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Abstract. Let X and Y be Banach spaces, A : X —» Yand B, C : Y — X be bounded linear operators. We
prove that if A(BA)?> = ABACA = ACABA = (AC)?A, then

0.(AC) \ {0} = 0.(BA) \ {0}

where o, runs over a large of spectra originated by regularities.

1. Introduction

Throughout this paper £(X,Y) denotes the set of all bounded linear operators acting from a complex
Banach space X into another one, Y, and £(X) is a short for £(X, X). Given two operators A € L(X,Y) and
B € L(Y, X), Jacobson’s Lemma asserts that

a(AB) \ {0} = o(BA) \ {0} 1)

where o(-) denotes the ordinary spectrum.

Several works have been devoted to equality (1) by showing that AB — I and BA — I share many spectral
properties. See [2, 3, 5, 6, 13, 15, 16, 18, 19] and the references therein. Barnes in [2] extended (1) to other
part of the spectrum and showed that AB — I and BA — I share some spectral properties. In [3], Benhida
and Zerouali investigated equation (1) for various Taylor joint spectra. For A and B satisfying ABA = A?
and BAB = B?, Schmoeger [15, 16] and Duggal [7] showed that A, B, AB and BA share spectral properties.
Corach et al. [6] investigated common properties for ac — 1 and ba — 1 where a,b and c are elements in
associative ring such that aba = aca. For bounded linear operators A, B and C, Zeng and Zhong [19] studied
spectral properties for AC and BA under the condition ABA = ACA. If C = [ in the last condition, one can
retrieve Schmoeger’s result. For operators A, B, C and D satisfying ACD = DBD and BDA = ACA, Yan and
Fang [17] investigated spectral properties for AC and BD. Recently, [5] studied common properties for ac
and ba for elements in a ring satisfying a(ba)*> = abaca = acaba = (ac)?a.
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The paper is a continuation of [5] and [20]. The aim of this paper is to extend recent results to bounded
linear operators A € £(X,Y) and B, C € L(Y, X) satisfying

A(BA)?> = ABACA = ACABA = (AC)?A.

In section two we give basic definitions and notation which we need in the sequel. Section 3 is devoted
to the main results of the paper. In Theorem 3.1 we prove that if A € £(X,Y) and B,C € L(Y, X) satisfy
A(BA)?> = ABACA = ACABA = (AC)*A, then

0.(AC)\ {0} = 0.(BA) \ {0}

where 0. runs over a large of spectra originated by regularities.

2. Basic definitions and notations

For an operator T € L(X), let N(T) and R(T) stand for the kernel, respectively the range of T. An operator
T € L(X)is said to be an upper semi-Fredholm operator if R(T) is closed and dim N(T) < oo, and T is said to be
a lower semi-Fredholm operator if codim N(T) < co. One says that T is a Fredholm operator if dim N(T) < oo
and codim N(T) < co. If T is either upper or lower semi-Fredholm then T is said semi-Fredholm operator. In
this case the index of T is defined by ind(T) = dim N(T) — dim R(T).

The ascent of T, asc(T), is the smallest nonnegative integer n for which N(T") = N(T"*!), i.e.; asc(T) =
inf{n € Z, : N(T") = N(T"1)}. If no such integer exists, we shall say that T has infinite ascent. In a
similar way, the descent of T, dsc(T) , is defined by dsc(T) = inf{n € Z, : R(T") = R(T"*')} and if no such
integer exists, we shall say that T has infinite descent. We say that T is left Drazin invertible if asc(T) < oo
and R(T*D*1) is closed and T is right Drazin invertible if dsc(T) < co and R(T*“D) is closed. If T is both left
and right Drazin invertible, then T is said to be Drazin invertible ; which is equivalent to asc(T) = dsc(T) < oo
(see [1]). One says that T is upper semi-Browder if T is upper semi-Fredholm with finite ascent, and T is lower
semi-Browder if T is lower semi-Fredholm with finite descent. If T is both upper and lower semi-Browder
then T is said to be Browder operator (see [14]).

For each n € Z,, let ¢,(T) = dim R(T")/R(T"*!) and c¢}(T) = dim N(T"*!)/N(T"). It was proved in [8,
Lemma 3.2] that for every n, we have

(T = dim X/(R(T) + N(T")) and ¢(T) = dim N(T) N R(T").

