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Abstract. In this paper, the concept partial S-metric space is introduced as a generalization of S-metric
space. We prove certain coincidence point theorems in partial S-metric spaces. The results we obtain
generalize many known results in fixed point theory. Also, some examples show the effectiveness of this
approach.

1. Introduction and preliminaries

Metrical fixed point theory became one of the most interesting area of research in the last fifty years. A
lot of fixed and coincidence point results have been obtained by several authors in various types of spaces,
such as metric spaces, fuzzy metric spaces, uniform spaces and others. One of the most interesting are
partial metric spaces, which were defined by Matthews in [17] on the following way.

Definition 1.1. [17] A partial metric on a nonempty set X is a function p : X × X → [0,+∞) such that, for all
x, y, z ∈ X:

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

In this case, the pair (X, p) is called a partial metric space.

Many fixed point results in partial metric spaces have been proved, see [2–11, 13–15, 23]. On the other
hand, S-metric space were initiated by Sedghi, Shobe and Aliouche in [21] (see also [12] and references cited
therein).
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Definition 1.2. [21] An S-metric on a nonempty set X is a function S : X × X × X → [0,+∞) such that for all
x, y, z, a ∈ X, the following conditions are satisfied:

(s1) S(x, y, z) = 0 ⇐⇒ x = y = z,

(s2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

In this case, the pair (X,S) is called an S-metric space.

It is easy to see that in an S-metric space (X,S) we always have S(x, x, y) = S(y, y, x), x, y ∈ X.
In this paper, combining these two concepts, we introduce the notion of partial S-metric space and prove

a common fixed point theorem for weakly increasing mappings in ordered spaces of this kind.
We recall some notions and properties in S-metric spaces.

Definition 1.3. [19] Let (X,S) be an S-metric space and {xn} be a sequence in X.

(a) The sequence {xn} converges to x ∈ X if S(xn, xn, x)→ 0 as n→∞. In this case, we write limn→∞xn = x.

(b) {xn} is said to be a Cauchy sequence if for each ε > 0, there exists n0 ∈ N such that for S(xn, xn, xm) < ε for all
n,m ≥ n0.

(c) The space (X,S) is said to be complete if every Cauchy sequence in it converges.

Lemma 1.4. [19] Let (X,S) be an S-metric space. If {xn} and {yn} are sequences such that limn→∞ xn = x and
limn→∞ yn = y, then limn→∞ S(xn, xn, yn) = S(x, x, y).

2. Partial S-metric spaces

In this section, we introduce partial S-metric spaces and investigate some of their properties.

Definition 2.1. A partial S-metric on a nonempty set X is a function S∗ : X × X × X → [0,+∞) such that for all
x, y, z, a ∈ X:

(sp1) x = y = z if and only if S∗(x, y, z) = S∗(x, x, x) = S∗(y, y, y) = S∗(z, z, z),

(sp2) S∗(x, x, x) ≤ S∗(x, y, z),

(sp3) S∗(x, y, z) ≤ S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a) − 2S∗(a, a, a).

The pair (X,S∗) is then called a partial S-metric space.

Each S-metric space is also a partial S-metric space. The converse is not true, as shown by the following
example.

Example 2.2. Let X = [0,+∞) and let S∗ : X ×X ×X→ [0,+∞) be defined by S∗(x, y, z) = max{x, y, z}. Then,
it is easy to check that (X,S∗) is a partial S-metric space. Obviously, (X,S∗) is not an S-metric space.

Lemma 2.3. For a partial S-metric S∗ on X, we have, for all x, y ∈ X:

(a) S∗(x, x, y) = S∗(y, y, x),

(b) if S∗(x, x, y) = 0 then x = y.
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Proof. (a) By the condition (sp3), we have
(i) S∗(x, x, y) ≤ S∗(x, x, x) + S∗(x, x, x) + S∗(y, y, x) − 2S∗(x, x, x) = S∗(y, y, x),

and similarly
(ii) S∗(y, y, x) ≤ S∗(y, y, y) + S∗(y, y, y) + S∗(x, x, y) − 2S∗(y, y, y) = S∗(x, x, y).

By (i) and (ii), we get S∗(x, x, y) = S∗(y, y, x).
(b) By the condition (sp2), we have:
(iii) S∗(x, x, x) ≤ S∗(x, x, y) = 0,

and similarly by relation (a), we also have:
(iv) S∗(y, y, y) ≤ S∗(y, y, x) = S∗(x, x, y) = 0.

By (iii), (iv), we get S∗(x, x, y) = S∗(x, x, x) = S∗(y, y, y) = 0, which, by the condition (sp1) implies that x = y.

Remark 2.4. Dung, Hieu and Radojević noted in [13, Examples 2.1 and 2.2] that the class of S-metric spaces
is incomparable with the the class of G-metric spaces, in the sense of Mustafa and Sims [18]. The same
examples show that the class of partial S-metric spaces is incomparable with the class of GP-metric spaces,
in the sense of Zand and Nezhad [23].

Definition 2.5. Let (X,S∗) be a partial S-metric space and {xn} be a sequence in X.

(a) The sequence {xn} converges to x ∈ X (denoted as xn → x as n→∞) if

lim
n→∞

S∗(xn, xn, x) = lim
n→∞

S∗(xn, xn, xn) = S∗(x, x, x).

