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Abstract. Let A, B and AB be closed range operators. The explicit matrix expressions for various general-
ized inverses are obtained by using block operator matrix methods. Some subtle relationships between the
properties of sub-blocks in operator matrices A, B and their range relations are built. New necessary and
sufficient conditions for the equivalent relations, inclusion relations and mixed-type generalized inverses
relations are presented. Some recent mixed-type reverse-order laws results are covered and many new
mixed-type generalized inverses relations are established by using this block-operator matrix technique.

1. Introduction

Let H and K be complex Hilbert spaces. We denote the set of all bounded linear operators from H
into K by B(H,K). For A € B(H,K), let A*, R(A) and N(A) be the adjoint, the range and the null space
of A, respectively. Iy denotes the identity onto M or I if there is no confusion. A generalized inverse of A
is an operator G € B(K, H) which satisfies some of the following four equations, which are said to be the
Penrose conditions:

(1)AGA =4, (2)GAG=G, (3)AG)=AG, “) (GA) =CGA.

For a subset {K} C {1, 2, 3,4}, we say that G is a {K}-inverse of A if G satisfies the Moore-Penrose equation ()
for each j € K. We use A{K] for the collection of all K-inverses of A. The unique {1,2, 3,4}-inverse of A is
denoted by A*, which is called the Moore-Penrose inverse of A.

In the 1960s, Greville was the first to study it by considering the reverse order law for the Moore-Penrose
inverse and gave a classical result

(AB)' = B'A" < R(A"AB) C R(B), R(BB*A*) C R(A%)

for complex matrices A and B in [15]. This result was extended for linear bounded operators on Hilbert
spaces by Bouldin [1] and Izumino [16]. Many scholars have considered the mixed-type generalized in-
verses in different settings (matrix, operator algebras, C*-algebras, rings etc). For two matrices cases, the
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necessary and sufficient conditions for B{1,2,3}A{1,2,3} € (AB){1,2,3} and B{1,2,4}A{1,2,4} € (AB){1, 2,4}
are presented in [26] by using the expressions for maximal and minimal ranks of the generalized Schur-
complement. The necessary and sufficient conditions for (AB){1,3} € B{1,3}A{1,3} and (AB){1,4} C
B{1,4}A{1,4} are presented in [3]. See [20, 22, 24, 25, 27, 28] for more matrix cases. X. Liu, S. Huang
and D.S. Cvetkovié-Ili¢ in [17], J. Wang, H. Zhang and G. Ji in [21] considered the necessary and suffi-
cient conditions for reverse order law in the case of bounded linear operators on Hilbert spaces. D.S.
Cvetkovi¢-Ili¢ and Harte [4] offered purely algebraic necessary and sufficient conditions for reverse order
law B{1,3}A{1, 3} C (AB){1, 3} for generalized inverses in C*-algebras, extending rank conditions for matri-
ces and range conditions for Hilbert space operators. Some more contributors in this area can be seen in
[5-12, 23].

In this paper, by the block operator matrix technique, we obtain the necessary and sufficient conditions
for which the equivalent relations or the inclusion relations among some mixed-type generalized inverses
hold. Specifically, we discuss the mixed-type {K}-generalized inverses and relations among A{K}, B{K} and
(AB){K} when {K} € {{1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4}}, present their detailed matrix
expressions and build their relations. Many mixed-type generalized inverses relations are established by
using this block-operator matrix technique.

2. The matrix representations of two operators A and B

Throughout this paper, we suppose that A € B(H, K) and B € B(L, H) with R(A), R(B) and R(AB) being
closed. Also, suppose that AB # 0. It is well known that A, as an operator from H = R(A*) ® N(A) into
K = R(A)® N(A"), has the diagonal matrix form A = A; 0, where A; € B(R(A*), R(A)) is invertible. In this
case, the Moore-Penrose inverse A" of A can be represented by A" = AT @ 0.

We begin with the following auxiliary notations [2, 17-19, 21]. Denote by

H, =RA)OH,,
H, =RA)NN(BY,
Hs; = N(A)eH,,
Hy =NA)NN(B),

Ki =RA)e%K,, [ Li =R(BAY),
K = (A)'H,, ‘ L, =RB)Ye L, (1)
K =NAY), L3 = N(B).