It is easy to see that {c,(T)} and {c;(T)} are decreasing sequences and dsc(T) = inf{n € Z, : c,(T) = 0},
asc(T) =inf{n € Z, : ¢,(T) = 0}.

Following [12], the essential descent dsc,(T) of T is defined by dsc,(T) = inf{n € Z, : ¢,(T) < oo}, and the
essential ascent asc,(T) of T is defined by asc.(T) = inf{n € Z, : c,(T) < oo}, where the infimum over the
empty set is taken to be infinite.

Let N*(T) and R*(T) denote the hyper-kernel and the hyper-range of T defined by

N®(T) = UN(T“) and R*(T) = ﬂR(T”).
n=1 n=1
One says that T is semi-reqular if R(T) is closed and N*°(T) € R(T).

For each n € Z., T € L(X) induces a linear maps I',, from the space R(T")/R(T"*!) into R(T"*)/R(T"*+?).
The dimension of the null space of I, will be denoted by k,(T), i.e., k,(T) = dim N(I',,). It follows from [8,
Theorem 3.7] that for every n,

kn(T) dim((R(T") N N(T))/(R(T**') N N(T)))
dim(R(T) + R(T™1))/(R(T) + N(T™)).
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Let .
K(T) = an(T).
n=0

Then it follows from [8, Theorem 3.7] that k(T) = dim N(T)/(N(T) NR>(T)) = dim(R(T) + N®(T))/R(T). The
stable nullity c(T) and the stable defect ¢’(T) of T are defined by

0o o)

oT) = ch(T) and ¢'(T) = Zc;(T).

n=0 n=0
Then we have ¢(T) = dim X/R*(T) and ¢’(T) = dim R*(T).
According to [11], the degree of stable iteration of T € L(X) is defined by
dis(T) =inf{n € Z, : k;,(T) = 0 for all m > n},
and the degree of essential stable iteration of T ([18]) is defined is
dis,(T) = inf{n € Z., : k,,(T) < oo for all m > n}.

Definition 2.1. Let R be a non-empty subset of L(X). R is called a regularity if it satisfies the following two
conditions:

i) ifnelN, then A € Rifand only if A" € R;

ii) if A, B, Cand D are mutually commuting operators in L(X) such that AC+BD = I, then AB € R if and only if A €
Rand B € R.

A regularity R ¢ £(X) assigns to each T € £(X) a subset of C defined by
or(T)={AeC:T-Al¢R}

and called the spectrum of T corresponding to the reqularity R. We note that every regularity R contains
all invertible operators, so that or(T) € o(T). In general, or(T) is neither compact nor non-empty (see
[10, 12, 14]).

The regularities R;, where 1 < i < 15, were introduced and studied in [10, 12, 14] but are in a different
form. Regularity Rig was introduced by [4], while Ry6, R17 and Ri9 were introduced by [18].

Definition 2.2.
Ri = {TeLX):T)=0},
Ry, = {TeL(X): cT)< oo},
R3 (T € L(X) : there exists d € Z., such that cy(T) = 0 and R(T%1) is closed),
Ry = {TeL(X):c,(T)<oo,VnezZ,},
Rs = {Te L(X): thereexistsd € Z, such that c;(T) < oo and R(T**1) is closed},
Re = {TeL(X):(T)=0andR(T) is closed},
R;, = {TeL(X): d(T)< coand R(T) is closed},
Rg {T € LX) : there exists d € Z, such that ¢/(T) = 0 and R(TH1) is closed),
Ry {T e L(X) : c;(T) < oo for every n € Z, and R(T) is closed},
Rio = (T € L(X) : thereexistsd € Z, such that c/(T) < co and R(TH1) is closed),
Ry1 = {Te L(X): kT)=0and R(T) is closed},
Ry = {TeL(X): k(T) < coand R(T) is closed},
Riz = {TeL(X): thereexistsd € Z, such that k,(T) = 0 for every n > d and R(T**1) is closed)},
Ry = (TeL(X): ky(T) < oo for every n € Z, and R(T) is closed},
Ris = {TeL(X): thereexistsd € Z, such that k,(T) < oo for every n > d and R(T**') is closed),
Rig = {T € L(X) : thereexists d € Z. such that cy(T) = 0 and R(T) + N(T?) is closed},
Ri; = {T e LX) : thereexists d € Z. such that cy(T) < co and R(T) + N(T?) is closed},
Rig = {Te L(X): 3deZ, such that k,(T) = 0 for every n > d and R(T) + N(T?) is closed)},
Ry = {Te L(X): 3deZ, such that k,(T) < oo for every n > d and R(T) + N(T?) is closed).
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We have
RiCRy;=R3NRy CR3URy CRs C Rz,

R¢ CR; =RgNRg C RgURg C Ryg C Ry3,
R11 € Ri2 = Ri3 N Ry4 € Ri3 U Ryg € Rys.