(b) The sequence {xn} is said to be a Cauchy sequence if there exists (finite) limn,m→∞ S∗(xn, xn, xm).

(c) The space (X,S∗) is complete if each Cauchy sequence in X converges.

Note that if xn → x as n→∞, then for each ε > 0 there exists n0 ∈N such that

|S∗(xn, xn, x) − S∗(x, x, x)| < ε (1)

and

|S∗(xn, xn, xn) − S∗(x, x, x)| < ε, (2)

for all n ≥ n0. Hence, for each ε > 0 there exists n0 ∈N such that

|S∗(xn, xn, xn) − S∗(xn, xn, x)| < ε, (3)

for all n ≥ n0.

Lemma 2.6. Let (X,S∗) be a partial S-metric space. If a sequence {xn} in X converges to x ∈ X, then x is unique.

Proof. Let {xn} converges to x and y. Then we have

lim
n→∞

S∗(xn, xn, xn) = lim
n→∞

S∗(xn, xn, x) = S∗(x, x, x), (4)

and

lim
n→∞

S∗(xn, xn, xn) = lim
n→∞

S∗(xn, xn, y) = S∗(y, y, y).

Then, by the condition (sp3), relation (4) and Lemma 2.3, we have

S∗(x, x, y) ≤ 2S∗(x, x, xn) + S∗(y, y, xn) − 2S∗(xn, xn, xn)
= 2(S∗(xn, xn, x) − S∗(xn, xn, xn)) + S∗(xn, xn, y) − S∗(y, y, y) + S∗(y, y, y).

By taking the limit as n→∞, we get S∗(x, x, y) ≤ S∗(y, y, y).
Also, by the condition (sp2), we have S∗(y, y, y) ≤ S∗(y, y, x) = S∗(x, x, y). Hence, we get S∗(x, x, y) =

S∗(y, y, y). Similarly, we have S∗(x, x, y) = S∗(x, x, x). Hence, by the condition, (sp1) it follows that x = y.
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Lemma 2.7. Let (X,S∗) be a partial S-metric space. Then each convergent sequence {xn} in X is a Cauchy sequence.

Proof. Let {xn} converges to x, that is for each ε > 0 there exists n0 ∈N such that inequalities (1), (2) and (3)
hold for all n ≥ n0. Then, by the condition (sp3) and these inequalities, we have, for all m,n ≥ n0,

S∗(xn, xn, xm) ≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(xm, xm, x) − 2S∗(x, x, x) (5)
≤ 2(S∗(xn, xn, x) − S∗(x, x, x)) + S∗(xm, xm, x) − S∗(x, x, x) + S∗(x, x, x)
< 2ε + ε + S∗(x, x, x).

Similarly, by the condition (sp3) and Lemma 2.6,

S∗(x, x, x) ≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(x, x, xn) − 2S∗(xn, xn, xn) (6)
= 2(S∗(xn, xn, x) − S∗(xn, xn, xn)) + S∗(x, x, xn)
≤ 2(S∗(xn, xn, x) − S∗(xn, xn, xn)) + 2S∗(x, x, xm)

+ S∗(xn, xn, xm) − 2S∗(xm, xm, xm).
< 2ε + 2ε + S∗(xn, xn, xm).

Hence, by (5) and (6), we have

|S∗(xn, xn, xm) − S∗(x, x, x)| < 4ε

for all m,n ≥ n0. Thus, limn,m→∞ S∗(xn, xn, xm) = S∗(x, x, x), and the sequence {xn} is a Cauchy.

The notion of Sb-metric spaces was introduced independently in [20] and [22].

Definition 2.8. Let X be a nonempty set and b ≥ 1 a given real number. An Sb-metric on X, with parameter b, is a
function Sb : X × X × X→ [0,+∞) such that for all x, y, z, a ∈ X, the following conditions are satisfied:

(sb1) Sb(x, y, z) = 0 ⇐⇒ x = y = z,

(sb2) Sb(x, x, y) = Sb(y, y, x),

(sb3) Sb(x, y, z) ≤ b[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)].

In this case, the pair (X,Sb) is called an Sb-metric space.

A connection between partial S-metric and Sb-metric spaces (for b = 2) is given by the following lemma.

Lemma 2.9. If (X,S∗) is a partial S-metric space, then Ss : X × X × X→ [0,+∞), given by

Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z) + S∗(z, z, x) − S∗(x, x, x) − S∗(y, y, y) − S∗(z, z, z),

is an Sb-metric on X, with parameter b = 2.

Proof. First of all, by the condition (sp2) and the definition of Ss, we have Ss(x, y, z) ≥ 0. Further, we check
that the conditions of Definition 2.8 are fulfilled.

(sb1) If Ss(x, y, z) = 0 then it follows that S∗(x, y, z) = S∗(x, x, x) = S∗(y, y, y) = S∗(z, z, z). That is, x = y = z.
Conversely, if x = y = z, then we have Ss(x, y, z) = 0.

(sb2) By the definition of Ss and Lemma 2.3, we have

Ss(x, x, y) = S∗(x, x, x) + S∗(x, x, y) + S∗(y, y, x) − S∗(x, x, x) − S∗(x, x, x) − S∗(y, y, y)
= S∗(x, x, x) + S∗(x, x, y) + S∗(x, x, y) − S∗(x, x, x) − S∗(x, x, x) − S∗(y, y, y)
= 2S∗(x, x, y) − S∗(x, x, x) − S∗(y, y, y).
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Similarly, we can show that

Ss(y, y, x) = 2S∗(x, x, y) − S∗(x, x, x) − S∗(y, y, y).