Note that, if Mand N are two closed subspaces of H, the orthogonal different is defined by MeN = MNN*.
The space decomposition forms in (1) first appeared in the paper [21, Theorem 1]. It was also used in the
papers [17, 18, 29, 30]. Then

H=H; @7‘(2@7‘{3@7’{4, K=KioK0Ks, L=L1 DL dL;

and

An An 0 0) [RAIETE N R ok

A = |An Ap 0 of: [REDONE) gy
21 22 2 7
0 0 o0 o | NAeTL N(A)

N(A) N N(BY)

Bin B O A R(AY) © H;

5 - |0 0 o Rﬁgfig}: | RA) NGB
B Bx 0] N(B) ! NAYeH, |
0 0 0 N(A) N N(B)

where A;; € B(H j,’K,-) and B;; € B(.Ej,‘Hi). Taking *-operation,

G 0) (0
e 12 22 . 2
A=10 0 0'[?]_> Hy |
0 0 0 3 H,
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Since
A, = ANAY) ' H, = ATAH, = Hy = R(A") N N(BY),

we get that A5, = 0 and A3, is surjective. Since K, C R(A) = N(A")*, we get that A}, is injective. Hence,

A, is invertible. Since A*, as an operator from K = R(A) ® N(A") into H = R(A") & N(A) has the diagonal
matrix form A* = A} @ 0 with A} =: ( ﬁ}l A(Z ) € B(%K @ K, Hi @ H>) being invertible, the invertibility
12 Ap

of A; and A;z imply that A;l is invertible. Hence,

A11 A12 0 0 Zl (](1
A=l 0 A»n 0 0]: 7_{2 — |K>|, where A1, Ay are invertible. (2)
3
0 0 00 K3
H,
Similarly, from
B 0 B 0 R(‘? ) S 7_(23(. R(B*A*)
. i 3 R(A) NN (B) .
B =|B:, 0 B, 0]: — |R(BYe L],
0 0 o o | NWeH N(B)
N(A) NN (B

it is obvious that B}, = 0, R(B},) = £; and B}, is invertible. Since £; ® £, = R(B*) = R(B},) ® R(B},), we get
B3, is surjective and a closed range operator, i.e., B;Zng = I. Hence,

By 0 0 H,
p=| Y o.fl S| 7221 where By is invertible and BY, By = I 3)
=|Bs, By of _[:2 7|’ where By, is invertible and B},Bs, = I.

0 0 0 3 H,

Throughout this paper, we assume that A and B have the matrix forms (2) and (3), respectively and denote

by
-1
A =: [B},By1 + By (I - BuBY)By| . 4)

Next, we present the explicit matrix expressions for K-generalized inverses A{K}, B{K} and (AB){K} when
(K} € {{1}, (1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4}}. The following results are elementary but
useful.
Theorem 2.1. Let A and B be denoted as the matrix forms (2) and (3), respectively. Then the following results hold.
(i) The generalized inverses A{K} have the representations:

S A Apdndy 0 A Apdedn X
Afl} = 22 2L A{L3) = 2 ; A{l4) = 22 =
) X3 X3 X33 .3} X3 X3 X33 (L, 4] 0 0 X33
Xq Xy X3 Xq Xp X3 0 0 X3
A Apdedn 0 A AAeds X A Apdodn 0
— 22 . — 22 23 |. — 22 .
A{ll 2/3} - XS] )(32 O 7 A{1/2/4} - 0 0 O U A{1/3/4} - O O X33 s
Xu X 0 0 0 0 0 0 X3
An Aidnds X An Andeds 0
— 22 23 . t — 22
All2) = X3 X3 X31AnXuz + (X31412 + X32422)Xo3 [ AT =41,2,34) = 0 0 oy
Xq Xy Xy AnXas + (XA + XpAx) Xz 0 0 0

where X,,,, m =1,2,3,4, n = 1,2,3 are arbitrary.
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(ii) The generalized inverses B{K} have the representations:

