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Abstract. We determine coefficient bounds for bounded planar biharmonic mappings and generalize
the Landau-Bloch univalency theorems for such bounded biharmonic functions. The univalence radii
presented here improve many related results published to date, including the most recent one [Complex
Var. Elliptic Equ. 58(12) (2013), 1667-1676] and are sharp in some given cases.

1. Introduction

A function f(z) = u(z) + iv(z) defined on a domain Q € C is a harmonic mapping if and only if f is
twice continuously differentiable and Af = 4f;; = 0. In a remarkable paper, Clunie and Sheil-Small [7]
explored the class of harmonic functions and showed that if () is simply connected, then f can be written
as f = h+g, where h and g are holomorphic in Q. Harmonic mappings can be regarded as generalizations
of holomorphic functions while biharmonic mappings are generalizations of harmonic mappings. A four
times continuously differentiable complex-valued function F(z) = U(z) + iV(z) is said to be biharmonic in a
domain Q) € C if and only if AF is harmonic in ), that is, if and only if F satisfies the biharmonic equation
A’F = A(AF) =0in Q.

For a continuously differentiable function f in Q) we define

Af(2) = max I£() + e £G)| = LG + )

<0<

and
Af(z) = min 1£@) +e £ = £ - I£G-

Lewy [15] showed that a harmonic function f is locally univalent in Q if its Jacobian J; = |£* — |f£* =
I’'> = |¢’* does not vanish anywhere in ). We note that local univalence of f does not imply global
univalence in a given domain €2 and also note that [J¢[ = AfAy.

It is known (e.g. see [2], [3]) that a mapping F is biharmonic in a simply connected domain () if and
only if F has the representation

F=zPG+K  ze€Q (1)
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where G and K are harmonic in Q.
Without loss of generality, for functions F = |z]2G + K biharmonic in the open unit disk D = {z : |z| < 1}
we may express G and K by

GE) = 1) +92() = ) a2 + ) bz
n=1 n=1

K@) = k@) +k@) = ) ez + ) d"
n=1 n=1

where g1, 92, k1, and k; are analytic in ID.

The classical Landau Theorem for bounded holomorphic functions states that if f is a holomorphic
function in ID with f(0) = f'(0) — 1 = 0 and |f(2)| < M for z € D, then f is univalent (schlicht) in the disk
lz| < po = (M + VM2 —1)"! and f(|z|] < po) contains the disk |z| < Mpé. It is known (e.g. see [14] or [4]) that
these bounds are sharp. Moreover, for f as defined above with f(0) not necessarily zero, there is the Bloch
Theorem which asserts the existence of a positive constant b such that f(ID) contains a schlicht disk, that is,
a disk of radius b which is the univalent image of some region in ID. The Bloch constant is defined as the
supremum of all such b (e.g. see [8], [11] or [9]).

In the sequel, for C € C we let ID,(C) :={z € C : |z - (| < p}, D, = ID,(0) and for p = 1 we simply use
D; = D. The following theorem is proved by Zhu and Liu ([17], Theorem 3.2).

Theorem 1.1. Suppose that F(z) = |z]>G(z) + H(z) is a biharmonic mapping of the unit disk D such that |G(z)|<M;
and |H(z)|<M; for z € D with Ap(0) = 1.

() If My > 1 or My = 1 and My > 0, then F is univalent in the disk D,,, and F(ID,,) contains a schlicht disk
Dy, (F(0)), where r3 = r3(M1, My) is the minimum positive root of the following equation

\/4 2
1-2Myr— Mw” — M2 - 1)r z%ﬂ -0 3)

and

2
7
@:Q—M@—,MMgln——ﬁﬁ (4)
(ii) If My = 1 and My = 0, then F is univalent in ID and F(ID) =

In this paper we give better results than those given in Theorem 1.1 (also see Remark 2.1 and Table 1).
Moreover, we extend these results to Landau-Bloch theorems for the mappings L(F) where the differential
operator L is defined by

We observe that (e.g. see [1]) the operator L preserves both harmonicity and biharmonicity and is a complex
linear operator that satisfies the usual product rule L(af + bg) = aL(f) + bL(g) and L(fg) = fL(g) + gL(f)
where a and b are complex constants.