Therefore, Ss(x, x, y) = Ss(y, y, x). Also, we have always that S∗(x, x, y) − S∗(x, x, x) ≤ Ss(x, x, y).
(sb3) By the condition (sp3) and Lemma 2.3, we have

Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z) + S∗(z, z, x) − S∗(x, x, x) − S∗(y, y, y) − S∗(z, z, z)
≤ 2S∗(x, x, a) − 2S∗(a, a, a) + S∗(y, y, a) + 2S∗(y, y, a) − 2S∗(a, a, a)

+ S∗(z, z, a) + 2S∗(z, z, a) − 2S∗(a, a, a) + S∗(x, x, a) − S∗(x, x, x)
− S∗(y, y, y) − S∗(z, z, z)
≤ 3S∗(a, a, x) − 2S∗(a, a, a) − S∗(x, x, x) + S∗(a, a, x) − S∗(x, x, x)

+ 3S∗(a, a, y) − 2S∗(a, a, a) − S∗(y, y, y) + S∗(a, a, y) − S∗(y, y, y)
+ 3S∗(a, a, z) − 2S∗(a, a, a) − S∗(z, z, z) + S∗(a, a, z) − S∗(z, z, z)

= 2[Ss(x, x, a) + Ss(y, y, a) + Ss(z, z, a)].

Remark 2.10. An open question remains whether there is a connection between partial S-metric and Sb-metric spaces
for the parameter b , 2.

Lemma 2.11. Let (X,S∗) be a partial S-metric space and Ss the respective Sb-metric introduced in Lemma 2.9. Then:
(a) A sequence {xn} in X is a Cauchy sequence in (X,S∗) if and only if it is a Cauchy sequence in (X,Ss).
(b) The space (X,S∗) is complete if and only if the space (X,Ss) is complete. Furthermore, limn→∞ Ss(xn, xn, x) = 0

if and only if

S∗(x, x, x) = lim
n→∞

S∗(xn, xn, x) = lim
n,m→∞

S∗(xn, xn, xm).

Proof. Let {xn} be a Cauchy sequence in (X,S∗). Then there exists (finite)

lim
n,m→∞

S∗(xn, xn, xm) = lim
n→∞

S∗(xn, xn, xn).

Since

Ss(xn, xn, xm) = 2S∗(xn, xn, xm) − S∗(xn, xn, xn) − S∗(xm, xm, xm),

we have

lim
n,m→∞

Ss(xn, xn, xm) = 2 lim
n,m→∞

S∗(xn, xn, xm) − lim
n→∞

S∗(xn, xn, xn) − lim
m→∞

S∗(xm, xm, xm) = 0.

We conclude that {xn} is a Cauchy sequence in (X,Ss).
Next we prove that completeness of (X,Ss) implies completeness of (X,S∗). Indeed, if {xn} is a Cauchy

sequence in (X,S∗) then it is also a Cauchy sequence in (X,Ss). Since the space (X,Ss) is complete, we deduce
that there exists y ∈ X such that limn→∞ Ss(xn, xn, y) = 0, since Ss(xn, xn, y) = 2S∗(xn, xn, y) − S∗(y, y, y) −
S∗(xn, xn, xn). Also, we know that

0 ≤ S∗(xn, xn, y) − S∗(y, y, y) < Ss(xn, xn, y),

and

0 ≤ S∗(xn, xn, y) − S∗(xn, xn, xn) < Ss(xn, xn, y).
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Therefore, we have

lim
n→∞

S∗(xn, xn, y) = lim
n→∞

S∗(xn, xn, xn) = lim
n→∞

S∗(y, y, y).

Hence, we deduce that {xn} is a convergent sequence in (X,S∗).
Now we prove that every Cauchy sequence {xn} in (X,Ss) is a Cauchy sequence in (X,S∗). Let ε = 1

2 .
Then there exists n0 ∈N such that Ss(xn, xn, xm) < 1

2 for all n,m ≥ n0. Since

S∗(xn, xn, xn)
≤ 4S∗(xn0 , xn0 , xn) − 3S∗(xn, xn, xn) − S∗(xn0 , xn0 , xn0 ) + S∗(xn, xn, xn)
≤ 2Ss(xn, xn, xn0 ) + S∗(xn0 , xn0 , xn0 ),

we have

S∗(xn, xn, xn) ≤ 2Ss(xn, xn, xn0 ) + S∗(xn0 , xn0 , xn0 )
≤ 1 + S∗(xn0 , xn0 , xn0 ).

Consequently, the sequence {S∗(xn, xn, xn)} is bounded in R, and so there exists an α ∈ R such that a
subsequence {S∗(xnk , xnk , xnk )} is convergent to α, i.e., limk→∞ S∗(xnk , xnk , xnk ) = α.