Yi3Bx =0, YnBxn =1

Bl_ll - Y133313I11 Yo Yz Yu
B{1} = —Y23B31 By} Yoo Y3 You| withYi3Bx =0, YuBp =1
Y3 Y Yiz Vi
Bl = Yi3BuBy! Y Y3 Yu
B{1,2} = _YZSB3lB1_11 Yoo Yo Y| with
Y Ya» Yz Ya
Bﬁl - }’133313511 Yo Y3 Yu
B{1,4} =
—Y33B3B;} Y2 Yz Yy
Bl_ll - Y13331Bil Yo Y3 Yu
B{1,2,4} = —Y33B3 By} Yo Yo Y| withY;3Bs =0, YxuBsp=I,
0 0 0 0

where Yy, ., m=1,2,3,n=1,2,3,4 are arbitrary. Let A be defined by (4). Then

AB;, 0 AB;, (I - ByBt) 0
B{1,3) = |-B.,BuyAB, 0 B!, —BYByAB,(I-BpB,,) 0 |;
Y31 Y32 Y33 Y34
AB;, 0 AB;, (I - ByBt,) 0
B{l, 3, 4} = —B§2B31AB;1 0 B;Z - B;2B31AB§1 (I - B32B;2) 0 with Y33B3z = O}
—Y33BalBI11 Y3, Y33 Y3y
AB, 0 AB:, (I - BB, 0
B{l, 2, 3} = —B§ZB31AB;1 0 B;Z - B;zB:ﬂAB;l (I - B32B;2) 0 with {
Ya 0 Yas 0
AB;, 0 AB;, (I - By,Bt,) 0
Bt = |-BL,ByAB}, 0 Bf,—BL,ByAB;(I-BynBL) 0f,
0 0 0 0

where Y3, n =1,2,3,4 are arbitrary.

(iii) The generalized inverses (AB){K} have the representations:

BUAY  Zin Zi BijAf; 0 0 Bl AY
(AB){1} = Zn Zn Zxn|, (AB){1,3} = Zn Zyn Zyu|, (AB){1,4} = 0
Z3 Zyp Iz Zn Zyp Zs 0

BjA}l 0 0 BUAY  Zyn Zi B Aj]
(AB)(1,2,3)=| Zn 0 Of (AB){1,2,4)=| 0 0 0] @AB,34 = 0
Z31 0 0 0 0 0 0

B A} Zyp Zy3 Bl A}
(AB){L 2} = ZZl ZZlAllBllz]Z ZZlAllBllzB ; (IqB)Jr = (AB){L 2/ 3/ 4} = O
Z31 Z31AllBllzlz ZZilAllBllle O

where Z,,,, m =1,2,3,n =1,2,3 are arbitrary.

—Y2333131_11 Yoo Yoz You| withYi;3Bs =0, YuByp =1 Y3Bn=0;

Y3 = (Y31B11 + Y33B31) Y12 + Y33Bo Yo,
Y33 = (Ya1B11 + Y33B31) Y13 + Y33B3 Y23,
Y34 = (Y31B11 + Y33B31) Y14 + Y33B3 Yoy,

4364

Ya3(I — B3, BY,) (I - leABE]) (I - BBY)
= Y31B11AB, (I — By, B);

Proof. The results in items (i) and (iii) can be gotten by using the definition of K-inverses. Here, we only
show that the results in item (ii) hold. Let Y = (Yj;)1<i<3,1<j<4. By solving the operator equations BYB = B,
YBY =Y, (BY)" = BY and (YB)" = YB, respectively, one gets that B{1}, B{1,2}, B{1,4}, B{1,2,4} have the
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representations as in item (ii) and

