almost σ-compact if and only if
(X, τ1, τ2) is (i, j)-almost Alster.

Proof. (⇒) LetU be τi-Alster cover of X. Since X is (i, j)-almost σ-compact there exist a sequence (Kn : n ∈N)
of τi-compact subsets of X such that

⋃
n∈N

Clτ j (Kn) = X. Then sinceU is τi-Alster cover of X, for every n ∈N

there exists Un ∈ U such that Kn ⊆ Un. On the other hand, we have

X =
⋃
n∈N

Clτ j (Kn) ⊆
⋃
n∈N

Clτ j (Un)

thus X is (i, j)-almost Alster.
(⇐) LetU be the family of all τi-compact subset of X. Since (X, τi) is metrizable then it satisfies T2 axiom.

Thus the elements ofU are τi-closed. On the other hand closed subsets are Gδ sets in metrizable topological
spaces henceU is a τi-Alster cover of X.

Since (X, τ1, τ2) is an (i, j)-almost Alster bitopological space there exists a countable subfamily V ⊂ U
such that

⋃
V∈V

Clτ j (V) = X. Thus (X, τ1, τ2) is (i, j)-almost σ-compact.

Proposition 3.8. If (X, τ1, τ2) is an (i, j)-almost Alster bitopological space then X is (i, j)-almost Menger.

Proof. Let (Un : n ∈ N) be a sequence of τi-open covers of X. Without loss of generality we may assume
that everyUn is closed under finite unions. Now take

V =
{ ⋂

n∈N

Un : Un ∈ Un

}
.

Clearly the elements ofV are τi-Gδ subsets of X. On the other hand for every τi-compact subset K of X
there exists V ∈ V such that K ⊂ V. ThusV is a τi-Alster cover of X.

Since X is (i, j)-almost Alster, there exists a countable subfamily {Vk : k ∈N} ofV such that⋃
k∈N

Clτ j (Vk) = X.

Now let Vk =
⋂

n∈N
Unk (∀n ∈N,Unk ∈ Un). So for each n ∈N, Vn ⊂ Unn ∈ Un so that⋃

n∈N

Clτ j (Unn) = X.

Thus X is (i, j)-almost Menger.

From the previous proposition (i, j)-almost Alster bitopological spaces are (i, j)-almost Menger but the
following example shows the reverse implication does not hold in general.

Example 3.9. Let R be the real line, τe be the Euclidean topology and τcc be the topology of countable
complements on R. We define τ be the smallest topology generated by τe ∪ τcc. The topology τ is called
countable complement extension topology [29].

• A set G is open in (R, τ) if and only if G = U \ A where U ∈ τe and A is a countable subset of R.

• A set C is closed in (R, τ) iff C = K ∪ B where K is closed in τe and B is a countable subset of R.

• A subset of (R, τ) is compact iff it is finite so (R, τ) is not σ-compact. On the other hand, (R, τ) is
Menger by [23].
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Now we define the bitopological space as follows: Let τ1 be the countable complement extension
topology on R and τ2 be the Euclidean topology on R.

• (R, τ1, τ2) is (1, 2)-almost Menger because (R, τ1) is Menger.

• (R, τ1, τ2) is not (1, 2)-almost Alster. Indeed, letU be the family of all τ1-compact subsets of R, then
U is a τ1-Alster cover ofR. But any family consisting of the τ2-closures of the elements in a countable
subfamily ofU does not cover R.

Proposition 3.10. If (X, τ1, τ2) is an (i, j)-almost Menger bitopological space, then X is (i, j)-almost Lindelöf.

Proof. LetU be a τi-open cover of X. For each n ∈N let us takeUn =U. Then the elements of the sequence
(Un : n ∈ N) are τi-open covers of X and since X is (i, j)-almost Menger we obtain that X is (i, j)-almost
Lindelöf.

By Proposition 3.8 and Proposition 3.10 we have (i, j)-almost Alster bitopological spaces are (i, j)-almost
Lindelöf. The following example shows that the reverse implication does not hold in general.