It remains to prove that {S∗(xn, xn, xn)} is a Cauchy sequence in R. Since {xn} is a Cauchy sequence in
(X,Ss), for given ε > 0, there exists nε such that Ss(xn, xn, xm) < ε

2 for all n,m ≥ nε. Thus, for all n,m ≥ nε,

|S∗(xn, xn, xn) − S∗(xm, xm, xm)|
≤ 4S∗(xn, xn, xm) − 3S∗(xn, xn, xn) − S∗(xm, xm, xm) + S∗(xn, xn, xn) − S∗(xm, xm, xm)
≤ 2Ss(xn, xn, xm) < ε.

On the other hand,

|S∗(xn, xn, xn) − α| ≤ |S∗(xn, xn, xn) − S∗(xnk , xnk , xnk )| + |S
∗(xnk , xnk , xnk ) − α|

< ε + ε = 2ε.

for all n,nk ≥ nε. Hence limn→∞ S∗(xn, xn, xn) = α. Now,

|2S∗(xn, xn, xm) − 2α| = |Ss(xn, xn, xm) + S∗(xn, xn, xn) − α + S∗(xm, xm, xm) − α|
≤ Ss(xm, xm, xm) + |S∗(xn, xn, xn) − α| + |S∗(xm, xm, xm) − α|

<
ε
2

+ 2ε + 2ε =
9
2
ε.

Thus, {xn} is a Cauchy sequence in (X,S∗).
In order to complete the proof, we have to prove that (X,Ss) is complete if such is (X,S∗). Let {xn} be

a Cauchy sequence in (X,Ss). Then {xn} is a Cauchy sequence in (X,S∗), and so it is convergent to a point
y ∈ X with

lim
n,m→∞

S∗(xn, xn, xm) = lim
n→∞

S∗(y, y, xn) = S∗(y, y, y).

Thus, given ε > 0, there exists nε ∈N such that

|S∗(y, y, xn) − S∗(y, y, y)| <
ε
2

and |S∗(y, y, y) − S∗(xn, xn, xn)| <
ε
2
,

whenever n ≥ nε. Hence, we have

Ss(y, y, xn) = 2S∗(y, y, xn) − S∗(xn, xn, xn) − S∗(y, y, y)
≤ |S∗(y, y, xn) − S∗(y, y, y)| + |S∗(y, y, xn) − S∗(xn, xn, xn)|

<
ε
2

+
ε
2

= ε,
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whenever n ≥ nε. Therefore (X,Ss) is complete.
Finally, it is a simple matter to check that limn→∞ Ss(a, a, xn) = 0 if and only if

S∗(a, a, a) = lim
n→∞

S∗(a, a, xn) = lim
n,m→∞

S∗(xn, xn, xm).

Lemma 2.12. Let {xn} and {yn} be two convergent sequences to x ∈ X and y ∈ X, respectively, in a partial S-metric
space (X,S∗). Then

lim
n→∞

S∗(xn, xn, yn) = S∗(x, x, y).

In particular, limn→∞ S∗(xn, xn, y) = S∗(x, x, y) for every y ∈ X.

Proof. By the assumptions, for each ε > 0 there exists n0 ∈N such that

|S∗(xn, xn, x) − S∗(x, x, x)| <
ε
4
, |S∗(yn, yn, y) − S∗(y, y, y)| <

ε
4
,

|S∗(xn, xn, xn) − S∗(x, x, x)| <
ε
4
, |S∗(yn, yn, yn) − S∗(y, y, y)| <

ε
4
,

|S∗(xn, xn, xn) − S∗(xn, xn, x)| <
ε
4
, |S∗(yn, yn, yn) − S∗(yn, yn, y)| <

ε
4
,

hold for all n ≥ n0. By the condition (sp3), for n ≥ n0 we have

S∗(xn, xn, yn) ≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(yn, yn, x) − 2S∗(x, x, x)
≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(yn, yn, y) + S∗(yn, yn, y)

+ S∗(x, x, y) − 2S∗(y, y, y) − 2S∗(x, x, x)

<
ε
4

+
ε
4

+
ε
4

+
ε
4

+ S∗(x, x, y),

and so we obtain

S∗(xn, xn, yn) − S∗(x, x, y) < ε.

Also,

S∗(x, x, y) ≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(y, y, xn) − 2S∗(xn, xn, xn)
≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(y, y, yn) + S∗(y, y, yn)

+ S∗(xn, xn, yn) − 2S∗(yn, yn, yn) − 2S∗(xn, xn, xn)

<
ε
4

+
ε
4

+
ε
4

+
ε
4

+ S∗(xn, xn, yn).

Thus,

S∗(x, x, y) − S∗(xn, xn, yn) < ε.

Hence for all n ≥ n0, we have |S∗(xn, xn, yn) − S∗(x, x, y)| < ε and the result follows.

3. A common fixed point result in ordered partial S-metric spaces

Let f and 1 be two selfmaps on X. A point x ∈ X is called

1. A fixed point of f if f (x) = x (fixed point equation);
2. Coincidence point of a pair ( f , 1) if f x = 1x (coincidence point equation).
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Solving fixed point equation and coincidence point equations in certain cases is equivalent to solving
complementarity and implicit complementarity problems respectively [16].

Let Φ = {φ : R5
+ −→ R+ : φ is continuous and increasing in each coordinate such that φ(t, t, t, t, 5t) ≤ t

for every t ≥ 0}.
We present examples showing that the class of mappings Φ is nonempty.