2. Main Results

First we state the following two lemmas, the first of which is a modification of a result due to Zhu and
Liu [17] (also see Liu [16]).
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Lemma 2.1. Let f(z) = ﬁ +h(z) = Ypiq an2" + Yooy buz" be a harmonic mapping in the unit disk D.
(i) If |f(z)] < M, then

Y (laul + [ba)? < 202
n=1

(i1) If A¢(0) = 1 and |f(z)] < M, then
Y (ol + 1ba)? < 2M? - 2.

(iii) If |J¢(0)] = 1 and |f(2)| < M, then

\ Z(lanl + [bal)? < Ty(M) := min{ V2M2 — 2, VM* = 1.A4(0)},
n=2

V2
VMZ =1+ VMZ+1

where

/\f(O) > Af(M) =

Lemma 2.2. Let f(z) = g(z) + h(z) = Yoo auz" + Yoo, byz" be a harmonic mapping in the unit disk 1D with
|g9(2)| + |h(z)] < M in D, a,#0 and b,#0; n>1.
(i) If Af(0) = 1 and

arg b by = 2kmn, ke{0,1,2,3,..}, (5)
then

Y (laal + b)) < M - 1. (6)

n=2

(ii) If A£(0) = 1 and (5) then (6).
(iii) If J#(0) = 1 and (5) then

A2(O)M? —
2
Z(|an| b <

Proof. We shall provide a brief proof for part (i). The proofs for the other two parts are similar and we
skip them. Set F(z) = Y=, (a, + €*b,)z" where ¢ = arg 7+~ Then by the hypothesis we have |F(z)| < M. So
Parseval’s identity yields

(e8]

270
Z lay + 60, 212 = - f IF(z)PPdO < M2,
21 Jo

n=1

Hence in view of Af(0) = |a1] + |b1| and letting r — 17, we obtain

Y Gl + b)) < (M2 = 1),
n=2
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Our first theorem provides a sufficient condition for univalency of bounded biharmonic functions.

Theorem 2.1. Let F = r*G + K given by (1) be biharmonic in D so that G and K are given by (2). If

Y01+ 2l + b+ Y nllenl + I < A£(0) 7)
n=1 n=2

then F is univalent in D.

Proof. Suppose z; and z; are in ID, so that z; # z, and 0 < r < 1. Since D, is simply connected and convex,
we have z(t) = (1 —t)z; + tzo € D,, where 0 < t < 1. Then (using a method first used in [13], Proof of Therem
1) we can write

1
F(zo) — F(z1) = f (2(HPG((t) + K(z(t))'dt
0
1
= fo {[z'<t>%+z<t>z'_(t)1[g1(z<t>) + g2(2(t))]

+ (D22 ()7, (z(0) + 2 (g3 O)] + [/ (k] (2(1)) + Z’(t)ké(z(f))]}dt-
Dividing the above equation by z; — z; # 0 and letting w = z(t), we obtain

[ 1
‘M _ ‘cl-f;j% f <A<w>+B<w)>df\
2 — 41 0

Zy — 21
1
> fleal - lhll - f |Aw) + B(@)ldt
0
1
> AH(0) - f (A@) + B@))dt,
0
where
Alw) = EZana}” + Z bpw™! + |w]? Z na," ' + Z ne," ",
n=1 n=1 n=1

and

Zy — 21 2 _ _
B - £ b n b, "1 d nl)'
(a))—Zz Zl(ngl +a)E " + |w| E nb,w +nE=2nna)

n=1

Now for |w| < r, we have
A@) + B@)] < Y (1 +2)(anl + b + Y nle] + e,
n=1 n=2

This in conjunction with (7) yield

‘F(Zz) — F(z1) >0
Zy — 21

Therefore F is biharmonic univalent in the unit discID. O

Letting r = 1 in Theorem 2.1 yields a generalization of the well-known sufficient univalency condition for
harmonic functions given in [13].