Example 3.11. Let B be a base for the Euclidean topology on R . The family

B
? = B ∪ {{q} : q ∈ Q}

is a base of a topology on R . We define τ?, the discrete rational extension of Euclidean topology to be the
topology generated by B? [29, Example 70].

• (R, τ?) is a metrizable space. (R, τ?) is not σ-compact but it is Lindelöf.

Now let τ2 be the Euclidean topology on R and let τ1 be the discrete rational extension of τ2.

• (R, τ1, τ2) is (1, 2)-almost Lindelöf since (R, τ1) is a Lindelöf space.

• (R, τ1, τ2) is not (1, 2)-almost σ-compact. Thus (R, τ1, τ2) is not (1, 2)-almost Alster by Theorem 3.7.

Now we note that a topological space (X, τ) is a P-space if any intersection of countably many open sets
of X is again open. Let us recall [15] that a bitopological space (X, τ1, τ2) is said to be (i, j)-weakly P-space if
for every countable family {Un : n ∈N} of τi-open subsets of X, Clτ j (

⋃
n∈NUn) =

⋃
n∈N Clτ j (Un). Concerning

to the question in under which conditions (i, j)-almost Lindelöf bitopological spaces are (i, j)-almost Alster
we give the following proposition:

Proposition 3.12. If (X, τ1, τ2) is (i, j)-almost Lindelöf and (X, τi) is P-space, then X is (i, j)-almost Alster.

Proof. It is clear from every τi-Alster cover is a τi-open cover.

Corollary 3.13. Let (X, τ1, τ2) be a bitopological space with (X, τi) is P-space. The following statements are equivalent:
(1) (X, τ1, τ2) is (i, j)-almost Alster.
(2) (X, τ1, τ2) is (i, j)-almost Menger.
(3) (X, τ1, τ2) is (i, j)-almost Lindelöf.

We have now in a position to give the promised relation with the (i, j)-almost Alster property and
productively almost Lindelöf bitopological spaces.

Theorem 3.14. Let (X, τ1, τ2) be an (i, j)-almost Alster and (Y, σ1, σ2) be an (i, j)-almost Lindelöf bitopological spaces.
Then (X × Y, τ1 × σ1, τ2 × σ2) is (i, j)-almost Lindelöf.
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Proof. LetW be a τi×σi-open cover of X×Y. Without loss of generality we may assume thatW is closed
under finite unions.

For each τi-compact C ⊆ X and each y ∈ Y we can choose W(C, y) ∈ W such that C×{y} ⊂ W(C, y). On
the other side there are τi-neighbourhood U(C, y) and σi-neighbourhood V(C, y) of C and y respectively,
such that C×{y} ⊂ U(C, y)×V(C, y) ⊂W(C, y) by the Wallace Theorem [13, Theorem 5.12].

The set {V(C, y) : y ∈ Y} is a σi-open cover of Y. By the hypothesis there exists a countable subset Y(C)
of Y such that

⋃
y∈Y(C)

Clσ j (V(C, y)) = Y.

Let U(C) =
⋂

y∈Y(C)
U(C, y). Then for each y ∈ Y(C) we have C×{y} ⊂ U(C)×V(C, y) ⊂ W(C, y). U(C) is a

τi-Gδ set containing C and the set {U(C) : C ⊂ X, τi-compact} is a τi-Alster cover of X. By the hypothesis
there exists a countable family of τi-compact sets {Cn : n ∈N} such that

⋃
n∈N

Clτ j (U(Cn)) = X.

We now have:

X × Y =
⋃
n∈N

(
Clτ j

(
U(Cn)

)
×

⋃
y∈Y(Cn)

Clσ j

(
V(Cn, y)

))
=

⋃
n∈N

( ⋃
y∈Y(Cn)

Clτ j

(
U(Cn)

)
× Clσ j

(
V(Cn, y)

))
⊆

⋃
n∈N

⋃
y∈Y(Cn)

Clτ j×σ j

(
W(Cn, y)

)
and thus (X×Y, τ1×σ1, τ2×σ2) is (i, j)-almost Lindelöf.

This last result shows that (i, j)-almost Alster bitopological spaces are productively (i, j)-almost Lindelöf.
Now we will consider the bitopological spaces that are productively (i, j)-weakly Lindelöf.