Example 3.1. (i) φ1(a, b, c, d, t) = max{a, b, c, d, t
5 };

(ii) φ2(a, b, c, d, t) = a+b+c+d+t
9 ;

(iii) φ3(a, b, c, d, t) = a, note that φi ∈ Φ, where i ∈ {1, 2, 3}.

Definition 3.2. Let (X,S∗) be a partial S− metric space. A mapping F : X −→ X is said to be continuos at x0 ∈ X
with respect to 1 : X −→ X, if for every ε > 0, there exists δ > 0 such that F[1−1(BS∗ (1x0, δ))] ⊆ BS∗ (Fx0, ε). We shall
say that F is 1− continuous at x0.

In particular, if set 1 = I (an identity map) in above definition then we have a classical definition of continuity of
F at x0 ∈ X.

Lemma 3.3. Let F, 1 : X −→ X be two mappings and F is continuous at x0 with respect to 1. If a map 1 is continuous
at x0 then F is continuous at x0 ∈ X.

Proof. Since F is 1− continuos at x0 ∈ X. Therefore for every ε > 0, there exists δ > 0 such that

F[1−1(BS∗ (1x0, δ))] ⊆ BS∗ (Fx0, ε).

Given that 1 is continuous at x0 ∈ X, so for δ > 0 there exists δ
′

> 0 such that 1(BS∗ (x0, δ
′

)) ⊆ BS∗ (1x0, δ). This
implies that BS∗ (x0, δ

′

) ⊆ 1−1(BS∗ (1x0, δ)). Hence,

F(BS∗ (x0, δ
′

)) ⊆ F[1−1(BS∗ (1x0, δ))] ⊆ BS∗ (Fx0, ε).

Following is an example of a discontinues map which is 1−continuous.

Example 3.4. Let X = R and S∗(x, y, z) =| x − y | + | y − z | + | x − z | . Define selfmaps F and 1 on X as follows:

1x =

{
2 , x ≥ 0,

3x , x < 0 Fx =

{
1 , x ≥ 0,
x , x < 0 .

Obviously F is not continuous at x = 0. Note that, for 0 < δ < 1 we have

BS∗ (1(0), δ) = {y : 2|2 − y| < δ} = (2 −
δ
2
, 2 +

δ
2

),

also 1−1(BS∗ (1(0), δ)) = [0,∞) and

F[1−1(BS∗ (1(0), δ))] = {1} ⊆ BS∗ (F(0), ε) = (1 −
ε
2
, 1 +

ε
2

).

which shows that F is 1−continuous at x = 0.

Definition 3.5. [8] Suppose (X,�) is a partially ordered set and F, 1 : X −→ X are mappings of X into itself. We say
F is 1−nondecreasing if for x, y ∈ X,

1x � 1y implies Fx � Fy.

Obviously if 1 = I ( an identity map on X), then definition of 1−nondecreasing map coincides with the classical
definition of nondecreasing map.

Following example shows that 1−nondecreasing mappings need not be nondecreasing in the classical
sense.
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Example 3.6. Consider (R,≤) with the usual order in R and F, 1 : R −→ R are given by

F(x) = x2 + 1 and 1(x) = x2.

Obviously, F is a 1−nondecreasing map and it is not nondecreasing.

The following is the main result of this section.

Theorem 3.7. Let (X,�) is a partially ordered set and suppose that there is a partial S−metric S∗ on X such that
(X,S∗) is a complete partial S−metric space. Suppose that F : X −→ X is a 1− continuous and 1−nondecreasing
mapping, with 1(X) = X. Also,

S∗(Fx,Fy,Fz) ≤ qφ


S∗(1x, 1y, 1z),S∗(Fx,Fx, 1x),
S∗(Fy,Fy, 1y),S∗(Fz,Fz, 1z),
S∗(Fy,Fy, 1x) + S∗(Fz,Fz, 1x)+
S∗(Fx,Fx, 1y) + S∗(Fx,Fx, 1z)

 (7)

for all x, y, z ∈ X with 1z � 1y � 1x, where φ ∈ Φ and 0 ≤ q < 1
2 . If there exists an x0 ∈ X with 1x0 � Fx0, then

coincidence point equation 1x = Fx has solution in X. Moreover, S∗(1x, 1x, 1x) = 0.

Proof. If Fx0 = 1x0, then result follows, so suppose that 1x0 , Fx0. Now let 1xn = Fxn−1 for n = 1, 2, . . . . If
1xn0 = 1xn0+1 for some n0 ∈N, then it is clear that Fxn0 = 1xn0 . Thus assume 1xn , 1xn+1 for all n ∈N. Since,
1x0 � Fx0 and F is 1−nondecreasing, we have

1x0 � 1x1 � 1x2 � . . . � 1xn � 1xn+1 � . . . .