It was proved in [18, Proposition 2.7] that

Rz = (T e LX) : dsc(T) < oo and R(T*D*1) is closed},
Rs = {Te LX) : dsc.(T) < oo and R(T#%(+1) is closed},
Rg = {Te LX) : asc(T) < co and R(T*M+1) is closed)},
Rig = {T e LX) : asc.(T) < co and R(T**(N+1) is closed},
Riz = {Te LX) : dis(T) < co and R(T#D+1) is closed},

{

Ris = (T e L(X) : dis,(T) < co and R(T#*(D*1) is closed).

The operators of Ry, Ry, R3, R4 and Rs are surjective, lower semi-Browder, right Drazin invertible, lower
semi-Fredholm and right essentially Drazin invertible operators, respectively. The operators of R¢, R7, Rs, Ry
and Rjp are bounded below, upper semi-Browder, left Drazin invertible, upper semi-Fredholm and left
essentially Drazin invertible operators, respectively. The operators of Ri1,Ri2 and Ry3 are semi-regular,
essentially semi-regular and quasi-Fredholm operators. The operators of Ry are the operators with eventual
topological uniform descent.

3. Main results

The following is our main result.

Theorem 3.1. Let A € £(X,Y)and B,C € L(Y, X) such that A(BA)?> = ABACA = ACABA = (AC)?A. Then
or(AC)\ {0} = or (BA) \ {0} for 1 < i < 19.

The proof of our main result uses several auxiliary lemmas.

Lemma 3.2. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)?> = ABACA = ACABA = (AC)?A. Let Q be a
polynomial. Then we have

1) ABAR(Q(CA - 1)) C R(Q(AB - 1));

2) ABAN(Q(CA - 1) C N(Q(AB - I));

3) ACAR(Q(BA — 1)) C R(Q(AC - 1));

4) ACAN(Q(BA - 1)) € N(Q(AC —-D)).

Proof. 1t is easy to see that for each k € Z,,

ABA(CA —I)f = (AB — I)*ABA and ACA(BA — I = (AC — I)*ACA. (2)
Then

ABAQ(CA —I) = Q(AB —I)ABA and ACAQ(BA — 1) = Q(AC — )ACA. 3)

1) Let x belongs to R(Q(CA — I)). Then there exists some y € X such that Q(CA — )y = x. Hence it
follows from (2) that ABAx = ABAQ(CA — I)x = Q(AB — I)ABAx which belongs to R(Q(AB — I)). Thus
ABAR(Q(CA - 1)) € R(Q(AB - 1)).

2)Letx € N(Q(CA-I)). Then Q(CA-I)x = 0. It follows from (2) that Q(AB—I)ABAx = ABAQ(CA-I)x = 0.
Thus ABAx € N(Q(AB —1)).

Using (3), 3) and 4) go similarly. O
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Lemma 3.3. Let A € £(X,Y)and B,C € L(Y, X) such that A(BA)> = ABACA = ACABA = (AC)*A. Then
cn(AC=1)=c,(BA-1I) foralln € Z,.
In particular, c(AC - I) = ¢(BA - I).

Proof. Let
Taca : R(BA = D")/R(BA - I)"*!) = R(AC - ")/R(AC - )"

be the linear application defined by
Taca(x + R((BA — I)™*1)) = ACAx + R((AC — I)").

Since ACAR((BA —1)") € R((AC - I)") by Lemma 3.2, part 3), then I'sca is well defined. We shall show that
I'aca is injective.

Let x € R((BA — I)") such that I'sc4(x) = 0. Then ACAx € R((AC —I)"*!). Hence CACAx € R((CA —I)"*1).
From Lemma 3.2, part 1), we have ABACACAx € R((AB — I)"*!). Then

(BA)*x = BABACACAx € R((BA — I)™*).
Since x € R((BA — I)"*) then x = (BA — I)"z for some z € X. Hence

(BA)*x — (BAY* — Dx

(BA)*x — ((BAY? + (BA)? + (BA) + I)(BA — I)x

(BA)*x — ((BA)® + (BA)? + (BA) + I)(BA — )"z

(BA)*x — (BA — Iy"(((BAY? + (BA)? + (BA) + I)z) € R(BA — I)"*1).