Definition 3.15. A bitopological space (X, τ1, τ2) is said to be (i, j)-weakly Alster, if for every τi-Alster cover
U of X there is a countable subsetV ⊆ U such that Clτ j (∪V) = X.

Obviously (i, j)-almost Alster bitopological spaces are (i, j)-weakly Alster.

Theorem 3.16. Let (X, τ1, τ2) be an (i, j)-weakly Alster and (Y, σ1, σ2) be an (i, j)-weakly Lindelöf bitopological spaces
then (X × Y, τ1 × σ1, τ2 × σ2) is (i, j)-weakly Lindelöf.

Proof. LetW be a τi×σi-open cover of X×Y. For each τi-compact A ⊆ X and each y ∈ Y, the set A×{y} is
τi×σi-compact. Then there exists W(A, y) ∈ W and a τi-neighbourhood U(A, y) of A and a σi-neighbourhood
V(A, y) of y, such that

A×{y} ⊂ U(A, y)×V(A, y) ⊂W(A, y).

The set {V(A, y) : y ∈ Y} is a σi-open cover of Y. Since Y is an (i, j)-weakly Lindelöf bitopological space,
there exists a countable subset Y(A) of Y such that

Clσ j

( ⋃
y∈Y(A)

V(A, y)
)

= Y. (1)

Let U(A) =
⋂

y∈Y(A)
U(A, y). The set {U(A) : A ⊂ X, τi-compact} is a τi-Alster cover of X and since X is

(i, j)-weakly Alster there exists a countable family of τi-compact sets {An : n ∈N} such that

Clτ j

( ⋃
n∈N

U(An)
)

= X. (2)
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Now we will show that the union of the countable subfamily {W(An, y) : y ∈ Y(An),n ∈N} ofW is τ j×σ j-
dense in X×Y. Let (a, b) ∈ X×Y and S is a τ j-open neighbourhood of a and T is a σ j-open neighbourhood
of b. By the equality (2) there exists na ∈ N such that S ∩ U(Ana ) , ∅. Applying the equality (1), we find
yb ∈ Y(Ana ) such that T ∩ V(Ana , yb) , ∅. Then

∅ ,
(
S ∩U(Ana )

)
×

(
T ∩ V(Ana , yb)

)
=

(
S × T

)
∩

(
U(Ana ) × V(Ana , yb)

)
⊂

(
S × T

)
∩W(Ana , yb)

which shows that (X×Y, τ1×σ1, τ2×σ2) is (i, j)-weakly Lindelöf.

Finally we obtain that (i, j)-weakly Alster bitopological spaces are productively (i, j)-weakly Lindelöf.

Theorem 3.17. If a bitopological space (X, τ1, τ2) is (i, j)-weakly Alster, then X is (i, j)-weakly Menger.

Proof. Similar to the proof of Proposition 3.8.

By the definitions it is clear that (i, j)-weakly Menger and (i, j)-almost Lindelöf bitopological spaces are
(i, j)-weakly Lindelöf.

The following figure shows the relationships among the properties we have discussed. In [2] it is proved
that Alster spaces are Menger. An example for the reverse implication is given in [12] “ A Hurewicz (and
hence Menger) subspace of the real line which is not σ-compact (and hence not Alster) [2].”It is noted that
every space with the Menger property is Lindelöf. However the space P of irrationals is Lindelöf but not
Menger. The solid arrow indicates the implication holds with the given number. A dashed arrow means this
implication does not hold with the given example number. A dotted arrow indicates that the implication
holds under the indicated hypothesis.
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4. Properties of (i, j)-Almost (Weakly) Alster Bitopological Spaces

Throughout this section we consider some topological properties of (i, j)-almost (weakly) Alster bitopo-
logical spaces.

We note that a subset F of a bitopological space (X, τ1, τ2) is said to be (i, j)-almost Alster (resp. weakly
Alster) if F is (i, j)-almost Alster (resp. weakly Alster) as a subspace of X, i.e., F is (i, j)-almost Alster (weakly
Alster) with respect to the induced bitopology from the bitopology of X.
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Proposition 4.1. Every τi-closed and τ j-open subset of an (i, j)-almost Alster bitopological space (X, τ1, τ2) is (i, j)-
almost Alster.