Since 1xn−1 � 1xn, so inequality (3.1) implies that

S∗(1xn+1, 1xn+1, 1xn) = S∗(Fxn,Fxn,Fxn−1)

≤ qφ


S∗(1xn, 1xn, 1xn−1),S∗(Fxn,Fxn, 1xn),
S∗(Fxn,Fxn, 1xn),S∗(Fxn−1,Fxn−1, 1xn−1),
S∗(Fxn,Fxn, 1xn) + S∗(Fxn−1,Fxn−1, 1xn)+
S∗(Fxn,Fxn, 1xn) + S∗(Fxn,Fxn, 1xn−1)


= qφ


S∗(1xn, 1xn, 1xn−1),S∗(1xn+1, 1xn+1, 1xn),
S∗(1xn+1, 1xn+1, 1xn),S∗(1xn, 1xn, 1xn−1),
S∗(1xn+1, 1xn+1, 1xn) + S∗(1xn, 1xn, 1xn)+
S∗(1xn+1, 1xn+1, 1xn) + S∗(1xn+1, 1xn+1, 1xn−1)


= qφ


S∗(1xn, 1xn, 1xn−1),S∗(1xn+1, 1xn+1, 1xn),
S∗(1xn+1, 1xn+1, 1xn),S∗(1xn, 1xn, 1xn−1),
2S∗(1xn+1, 1xn+1, 1xn) + S∗(1xn, 1xn, 1xn)
+S∗(1xn+1, 1xn+1, 1xn−1)

 (8)

Since

S∗(1xn+1, 1xn+1, 1xn−1)
≤ 2S∗(1xn+1, 1xn+1, 1xn) + S∗(1xn−1, 1xn−1, 1xn) − 2S∗(1xn, 1xn, 1xn)

and φ is nondecreasing we get from (3.2)

S∗(1xn+1, 1xn+1, 1xn) ≤ qφ

 S∗(1xn, 1xn, 1xn−1),S∗(1xn+1, 1xn+1, 1xn),
S∗(1xn+1, 1xn+1, 1xn),S∗(1xn, 1xn, 1xn−1),
4S∗(1xn+1, 1xn+1, 1xn) + S∗(1xn−1, 1xn−1, 1xn)


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Now if
S∗(1xn−1, 1xn−1, 1xn) ≤ S∗(1xn+1, 1xn+1, 1xn)

for some n, then we have

S∗(1xn+1, 1xn+1, 1xn) ≤ qφ

 S∗(1xn+1, 1xn+1, 1xn),S∗(1xn+1, 1xn+1, 1xn),
S∗(1xn+1, 1xn+1, 1xn),S∗(1xn+1, 1xn+1, 1xn),
5S∗(1xn+1, 1xn+1, 1xn)


≤ qS∗(1xn+1, 1xn+1, 1xn)
< S∗(1xn+1, 1xn+1, 1xn),

a contradiction as S∗(1xn+1, 1xn+1, 1xn) > 0. Thus

S∗(1xn+1, 1xn+1, 1xn) ≤ S∗(1xn−1, 1xn−1, 1xn)

for all n. Therefore we have
S∗(1xn+1, 1xn+1, 1xn) ≤ qS∗(1xn−1, 1xn−1, 1xn)

and so

S∗(1xn+1, 1xn+1, 1xn) ≤ qnS∗(1x0, 1x0, 1x1). (9)

Therefore

Ss(1xn, 1xn, 1xn+1)
= 2S∗(1xn+1, 1xn+1, 1xn) − S∗(1xn, 1xn, 1xn) − S∗(1xn+1, 1xn+1, 1xn+1)
≤ 2S∗(1xn+1, 1xn+1, 1xn)
≤ 2qnS∗(1x0, 1x0, 1x1)

shows that limn−→∞ Ss(1xn, 1xn, 1xn+1) = 0.
By the triangle inequality in Sb−metric space, for m > n we have

Ss(1xn, 1xn, 1xm) ≤ 2.2Ss(1xn, 1xn, 1xn+1) + 2.22Ss(1xn+1, 1xn+1, 1xn+2)
+ . . . + 2.2m−nSs(1xm−1, 1xm−1, 1xm)
≤ 23qnS∗(1x0, 1x0, 1x1) + 24qn+1S∗(1x0, 1x0, 1x1)
+ . . . + 2m−n+2qm−1S∗(1x0, 1x0, 1x1)
≤ 23qn[1 + 2q + 22q2 + ...]S∗(1x0, 1x0, 1x1)

≤
23qn

1 − 2q
S∗(1x0, 1x0, 1y1) −→ 0.

Therefore {1xn} is a Cauchy sequence in the Sb−metric space (X,Ss). Since (X,S∗) is complete then from
Lemma 2.10, the sequence {1xn} converges in the Sb−metric space (X,Ss).Hence limn−→∞ Ss(1xn, 1xn, 1x) = 0
for some x in X. Again from Lemma 2.10, we have

S∗(1x, 1x, 1x) = lim
n−→∞

S∗(1xn, 1xn, 1x) = lim
n,m−→∞

S∗(1xn, 1xn, 1xm). (10)

Moreover since {1xn} is a Cauchy sequence in the Sb− metric space (X,Ss), limn,m−→∞ Ss(1xn, 1xn, 1xm) = 0
and from (4) we have limn−→∞ S∗(1xn, 1xn, 1xn) = 0. Using definition of Ss we get

lim
n,m−→∞

S∗(1xn, 1xn, 1xm) = 0.