X

Thus I'sca is injective and consequently
cn(BA = 1) < c,(AC = I). 4)

In similar way, we show that

cn(CA =1) < cy(AB - 1). )
Finally,
(BA-I) < c(AC-1)
= ¢,(CA-1I) ([18, Lemma 3.9]
< ¢y(AB—=1I) by (5)

cy(BA —1) ([18, Lemma 3.9].
Therefore c,(BA —I) = ¢,(AC = 1) for alln € Z... In particular, c(AC—-I) =c(BA-1I). O

For T € L(X), let 045:(T) and of,__(T) be, respectively, the descent spectrum and the essential descent spectrum
of T defined by
04sc(T) = {A € C : dsc(T) = oo} and 09 (T) = {A € C : dsc,(T) = oo}.

The following is an immediate consequence of Lemma 3.3.

Corollary 3.4. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)?> = ABACA = ACABA = (AC)?A. Then
0.AC\ {0} = 0.BA\ {0}, for 0. € {04sc, 05 ).
Lemma 3.5. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)?> = ABACA = ACABA = (AC)?A. Then
c(AC—=1)=c,(BA=1I) foralln e Z,.
In particular, c’(AC = I) = ¢/(BA - I).
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Proof. Let
Waca + N((BA =D H/N(BA-D") = N(AC - I)"")/N((AC - D")

be the linear application defined by
Wacalx + N((BA-D") = ACAx + N((AC - I)").

Since ACAN((BA — I)"*1) € N((AC — I)"*!) by Lemma 3.2, part 4), then W4c4 is well defined.

Now we show that Wucy is injective. Let x € N((BA — I)**!) such that Waca(x) = 0, which means
that ACAx € N((AC — I)"). Hence CACAx € N((CA —I)"). It follows from Lemma 3.2, part ii), that
ABACACAx € N((AB — I)"). Then

(BA)*x = BABACACAx € N((BA - I)").

Hence

x = (BAYx—((BA)*-IDx
= (BA)*x — [(BAY + (BA)? + (BA) + II(BA — )x € N((BA - I)").

Which implies that W ¢4 is injective and then
c,(BA—-1) < c (AC-1). (6)

Similarly, we prove that

c,(CA-1) <c,(AB-1). (7)
Finally,
c(BA-I) < ¢ (AC-1)
= ¢,(CA-1]) ([18, Lemma 3.10]
< ¢, (AB-D) by (7)

c,(BA - 1) ([18, Lemma 3.10];
Therefore c;,(BA —I) = c,(AC —I) for all n € Z... In particular, c/(AC—-1I) =c’(BA-1I). O

For T € L(X) let 0,5(T) and 0%,.(T) be respectively the ascent spectrum and the essential ascent spectrum of
T defined by
Oase(T) = {A € C : asc(T) = co} and 04,(T) = {A € C : asc,(T) = oo}.

Then the following is an immediate consequence of Lemma 3.5

Corollary 3.6. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)?> = ABACA = ACABA = (AC)?A. Then
0. AC\ {0} = 0.BA\ {0}, for 0. € {Oasc, Obsc}-
Lemma 3.7. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)®> = ABACA = ACABA = (AC)?A. Then
ko(AC—=1) =k,(BA-1) foralln € Z,.
In particular, k(AC — I) = k(BA - I).

Proof. Let ®4ca be the linear application from R(BA — I) + N((BA — I)"*1)/R(BA —I) + N((BA — I)") to
R(AC = 1) + N((AC — )" 1)/R(AC — I) + N((AC — I)") defined by

Duca(x + RBA - I) + N((BA - I)")) = ACAx + R(BA — I) + N((AC — I)").
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Since, by Lemme 3.2, parts 3) and 4),
ACA(R(BA = 1)) + N((BA — I)"*') C R(BA - I)) + N((BA — )",

then ®4c4 is well defined.