Proof. Let F be a τi-closed and τ j-open subset of X. We will show that (F, τ1F , τ2F ) is (i, j)-almost Alster. Let
U be a τiF -Alster cover of F. Then V = {U ∪ (X \ F) : U ∈ U} is a τi-Alster cover of X. Since (X, τ1, τ2) is
(i, j)-almost Alster there exists a countable subfamily {Un : n ∈N} ofU such that

⋃
n∈N Clτ j

(
Un∪(X\F)) = X.

On the other side, F is τ j-open by the hypothesis then we obtain( ⋃
n∈N

Clτ j (Un)
)
∪ (X \ F) = X.

Now take the intersection of both sides by F, we have
⋃

n∈N Clτ jF
(Un) = F.

This proves that (F, τ1F , τ2F ) is (i, j)-almost Alster.

Proposition 4.2. Let (X, τ1, τ2) be a bitopological space and A be a τ j-dense subset of X. If A is (i, j)-weakly Alster,
then X is (i, j)-weakly Alster.

Proof. Let U be a τi-Alster cover of X. Then UA = {U ∩ A : U ∈ U} is a τiA -Alster cover of A. Since A is
(i, j)-weakly Alster there is a countable subfamily {Un∩A : n ∈N} ofUA such that A = Clτ jA

(
⋃

n∈N(Un∩A)).
Now we have A ⊆ Clτ j (

⋃
n∈N(Un ∩ A)) ⊆ Clτ j (

⋃
n∈NUn) and by the fact that A is a τ j-dense subset of X, we

obtain X = Clτ j (A) ⊆ Clτ j (
⋃

n∈NUn).

Theorem 4.3. If (X, τ1, τ2) and (Y, σ1, σ2) are (i, j)-almost Alster bitopological spaces then (X × Y, τ1 × σ1, τ2 × σ2)
is (i, j)-almost Alster.

Proof. LetW be a τi×σi-Alster cover of X×Y.
For each τi-compact set A ⊆ X and σi-compact set B ⊆ Y there exits W(A,B) ∈ W such that A×B ⊂

W(A,B).
Since W(A,B) is a τi×σi-Gδ set, W(A,B) can be written as W(A,B) =

⋂
n∈NWn(A,B) where for each n ∈N,

Wn(A,B) is a τi×σi-open subset of X×Y.
For every n ∈ N, there exists a τi-neighbourhood Un(A,B) and a σi-neighbourhood Vn(A,B) of A and B
respectively, such that

A×B ⊂ Un(A,B)×Vn(A,B) ⊂Wn(A,B).

Let U(A,B) =
⋂

n∈NUn(A,B) and V(A,B) =
⋂

n∈N Vn(A,B) then, U(A,B) is a τi-Gδ set containing A and
V(A,B) is a σi-Gδ set containing B.

For every τi-compact set A ⊆ X, the set {V(A,B) : B ⊂ Y, σi-compact} is a σi-Alster cover of Y. By
hypothesis there is a countable familyA consisting of σi-compact subsets of Y such that

⋃
B∈A Clσ j

(
V(A,B)

)
=

Y.
On the other hand, let U(A) =

⋂
B∈AU(A,B) then U(A) is a τi-Gδ set containing A, so that for every B ∈ A

we have A×B ⊂ U(A)×V(A,B) ⊂W(A,B).
The set {U(A) : A ⊂ X, τi-compact} is an τi-Alster cover of X. Thus for a countable set {An : n ∈ N}

consisting of τi-compact subsets of X we obtain
⋃

n∈N Clτ j

(
U(An)

)
= X.