Therefore from (3.4), we obtain

S∗(1x, 1x, 1x) = lim
n−→∞

S∗(1xn, 1xn, 1x) = lim
n,m−→∞

S∗(1xn, 1xn, 1xm) = 0
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Now we claim that Fx = 1x. Suppose S∗(1x, 1x,Fx) > 0. Since F is 1− continuous, given ε > 0, there
exists δ > 0 such that F(1−1(BS∗ (1x, δ))) ⊆ BS∗ (Fx, ε). Since S∗(1x, 1x, 1x) = limn−→∞ S∗(1xn, 1xn, 1x) = 0, there
exists k ∈ N such that S∗(1xn, 1xn, 1x) < S∗(1x, 1x, 1x) + δ for all n ≥ k. therefore, we have 1xn ∈ BS∗ (1x, δ)
and xn ∈ 1

−1(BS∗ (1x, δ)) for all n ≥ k. Thus F(xn) ∈ F(1−1(BS∗ (1x, δ))) ⊆ BS∗ (Fx, ε)) and so S∗(Fxn,Fxn,Fx) <
S∗(Fx,Fx,Fx) + ε for all n ≥ k. This shows that S∗(Fx,Fx,Fx) = limn−→∞ S∗(1xn+1, 1xn+1,Fx). Using inequality
(3.1) we have

S∗(Fx,Fx,Fx) ≤ qφ


S∗(1x, 1x, 1x),S∗(Fx,Fx, 1x),
S∗(Fx,Fx, 1x),S∗(Fx,Fx, 1x),
S∗(Fx,Fx, 1x) + S∗(Fx,Fx, 1x)+
S∗(Fx,Fx, 1x) + S∗(Fx,Fx, 1x)


≤ qS∗(Fx,Fx, 1x).

Therefore, obtain

S∗(1x, 1x,Fx)
≤ S∗(1x, 1x, 1xn+1) + S∗(1x, 1x, 1xn+1) + S∗(Fx,Fx, 1xn+1)
− 2S∗(1xn+1, 1xn+1, 1xn+1)
≤ S∗(1x, 1x, 1xn+1) + S∗(1x, 1x, 1xn+1) + S∗(Fx,Fx, 1xn+1),

on taking limit as n −→ ∞, we arrive at the following inequality

S∗(1x, 1x,Fx)
≤ lim

n−→∞
S∗(1x, 1x, 1xn+1) + lim

n−→∞
S∗(1x, 1x, 1xn+1) + lim

n−→∞
S∗(Fx,Fx, 1xn+1)

= S∗(Fx,Fx,Fx)
≤ qS∗(Fx,Fx, 1x)
< S∗(Fx,Fx, 1x) = S∗(1x, 1x,Fx),

a contradiction. Thus S∗(1x, 1x,Fx) = 0 and so 1x = Fx.

Taking φ(a, b, c, d, t) = a in Theorem 3.7, one obtains the following

Corollary 3.8. Let (X,�) is a partially ordered set and suppose that there is a partial S−metric S∗ on X such that
(X,S∗) is a complete partial S−metric space. Suppose that F : X −→ X is a 1− continuous and 1−nondecreasing
mapping, with 1(X) = X. Also,

S∗(Fx,Fy,Fz) ≤ qS∗(1x, 1y, 1z), (11)

for all x, y, z ∈ X with 1z � 1y � 1x, where 0 ≤ q < 1
2 . If there exists an x0 ∈ X with 1x0 � Fx0, then coincidence

point equation 1x = Fx has solution in X. Moreover, S∗(1x, 1x, 1x) = 0.

Proof. It is enough in above Theorem, set φ(a, b, c, d, t) = a.

Now, we present an example which supports Corollary 3.8.

Example 3.9. Let X = R+, and S∗ : X × X × X −→ R+ be defined as

S∗(x, y, z) = max{|x − y|, |y − z|, |z − x|},∀x, y, z ∈ X.

It is easy to see that (X,S∗) is a complete partial S− metric space. Suppose (X,≤) with the usual order in X and
F, 1 : X −→ X are given by

F(x) = 2x + 1 and 1(x) = 8x.

We will check that the conditions of Corollary 3.8 are fulfilled.
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S∗(Fx,Fy,Fz) = max
{
|Fx − Fy|, |Fx − Fz|, |Fy − Fz|

}
= 2 max

{
|x − y|, |x − z|, |y − z|

}
,

and

S∗(1x, 1y, 1z) = max
{
|1x − 1y|, |1x − 1z|, |1y − 1z|

}
= 8 max

{
|x − y|, |x − z|, |y − z|

}
.

Hence,

S∗(Fx,Fy,Fz) = 2 max
{
|x − y|, |x − z|, |y − z|

}
≤ 8 max

{
|x − y|, |x − z|, |y − z|

}
= S∗(1x, 1y, 1z)

≤ qS∗(1x, 1y, 1z),

the condition (3.5) which is fulfilled for 1
4 ≤ q < 1

2 . By Corollary 3.8, coincidence point equation 1x = Fx has solution
x = 1

6 ∈ X.

If set 1 = I identity map in Theorem (3.7) leads to the following corollary.

Corollary 3.10. Let (X,�) a partially ordered set and suppose that there is a partial S−metric S∗ on X such that
(X,S∗) is a complete partial S−metric space. Suppose F : X −→ X is a continuous and nondecreasing mapping such
that

S∗(Fx,Fy,Fz) ≤ qφ


S∗(x, y, z),S∗(Fx,Fx, x),
S∗(Fy,Fy, y),S∗(Fz,Fz, z),
S∗(Fy,Fy, x) + S∗(Fz,Fz, x)+
S∗(Fx,Fx, y) + S∗(Fx,Fx, z)


for all x, y, z ∈ X with z � y � x, where φ ∈ Φ and 0 ≤ q < 1

2 . If there exists an x0 ∈ X with x0 � Fx0, then fixed
point equation x = Fx has a solution in X. Moreover, S∗(x, x, x) = 0.