We prove that ®sc4 is injective. Let x € R(BA — I) + N((BA — I)"*!) such that ®4ca(x) = 0. Then
ACAx € R(AC = 1) + N((AC = I)"). So, there exist some y € R(BA —I) and z € N((AC — I)") such that
ACAx = y+z. Then CACAx = Cy+Cz € R(CA-I)+ N((CA-I)"). Thus by Lemma 3.2, parts 1) and 2), we get
that ABACACAx € R(AB-I)+N((AB-I)") and consequently (BA)*x = BABACACAx € R(BA-I)+N((BA-I)").
Thus

(BA)*x — (BA)* — Dx
(BA)*x — (BA — I)(BA)® + (BA)? + (BA) + I)x € R(BA — I) + N((BA — I)").

=
Inn

Hence ®4ca is injective. Thus
k.(BA 1) < k,(AC = I). 8)

In similar way, we show that

k.(CA —1) < k,(AB - 1I). )
Therefore,
k.(BA —T) ky(AC =)

I IA

k.(CA —1) ([18, Lemma 3.8]
ku(AB — ) by (9)
k,(BA —I) ([18, Lemma 3.8].

I IA

O

Lemma 3.8. Let A € £(X,Y)and B,C € L(Y, X) such that A(BA)* = ABACA = ACABA = (AC)*A. Then for all
neZ., R(AC — 1) + N((AC - 1)) is closed if and only if R(BA — I) + N((BA —I)") is closed.
In particular R(AC — 1) is closed if and only if R(BA — I) is closed.

Proof. Assume that R(AC —I) + N((AC —I)") is closed. Let {x,} be a sequence in R(BA —I) + N((BA —1)")
which converges to x € X. Then ACAx, converge to ACAx. Since ACA(R(BA —I) + N((BA - 1I)")) C
R(AC - 1) + N((AC - I)") by Lemma 3.2, part 3) and 4), then ACAx, belongs to R((AC —I) + N((AC - I)").
Since R(AC —I) + N((AC - I)") is closed and ACAx, converges to ACAx.

ACAx € R(AC - I) + N((AC = I)")
CACAx € R(CA - I) + N((CA - I)"")

ABA(CACAx) € RAB—1) + N((AB—=1)") (by Lemma 3.2)
(BA)*x = ABA(CACAx) € R(AB — I) + N((AB = I)").

LIy

Thus

(BA)*x — ((BAY* — Dx
(BA)*x — (BA — I)(BA)® + (BAY? + (BA) + I)x € R(BA — I) + N((BA — I)").

Therefore R(BA — I)) + N((BA —1)") is closed.
The opposite implication goes similarly. [J

Lemma 3.9. Let A € £L(X,Y) and B,C € L(Y, X) such that A(BA)* = ABACA = ACABA = (AC)?A. Then for all
n € N, R((AC - I)") is closed if and only if R(BA — I)") is closed.
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Proof. As in the presentation before [2, Proposition], for each n € IN there exists B, and C,, € L(Y, X) such
that

(I-AQ)"=1-AC,and (I- BA)" =1 - B,A.
Indeed, we have B, = Z“(—l)k_l(Z)B(AB)k_1 and C, = Z(—l)k_l(Z)(CA)k_lc. It is easy to check that
k=1 k=1

A(B,A)? = AB,AC,A = AC,AB,A = (AC,)*A.
Then it follows from Lemma 3.8 that R((AC — I)") is closed if and only if R((BA —I)") is closed. [

Proof of Theorem 3.1 : The proof follows at once from Lemmas 3.2-3.9.

4. Applications and concluding remarks

A bounded operator T € £(X) is said to be upper semi-Weyl operator if T is upper semi-Fredholm with
ind(T) <0, and T is said to be lower semi-Weyl operator if T is lower semi-Fredholm with ind(T) > 0. If T
is both upper and lower semi-Fredholm then T is said to Weyl operator. Then T is weyl operator precisely
when T is a Fredholm operator with index zero. The upper semi-Weyl spectrum ¢,,,(T), the lower semi-Weyl
spectrum oy, (T) and the Weyl spectrum o,,(T) of T are defined by

ouw(T) ={A € C : T — Al is not upper semi-Weyl},

ow(T) ={A € C : T — Alis not lower semi-Weyl},
0w(T) = 0uw(T) U 010 (T).
From Lemma 3.3 and Lemma 3.5 we deduce the following result
Proposition 4.1. Let A € £L(X,Y) and B, C € L(Y, X) such that A(BA)> = ABACA = ACABA = (AC)*A. Then
0.(AC)\ {0} = 6.(BA) \ {0} for 0. € {Ouw, Otw, O}

An operator T € £L(X) is said to be Riesz operator if T — Al is a Fredholm operator for all 0 # A € C. Then
the following proposition is an immediate consequence of Theorem 3.1

Proposition 4.2. Let A € £(X,Y) and B,C € L(Y,X) such that A(BA)?> = ABACA = ACABA = (AC)?A. Then
AC is a Riesz operator if and only if BA is a Riesz operator.