Bl -YiBuBl 0 Yiz 0 Yi3B3 =0, YuByp =1,
B{1,3} = —Y233313111 0 Y23 0 with B31 Y13 + B32Y23 is selfadjoint,
Y31 Yo Yaz Yau BuYis = (B};)'B;,(I = Ba1Y13 — B2Y23),
Bﬁl - Y13B31BI11 0 Y13 0 Y13B32 = 0, Y23B32 = I, Ygngz = 0,
B{1,3,4} = —Y23B31Bhl 0 Y3 0 with B31Yq3 + B3 Yp3 is selfadjoint,
—YBauB! Yam Yz Yy BuYis = (B};)'B;, (I = Ba1 Y13 — B2 Y23),
Y13B3 =0, Yo3Byp =1
-1 _ -1 13032 =U, Yo3bz =1,
B YBBM_?“ 0 Yis 0 . Bs1 Y13 + B3 Y3 is selfadjoint,
B{1,2,3} = —Y23B31B11 0 Yy O with Bi:Yin = (B* )_1B,r (I — BaYin — BuY )
Y31 0 Yz O 11113 11 31 31Y13 — D32Y23),

Y31B11Y13 = Y33(I — B31Y13 — B32Y23).
Since B31Y13 + B32Y23 is selfadjoint, Y13B32 =0and Y23B32 = I, we get
B3y = (B31Y13 + B32Y23)B3z = [3323311/13 + 3323321/23] ,

i.e., B;,B3 Y23 = B}, — B3, B31 Y13. Since By, is surjective, By, B3, is invertible and BY, = (B},B3) ™' Bj,. It follows
that Y23 = B;Z - B;2B31Y13. Since B11Y13 = (B*l)_lBgl(I - B31Y13 - B32Y23), we get

1
-1
Denote by A = [B; By + B, (I - ByB!,)Bs| . Then

Y13 = AB3 (I - BBY,), Y3 = B, — B}, B31AB;, (I — B3aBYy).

Hence,
By} - Y13Bx1By] = By} — AB; (I - BBl,)B1By} = ABj,,
Y23B31By] = BY,B31By] — Bi,B31AB, (I — B3»B,)Bai B! = Bl,B31AB;,.
We get
AB, 0 AB, (I - Bs:Bl,) 0
B(1,3} =|-B,Bx1AB;, 0 B!, —Bi,BsAB; (I-BxBl,) 0
Y31 Y32 Y33 Y34
and
AB, 0 AB;, (I - By,Bl,) 0
B{1,3,4} =|-B!,BsAB;, 0 B, —B!,BuAB; (I-BxBi,) 0 | withYsBz=0.
—Y33B3B}]  Ya Y33 Yas

Note that Y31311Y13 = Y31311AB§1(I — B32B§2) and

Y33(I = B31Y13 — B32Y23)

Yas [I - BaiAB;, (I - BxBl,) — BsoBl, + BB, B3y ABy, (I — BoBl,)]

Y33(I - B,BL,) (1 - B31AB;1) (I- B3BL).

We get
ABj, 0 AB;, (I - BBl,) 0
B{1,2,3} = |-Bi,Bu1AB;, 0 B}, —B!,B1AB; (I-BxBl,) 0
with

Y31BiiABy (I - B3oBY) = Yas(I - BaoBYy) (I - By ABy, ) (T - BsoBYy).
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Moreover, from B = B{1,2,4} N B{1, 3,4}, one gets

AB:, 0 AB;, (I - B3BL,) 0
B = B{1,2,3,4} = |-B},B51/AB;, 0 B!, — B! BsAB; (I-BxuBl,) 0f.
0 0 0 0
O
Remark 2.1.
An ~AnApdy Xo
(i) In Theorem 2.1, for example, we use A{1} = X(l ) X§22 Xii for short to express the set A{l}, i.e.,
Xy Xp X3
An ~Andedy Xo) (AL —AyApAn X
22 B = 22 BV Xon € B(Ky, Hy), m=1,2,3,4, n=1,2,3}.
X31 X3 X33 X3 X3 X33 i (e, Fln)
Xy X X3 X1 Xp X3

The matrix forms (2) and (3) can also be applied for the cases {K} € {{2,3}, {2,4}, (3,4}, {2,3,4}}. The representations
are complicated in these cases and we leave it to interested readers.