Then we have:

X × Y =
⋃
n∈N

(
Clτ j

(
U(An)

)
×

⋃
B∈An

Clσ j

(
V(An,B)

))
=

⋃
n∈N

( ⋃
B∈An

Clτ j

(
U(An)

)
× Clσ j

(
V(An,B)

))
⊆

⋃
n∈N

⋃
B∈An

Clτ j×σ j

(
W(An,B)

)
thus the product bitopological space (X×Y, τ1×σ1, τ2×σ2) is (i, j)-almost Alster.
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In [8], for k ∈ N, the power bitopological space Xk of a bitopological space (X, τ1, τ2) is defined as
(Xk, τ1

k, τ2
k). The proof of Theorem 4.3 leads to the following:

Corollary 4.4. Let (X, τ1, τ2) be an (i, j)-almost Alster bitopological space and n ∈ N. Then the bitopological space
(Xn, τ1

n, τ2
n) is (i, j)-almost Alster.

Theorem 4.5. If (X, τ1, τ2) and (Y, σ1, σ2) are (i, j)-weakly Alster bitopological spaces then their product (X×Y, τ1 ×

σ1, τ2 × σ2) is (i, j)-weakly Alster.

Proof. The proof uses the same techniques as the proof of Theorem 3.16 except that we are having a
σi-compact subset B ⊆ Y instead of y ∈ Y and obtain A×B ⊂ U(A,B)×V(A,B) ⊂W(A,B).

By the hypothesis that X and Y are (i, j)-weakly Alster bitopological spaces we show that the union of
the countable subfamily {W(An,B) : B ∈ An,n ∈ N} ofW is τ j×σ j-dense in X×Y. Thus (X×Y, τ1×σ1, τ2×σ2)
is (i, j)-weakly Alster.

Corollary 4.6. Let (X, τ1, τ2) be an (i, j)-weakly Alster bitopological space and n ∈ N. Then the bitopological space
(Xn, τ1

n, τ2
n) is (i, j)-weakly Alster.

We recall that a function f : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be double continuous (shortly d-continuous)
if the induced functions f : (X, τi)→ (Y, σi) are continuous for (i = 1, 2).

Proposition 4.7. Every d-continuous image of an (i, j)-almost Alster bitopological space is (i, j)-almost Alster.

Proof. Let (X, τ1, τ2) be an (i, j)-almost Alster bitopological space and f : (X, τ1, τ2) → (Y, σ1, σ2) be a d-
continuous surjection. We will show that Y is (i, j)-almost Alster.

Let U be a σi-Alster cover of Y. It is easy to verify that V = { f−1(U) : U ∈ U} is a τi-Alster cover of
X. Since (X, τ1, τ2) is (i, j)-almost Alster there exists a countable subfamily {Vn : n ∈ N} of V such that⋃

n∈N Clτ j (Vn) = X.
On the other hand, for every n ∈ N there exists Un ∈ U satisfying Vn = f−1(Un). As f is surjective and

τ j − σ j-continuous we have the followings:

Y =
⋃
n∈N

f
(
Clτ j (Vn)

)
⊆

⋃
n∈N

Clσ j

(
f (Vn)

)
⊆

⋃
n∈N

Clσ j (Un).

This means that (Y, σ1, σ2) is (i, j)-almost Alster.

5. Weak Alster Properties and Selection Principles

In this section we characterize the (i, j)-almost (weakly) Alster property in terms of selection principles.
Let (X, τ1, τ2) be a bitopological space. The following classes of covers of X will be at the center of this

investigation. We will follow the similar notations as used in the papers [4, 19].
G
τi : The family of all coversU of X for which each element ofU is a τi-Gδ set.
G
τi
A

: The family of all τi-Alster covers of X.
G
τi
Ω

: The family of all coversU ∈ Gτi such that every finite subset of X is contained by an element ofU.
Clτ j (G

τi ): The family, consisting of setsU with each element ofU is τi-Gδ subset of X and {Clτ j (U) : U ∈ U}
covers X.
Clτ j (G

τi
Ω

): The family of all setsU ∈ Clτ j (G
τi ) such that for each finite subset F ⊆ X there is a UF ⊆ U such

that F ⊆ Clτ j (UF).
Now we give the following characterization of (i, j)-almost Alster property in terms of selection principle

S1.

Theorem 5.1. Let (X, τ1, τ2) be a bitopological space. The followings are equivalent.