Following [21], an operator T € £(X) is said to be generalized Drazin-Riesz operator if there exists S € L(X)
such that

TS = ST, STS = S and T*S — T is a Riesz operator.

The operator S is called a generalized Drazin-Riesz inverse of T.

Theorem 4.3. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)> = ABACA = ACABA = (AC)?A. Then AC
is generalized Drazin-Riesz invertible if and only if BA is generalized Drazin-Riesz invertible. In this case, if S is a
generalized Drazin-Riesz inverse of AC then BS?A is a generalized Drazin-inverse of BA.

Proof. Assume that AC is generalized Drazin-Riesz invertible. then there exists S € L(X) such that S(AC) =
(AC)S, S(AC)S = S and (AC)?S — AC is Riesz. Set T = BS*A and we shall show that

T(BA) = (BA)T, T(BA)T = T and (BA)’T — BA is Riesz operator.



H. Zguitti/ Filomat 33:14 (2019), 4575-4584 4583

For the first equality, we have

T(BA) BS?A(BA)
BS?(AC)S?(AC)A(BA)
BS*(AC)?A(CA)
B(AC)3S*A
B(AB)S*A

BAT.

For the second,

T2(BA) BS?ABS2ABA
BS?ABS*(AC)S*(AC)ABA
BS?ABS*(AC)S?(AC)ACA
BS2AB(AC)(AC)S*ACA
BS?AC(AC)(AC)S*ACA
BS?ACS?ACA

BS?A

T.

Set P = ACS — I = SAC - I. Then

T(BA —BA = BS?A(BA)? - BA

= BS*AC)A - BA
BSACA — BA
B(SAC - DA
BPA.

Hence it remains to show that BPA is a Riesz operator. We have

(PA)B(PA)B(PA) (SACA — A)B(SACA — A)B(ACSA — A)
(SACA — A)B(SACABA — ABA)(CSA — A)

(SACA — A)B(SACACA — ABA)(CSA — A)

[(SACA — A)B(SACACA) — (SACA — A)BABA](CSA — A)
[(SACA — A)B(SACACA) — (SACA — A)BACA](CSA — A)
(SACA — A)B(SACACA — ACA)(CSA — A)

(SACA — A)B(SACA — A)C(ACSA — A)

(PA)B(PA)C(PA).

In the same way, one can prove that
(PA)B(PA)B(PA) = (PA)B(PA)C(PA) = (PA)C(PA)B(PA) = (PA)C(PA)C(PA).

Since (PA)C = (AC)*S — AC is a Riesz operator by assumption, then it follows from Proposition 4.2 that
B(PA) is a Riesz operator. Therefore BA is generalized Drazin-Riesz invertible and BS?A is a generalized
Drazin-inverse of BA.

In similar way, we prove the opposite implication. [
Remark 4.4. If A and B € L(X) such that ABA = A% and BAB = B?, then
A(BA)? = ABAIA = AIABA = (AI)’A (10)
and
B(AB)* = BABIB = BIBAB = (BI)*B. (11)

Then it follows from (10) and (11 that A, B, BA and AB share above spectral properties. So we retrieve the results of
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In the following two examples, the common spectral properties for AC and BA can only followed directly
from the above results, but not from the corresponding ones in [7, 9, 15, 16, 19].

Example 4.5. Let P be a non trivial idempotent on X. Let A, B and C defined on X & X ® X by

01 0 I 00 0 00
A=(0 P 0 |,B=10 I O |(andC=|1 0 O
0 00 0 00 010

Then A(BA)? = ABACA = ACABA = (AC)?A, while ABA # ACA and BAB # B.

Example 4.6. Let A and B be as in Example 4.5 and let C be defined on X & X ® X by
0 00
C=|P 00
010
Then A(BA)? = ABACA = ACABA = (AC)*A, while ABA # ACA and BAB # B2.
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