(ii) Note that By, is surjective. In addition, if By, is injective, then B, is invertible and

BT 0 0 0
Bt = —B?:leg,lBl_ll 0 B;zl 0].
0 0 0 O

(iif) It is interesting that, although the reverse order law has been considered for many types of generalized inverses
and from various aspects too, the results in Theorem 2.1 provide an effective method to prove these results. In Section
3, the readers can see the importance of the expressions in Theorem 2.1.

We next present the necessary and sufficient conditions for the invertibility of Bs,, for Aj; = 0 and for
B3 = 0, respectively. As we know, B3, in (3) is surjective and closed range operator, i.e., B;2B32 = ]. But
B, is not necessarily injective. The following theorem studies the situation in which Bs; is invertible. The

32
range relations play an important role in this case.

Theorem 2.2. Let A and B have the matrix representations (2) and (3), respectively. Then the following are equivalent:
(i) AB;, = B}
(ii) (I — B32BY,)B31 = 0.
(iil) R(Bs1) < R(Bsz2)-
(

iv) Bgp is invertible.

Proof. (i) < (ii) < (iii) By the representation of B, we know By is invertible and B}, is surjective and a
closed range operator. By (4), AB}; = Bhl if and only if B, (I - B32B§2)Bgl =0ifand only if (I - B32B§2)B31 =0
if and only if R(B31) € R(Bz2).

(iv)= (iii) It is trivial.

(iif)=> (iv) Since By}, is surjective, one needs to show that B}, is injective if R(B31) C R(Bzz). For every
X = (xl,xz,x3,x4), where X1 € (]’{1 = R(A*) 67'{2, Xy € 7‘[2 = R(A*) N N(B*), X3 € 7‘{3 = N(A) 97‘{4 and
x4 € Hy = N(A) N N(B*), then

" + X1
B11 0 B31 0 %
Bx=]10 0 B§2 0 =0
X3
0o 0 0 O

X4
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implies that B}, x; + B3, x3 = 0 and B},x3 = 0. If R(B31) € R(Bs2), then N(B},) € N(B},). We get x; = 0 and
x3 € Hy = N(A) N N(B*). Since x3 € Hz = N(A) © Hy = N(A) © (N(A) N N(BY)), we get x3 = 0.

m|

Note that, if R(B)NN(A) = {0}, then R(B)NN(AB) = {0}. In fact, forevery x € R(B)YNN(AB),x = B'Bx =0
since ABx = 0 and Bx € R(B) N N(A)={0}.

On the other hand, if R(B*) N N(AB) = {0}, then R(B)N N(A) = {0}. In fact, if x € R(B)NN(A), then Ax =0
and BB'x = x. So, ABB'x = Ax = 0 and B*x € R(B*) n N(AB) = {0}. It follows that x = BB*x = 0. Hence,

R(B) N N(A) = {0} < R(B*) N N(AB) = {0}.

This result had been pointed out in [17].
Note also that R(A*AB) C R(B) if and only if (I — BB")A*AB = 0.
As for further relations among R(A*AB), R(B) and R(B) N N(A), one has the following results.

Theorem 2.3. Let A and B have the matrix representations (2) and (3), respectively. Then the following are equivalent:
(i) R(A*AB) € R(B).
(ii) R(A*AB) = R(B) © (R(B) N N(A)).
(iii) A12 = 0 and R(Bz1) € R(Bsy).

Proof. (i) & (iii) Note that A1; and By are invertible and

A} AuBnn 0 0
A A11B11 00
“AB = |12
A*AB = 0 0 ol
0 00

Since R(A},A11B11) € Hy = R(A") N N(B") € R(B)*, we get R(A*AB) < R(B) if and only if A, = 0 and
R(A;lAan) c R(B) Note that R(ALAUBH) = R(Bn) and

an
0
Bz1x + B3y
0

R(B)Z ZXE.El,yG.Eg .