In the following theorem we drop the continuity of F and impose a condition on increasing convergent
sequence in X.

Theorem 3.11. Let (X,�) is a partially ordered set and suppose that there is a partial S−metric S∗ on X such that
(X,S∗) is a complete partial S−metric space. Suppose that F : X −→ X is a 1−nondecreasing mapping, with 1(X) = X
such that

S∗(Fx,Fy,Fz) ≤ qφ


S∗(1x, 1y, 1z),S∗(Fx,Fx, 1x),
S∗(Fy,Fy, 1y),S∗(Fz,Fz, 1z),
S∗(Fy,Fy, 1x) + S∗(Fz,Fz, 1x)+
S∗(Fx,Fx, 1y) + S∗(Fx,Fx, 1z)

 (12)

for all x, y, z ∈ X with 1z � 1y ≺ 1x (that is, 1z � 1y � 1x and 1y , 1x), where φ ∈ Φ and 0 ≤ q < 1
2 . Also, the

condition{
If {1xn} ⊂ Xis a increasing sequence

with 1xn −→ 1x in X, then 1xn ≺ 1x for all n (13)

holds. If there exists an x0 ∈ X with 1x0 � Fx0,then coincidence point equation 1x = Fx has a solution in X.Moreover,
S∗(1x, 1x, 1x) = 0.
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Proof. As given in the proof of Theorem 3.7, we construct a sequence {1xn} in X by 1xn = Fxn−1 for n = 1, 2, · · · .
Also we can assume that the consecutive terms of {1xn} are distinct. Otherwise we are finished.

Therefore we have
1x0 ≺ 1x1 ≺ 1x2 ≺ · · · ≺ 1xn ≺ 1xn+1 ≺ · · · .

Following arguments similar to those given in the proof of Theorem 3.7, {1xn} is a Cauchy sequence in the
Sb−metric space (X,Ss) and therefore there exists x ∈ X such that

S∗(1x, 1x, 1x) = lim
n−→∞

S∗(1xn, 1xn, 1x) = lim
n,m−→∞

S∗(1xn, 1xn, 1xm) = 0.

Now we claim that Fx = 1x. Suppose S∗(1x, 1x,Fx) > 0. In view of (3.7), we use (3.6) for z = xn and x = y to
obtain

S∗(Fx,Fx,Fxn)

≤ qφ


S∗(1x, 1x, 1xn),S∗(Fx,Fx, 1x),
S∗(Fx,Fx, 1x),S∗(Fxn,Fxn, 1xn),
S∗(Fx,Fx, 1x) + S∗(Fxn,Fxn, 1x)+
S∗(Fx,Fx, 1x) + S∗(Fx,Fx, 1xn)

 ,
which on taking limit as n −→ ∞ and using the continuity of φ implies that

lim
n−→∞

S∗(Fx,Fx,Fxn) ≤ qS∗(Fx,Fx, 1x).

Therefore, we obtain

S∗(1x, 1x,Fx) ≤ lim
n−→∞

S∗(1x, 1x, 1xn+1) + lim
n−→∞

S∗(1x, 1x, 1xn+1) + lim
n−→∞

S∗(Fx,Fx, 1xn+1)

= lim
n−→∞

S∗(1x, 1x, 1xn+1) + lim
n−→∞

S∗(1x, 1x, 1xn+1) + lim
n−→∞

S∗(Fx,Fx,Fxn)

≤ qS∗(Fx,Fx, 1x)
< S∗(Fx,Fx, 1x) = S∗(1x, 1x,Fx),

a contradiction. Thus S∗(1x, 1x,Fx) = 0 and so 1x = Fx.

The above theorem leads to the following corollary.

Corollary 3.12. Let (X,�) a partially ordered set and suppose that there is a partial S− metric S∗ on X such that
(X,S∗) is a complete partial S−metric space. Suppose F : X −→ X is a 1− nondecreasing mapping with 1(X) = X
such that

S∗(Fx,Fy,Fz) ≤ qφ


S∗(1x, 1y, 1z),S∗(Fx,Fx, 1x),
S∗(Fy,Fy, 1y),S∗(Fz,Fz, 1z),
S∗(Fy,Fy, 1x) + S∗(Fz,Fz, 1x) +
S∗(Fx,Fx, 1x) + S∗(Fx,Fx, 1z)


for all x, y, z ∈ X with 1z � 1y � 1x and 1y , 1x), where φ ∈ Φ and 0 ≤ q < 1

2 . Also, the condition{
If {1xn} ⊂ X is a increasing sequence

with 1xn −→ 1x in X, then 1xn ≺ 1x for all n (14)

holds. If there exists an x0 ∈ X with 1x0 � Fx0,then there exists x ∈ X such that 1x = Fx.Moreover, S∗(1x, 1x, 1x) = 0.

Remark 3.13. It should be noted that from the results obtained at a common fixed point in the partial S-metric spaces,
a series of results on the fixed points is followed.
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