R. Aghalary et al. / Filomat 33:14 (2019), 4593—4601 4597

Corollary 2.1. Let F = r*G + K given by (1) be biharmonic in D so that G and K are given by (2). If

Y 1+ 2l + [bal) + Y nllcul + dul) < A£(0)

n=1 n=2
then F is univalent in ID.
For Theorem 2.1, we give the following example.

Example 2.1. For z € ID consider the biharmonic function
F(z) = alz*(z + Z) + b(dz + 2).

In view of Theorem 2.1, it is easy to see that if ||bd| — 1| > 3la|(1 + [c|) then F is univalent in the unit disk ID and if
llbd| — 1] < 3lal(1 + |c|) then F is univalent in the disk D, with p = \/|b|||d| = 11/3al(1 + |c|).

The result is sharp in the second case when argc = 1 + argb/a, argd = —argb/a and |d| < 1. In fact, in the second
case, F is not univalent in the disk D, for r € (p, 1] with p > 1/3. For a brief justification, set r € (p, 1], arg & = 0y,
e=5L>0,n=p+ecandr, = p—05with

3p+e—+3(p—¢€)3Bp+¢)
0= >

€ (0,2¢).

i(11+00)/2 i(11+00)/2

Now for z; = rie and zp = 1€ in ID, we obtain
F(z1) = alz1*(z1 + cz1) + b(dz1 + Z7)

— a(rf(rl A+00)/2 Il ei(n+90)r1 e—i(n+90)/2)

+ |Z|ei60(|d|€7i90716i(n+90)/2 + rle*"(’”eom))

= e/7+00)/2) (r§(1 +]cf) - |§|r1(1 - |d|))

= ge'+0012) (ri(l +el) - |Z|r2(1 - |d|>) = F(z).

Hence F is not univalent in the disc ID,.

The Landau-Bloch Theorem for the bounded biharmonic functions F = *G + K is given in the following
theorem.

Theorem 2.2. Let F = r*G + K given by (1) be biharmonic in D so that G and K are given by (2). Also let |G| < M,
K| < M, and AF(O) =1

(i) If either My > 1 or My = 1 and My > O, then there exists a constant p (0 < p < 1) so that F is univalent in D,
where p is the smallest positive root of the equation

-1=0.

2M2(9p* — 11p® + 4pP) . 2(M2Z - 1)(4p? = 3p* + po)
1-p?p 1-p?p
Moreover, F(ID,) covers the schlicht disk ID,, where

VaMip? 20 =1) p?
1-p? 1-p?

(ii) If My = 0 and My = 1, then F is univalent in ID and F(ID) contains ID.
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Proof. According to Lemma 2.1, we have

Z(lan| +1bal)? <2M?  and Z(lcnl +|d,))> < 2M2 - 2.
n=1 n=2

(i) For z € D set F,(z) = F(pz). So in view of Theorem 2.1, it suffices to show that the inequality (7) holds for
|z| < p. This is the case since

Y 0r+ 2)(lal + B)p™ + Y el + IduDp"!
n= n=2

=1

(laal + 1B)2)2() (1 + 22> 2)12

<),
n=1 n=1
+ () (el + 12 2(Y | 2> 2
n=2 n=2
18 — 22p? + 8p* OAE = 4p% —3p* + pb _
1-p?)?

To show that F(ID,) contains the disk ID,,, let z € dID,. Then

IF@) — FO)I = I2G@) + K@) = 1p? ) (@:2" + 5,2 + Y (c2" + du")
n=1 n=1
> o1z + dizl = p2()_(aal + baD)2 (Y ) = () (eul +1duDDF (Y p™)?
n=1 n=1 n=2 n=2

VaM, p? p? \J2MZ -2
NN
N
(if) f M; =0and M, = 1 thenby Lemma2.1,a, =b, =0;n > landc, =d, =0;n > 2and so F(z) = clz+ﬂ.