1. X is (i, j)-almost Alster;
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2. X satisfies the selection principle S1

(
G
τi
A
,Clτ j (G

τi )
)
;

3. X satisfies the selection principle S1

(
G
τi
A
,Clτ j (G

τi
Ω

)
)
.

Proof. (1)⇒ (2) Let (Un : n ∈N) be a sequence of τi-Alster covers of X. Define

U =
{ ⋂

n∈N

Un : (∀n)(Un ∈ Un)
}
.

Then clearlyU is a τi-Alster cover of X. Since X is (i, j)-almost Alster there exists a countable subfamily
{Vn : n ∈N} ofU such that

⋃
n∈N Clτ j (Vn) = X.

Now for each n ∈ N put Vn =
⋂

k∈NUn
k (Un

k ∈ Uk,∀k ∈ N). Then for each n ∈ N we have Vn ⊂ Un
n ∈ Un

and we obtain, ⋃
n∈N

Clτ j (Vn) ⊂
⋃
n∈N

Clτ j (U
n
n) = X

thus X satisfies S1

(
G
τi
A
,Clτ j (G

τi )
)
.

(2) ⇒ (1) Let U be a τi-Alster cover of X. Then (Un : n ∈ N) is a sequence of τi-Alster covers of X where
Un = U for each n ∈ N. By (2) we can choose Un ∈ Un for every n ∈ N such that

⋃
n∈N Clτ j (Un) = X, thus

X is (i, j)-almost Alster.
(2)⇒ (3) If X satisfies the selection principle S1

(
G
τi
A
,Clτ j (G

τi )
)

then for every n ∈N, Xn satisfies S1

(
G
τi
A
,Clτ j (G

τi )
)
;

since the finite power of an (i, j)-almost Alster space is (i, j)-almost Alster by Corollary 4.4.
Let (Un : n ∈N) be a sequence of τi-Alster covers of X. Let {Yn : n ∈N} be a partition ofN, where Yn is

infinite for every n ∈ N. For each n ∈ N and each k ∈ Yn setVk = {(U)n : U ∈ Uk}. Then (Vk : k ∈ Yn) is a
sequence of τn

i -Alster cover of Xn for every n ∈ N. Since Xn satisfies S1

(
G
τi
A
,Clτ j (G

τi )
)

for each k ∈ Yn there
exists Vk ∈ Vk such that ⋃

k∈Yn

Clτn
j
(Vk) = Xn.

On the other hand, for each n ∈N and each k ∈ Yn there exists Uk ∈ Uk such that Vk = (Uk)n.
Now we will show {Un : n ∈ N} ∈ Clτ j (G

τi
Ω

). Consider a finite subset F = {x1, x2, . . . , xm} of X. Now we
consider F as a point in Xm like z = (x1, x2, . . . , xm) ∈ Xm. Then there exists k ∈ Ym such that z ∈ Clτm

j
(Vk). In

this case xi ∈ Clτ j (Uk) for every i = 1, 2, . . . ,m and F ⊂ Clτ j (Uk). Thus X satisfies S1

(
G
τi
A
,Clτ j (G

τi
Ω

)
)
.

(3)⇒ (2) Clear since Clτ j (G
τi
Ω

) ⊂ Clτ j (G
τi ).

We end this section by characterizing the (i, j)-weakly Alster property in terms of selection principles.
Now we need the following notation.
Dτ j (G

τi ): The collection of setsU where each element ofU is τi-Gδ sets and
⋃
U is dense in (X, τ j).

Finally we note the following:

Theorem 5.2. For a bitopological space (X, τ1, τ2) the followings are equivalent.

1. X is (i, j)-weakly Alster;
2. X satisfies the selection principle S1(Gτi

A
,Dτ j (G

τi )).

Acknowledgements

The authors would like to thank the referees for careful reading and for their useful remarks and
suggestions which improve the readability of the paper.
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Fund. Math. 129 (1988) 133–140.
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[23] Lj.D.R. Kočinac, S. Özçağ, Bitopological spaces and selection principles, Proc. ICTA 2011 (Islamabad, Pakistan, July 4–10, 2011),

Cambridge Scientific Publishers, (2012) pp. 243–255.
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