Now for z1, 2z, € ID with z; # z, we have

|F(z1) — F(z2)| = lc1(z1 — z2) — di(z1 — 22)|
> |le1| = ldalllz1 = 22| = Ap(0)|z1 — 22| = |21 — 22l

> pAr(0) -

Hence F is univalent in the disc ID.
The covering result is also immediate since for any z € JID we have

IF(z) — F(O)| = lc1z — dizl > Ap(0)|z] = 1.
[}

Remark 2.1. It is claimed in [17] that Theorem 1.1 for certain values of My and My improves the results given in
([1], [5], [6], [9], [10], [12], [16]). Our Theorem 2.2 is an improvement to all those results published prior to [17]
including that given by Zhu and Liu ([17], Theorem 3.2). The following table of values demonstrates examples of
cases that Theorem 2.2 provides better results than those given by Zhu and Liu [17].
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Table 1: Values of p are for Theorem 22 and the values of r are for Theorem 1.1.

M1 M2 P r M1 Mz Y r

1 2 0.1889 0.1391 3/4 2 0.1904 0.1498
1 3 0.1211 0.0979 3/4 3 0.1215 0.1031
2 1 0.7071 0.2181 1/3 2 0.1931 0.1721
2 2 0.1832 0.1081 1/3 3 0.1222 0.1132
2 3 0.1194 0.0815 1/2 2 0.1920 0.1624
3 1 0.5773 0.1516 1/2 3 0.1219 0.1089
3 2 0.1780 0.0886 056 |2 0.1916 0.1592
3 3 0.1179 0.0698 056 |3 0.1218 0.1074

Next we extend Theorem 2.2 to the case where the coefficients of the biharmonic function F = G + K
satisfy certain varying argument conditions.

Theorem 2.3. Let F = 12G + K given by (1) be biharmonic in ID so that G and K are given by (2) with Ag(0) =
Ap(0) = 1,1g1] + 192l < M7 and |ki| + k| < M. Also for bya; # 0 and d,c1 # O let the coefficients ay, by, c, and d,
satisfy the following varying arqument conditions

b d
arg I _ 2kmn, % _ o kmel0,1,2,3,..}.
bnal dnCl

(@) If My > 1 and M > 1, then there exists a constant p (0 < p < 1) so that F is univalent in 1D, where p is the
smallest positive root of the equation

-1=0.

3p2 . p3 (M% —1)(16 — 23p? + 9p*) . (M% - 1)(4p? — 3p* + p®)
(1-p?)? (1-p?)?
Moreover, F(ID,) covers the schlicht disk ID,,, where

2 M2_1 4 M2_1
PV 3 Py ‘

1-p2 B 1-p?

pr=p—

(ii) If My = 1 and M, = 1, then F is univalent in the disk ]D\/W'
Moreover, F(ID \75) covers the disc D, 5 and the result is sharp.
9

Proof. It follows from Lemma 2.2 that
D aul +1a)> <MY =1 and Y (lcul +1dul)” < M5 ~ 1.

(i) Letting F,(z) = F(pz) and using Theorem 2.1, the proof for this part is similar to that of Theorem 2.2.(i).
In brief, for the inequality (7), we get

Z(n +2)(laal + ba])p"* 1 + Z n(lcal + dnp"!

16 —23p%2 +9 4p% — 3p* +
<3p%+p° M3 - 1! 1_p P! + /M P(l 22)3p
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Similarly, to show that F(ID,) contains the disk ID,, we observe that

[Fz) - FO)| = I2PG(2) + K(2) = I Z(anz +b zﬂ)+Z(cnz + )|

=T1.

(ii) For the second part, since My = 1 and M, = 1, we geta, = b, = 0andc, = d, = 0 forn > 2.
This yields F(z) = |zI*(a1z + b1z) + c1z + dyz. By comparing this F with that in Example 2.1 we find that
a = ay,ac = by;,bd = ¢; and b= dy. Once again, Example 2.1 for 1 = Ag(0) = |a1]| + |b1| = al(1 + |c|) and
1= Ar(0) = llea| = Id1ll = Icllld| — 1] yields the sharp bound p = ‘/Tg

On the other hand, if z € D ; then

V3 V3 243
IF(z) — F(0)2Izlllc1] — Idall — |z (la1] + b1]) = || — |z = a3 "9 - 9
Finally, for argd = —arg(b/a) := 6, argc = rt+arg(b/a) and z = N3,4i(m+00)/2 e obtain [F(z) — F(0)| = %ﬁ. O

The next two theorems are extensions of Theorem 2.2 and Theorem 2.3 to Landau-Bloch theorems for the
mapping L(F).

Theorem 2.4. Let F = *G + K given by (1) be biharmonic in D so that G and K are given by (2). Also let |G| < M,
IK| < My and AF(O) = /\L(p)(O) =1

(i) If either My > 1 or M = 1 and My > 0 then there is a constant p (0 < p < 1) so that L(F) is univalent in D,
where p is the smallest positive root of the equation

Mg 18 +38p2 — 10p* + 26 o 2(Mj — 1)(16 + p? + 11p* — 5p° + p®)
(1-p2)?° (1-p2p

-1=0.

Moreover, L(F(ID,)) contains a schlicht disk 1D,, where

242 4-3p% +
r =p-Mp’ \/ p P\/ZMZ 1_p 2)3p

(ii) If M1 = 0 and M, = 1, then L(F) is univalent in ID and L(F(ID)) contains D.

Proof. Of course, by Lemma 2.1 the inequality (7) holds for the coefficients of G and K. The rest of the proof
will be similar to that given for Theorem 2.2, only if we note that for part (i) we have

(o)

Y n(1+ 2l + [baDp™! + Y (el + IdaDp"

n=1 n=2

18 + 38p? —10p +2p6 16 + p2 + 11p* —5p6+p
SM1PJ 1= p 1[2]\/12 \/ - 2)5

and that L(F(ID,)) contains the disk ID,, since

IL(F(2)) = L(FO))| = l|Iz*L(G(2)) + L(K(2))|

,2+2p 4-3p2+p*
PR p2M 1-p2p 1
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For part (ii) we get L(F(z)) = c1z - dyz which is univalent in the disc ID and
IL(F()) = LIFO))| = lexz = diz| = Ap(O)l2] = 1.
|
The extension to L(F) for F = r*G + K with varying arguments is given next.
Theorem 2.5. Let F = r2G + K given by (1) be biharmonic in ID so that Ag(0) = Ar(0) = 1,|g1] + |g2] < My and
k1| + lk2| < My for z € ID. Also for byay # 0 and d,,c1 # 0 let the coefficients ay, by, ¢, and d,, satisfy

Z:Zi =2knn, arg Z‘lii = 2mnn k,me{0,1,2,3,..}.

(@) If My > 1 and M, > 1 then there is a constant p (0 < p < 1) such that L(F) is univalent in ID,,, where p is the
minimum positive root of the equation

arg

220 o | M = D64 — 95p2 + 91p1 — 45p° + 9pf)
prp 1-p?P

(M3 = 1)(16 + p2 + 11p* — 5p° + p8)
(1-p?° )
Moreover, L(F(ID,)) covers a schlicht disc ID,,, where

1=0.

1’1:p—p3—(p2\/M%—1+p2\/M§—1)

(i) If My = 1 and My = 1, then L(F) is univalent in D 73
Moreover,L(F(D j173)) contains the disk D, s and the result is sharp.
9

Proof. The proof will be similar to that given for Theorems 2.2 and 2.4 only if we note that L(F(z)) =
lz|*(a1z — b12) + c1z — d1z for part (ii). O
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