We derive that R(B11) € R(B) if and only if R(Bz1) € R(Bz,).
(i) = (iii) If R(A*AB) = R(B) © (R(B)N N(A)), then R(A*AB) C R(B). We get (iii) holds since (i) < (iii).
(iii) = (ii). If (iii) holds, then R(A*AB) = R(A},A11B11) = R(B11) and R(B) = R(B11) ® R(Bs2). Since
R(B3) € N(A), we get R(A*AB) = R(B) © (R(B) N N(A)).
o
Note that R(BB*A*) C R(A") if and only if (I — ATA)BB*A* = 0.
Theorem 2.4. Let A and B have the matrix representations (2) and (3), respectively. Then the following are equivalent:
(i) R(BB*A™) € R(A").
(ii) B (R(B) N N'(A)) = B (R(B) N N(A)).
(iii) R(A*) = R(BB*A*) @ [R(A") N N(B")].
(iv) Bs1 = 0.

Proof. (i) < (iv) Note that

BB}, Ay 8 8 R(A) ? %, R(A*;{ié?j(r?x?B{‘\)/(B*))
BEA" =gy At 0 of (‘i{) Ho 1= vay e (N(A) N N(BY) )
0 00 (A7) N(A) N N(BY)
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with Aq; and By being invertible by (2) and (3). Since R(B31B};A};) € Hz © N(A) = R(A")*, we get
R(BB*A") € R(A") if and only if Bs; = 0 and R(B11B};A];) € R(A"). Note that R(B11B},A};) = R(A};) and
R(A*) = R(A},) ® R(A,). Hence, R(B11B},A};) € R(A”) is trivial.

(iii) & (iv) By (5), R(BB"A") = [R(A") © (R(A") N N(B"))] & [N(A) © (N(A) N N(B*))] = R(B11) ® R(Bz1),
ie.,

B31 =0 & R(A") = R(BB'A) & [R(A") N N(B)].
(iv) = (ii) Note that R(B},) = R(B;z) and R(B) N N(A) = H;. By Theorem 2.1, item (ii),

AB;, 0 AB3, (I - B3BY,) 0
B' = —B;2BglAB;1 8 Bgz—BngslA(l)a;l(I—BSzB;Z) 8 :

Hence, if Bs; = 0, then B*(R(B) N N(A)) = BF(R(B) N N(A)).
(i) = (iv) Note that

BuB), 0  BuBj 0
BB = 0 ) 0 ) 0 ) 0 .

B31B11 0 B3lB31 + B32B32 0

0 0 0 0

If B (R(B)NN(A)) = BF(R(B)N N (A)), then BB*(H3) = BB*(R(B)NN(A)) = BBH(R(B)NN(A)) = R(B)YNN(A) =
H;. One gets that R(B11B;,) = {0}. Hence, Bs3; = 0 since By is invertible.
O

3. Multi-relations of A{K}, B{K} and (AB){K}

Throughout this section we will use the notation * to denote the arbitrary operator which is the one
suitable entry in the corresponding operator matrices. In Section 2, we have built some equivalent range
relations which ensure that A = 0, B3; = 0 and Bs; is invertible, respectively. In this section, many new
mixed-type generalized inverses relations are established and some mixed-type reverse-order laws results
appearing in recent papers are covered.

We first study equivalent conditions for the multi-relations among A{K}, B{K} and (AB){K} which ensure
that A, = 0.

Theorem 3.1. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) A2 =0.

(i) R(AA*AB) € R(AB).

(iii) (TAB){1,3,4} - A{1,3,4} = (AB){1,3,4} for T = A" or T belongs to any set of A{1,4}, A{1,3,4}, A{1,2,4}.
(iv) Any of the following relations holds:

(TAB){1,2,3} - A{1,3,4} C (AB){1,3}; (TAB){1,2,3}- A{1,3} C (AB){1,3};
(TAB){1,2,3}- A{1,3} = (AB){1,2,3}; (TAB){1,2,3}- A" = (AB){1,2,3};

(TAB){1,3} - A{1,3} = (AB){1,3}; (TAB){1,3}- A{1,2,3} C (AB){1,3};
(TAB){1,3} - A{1,3,4) = (AB){1,3}; (TAB){1,3}- At C (AB)(1,3};

(TAB){1,3,4} - A{1,3} = (AB){1,3}; (TAB){1,3,4}-A{1,2,3} C (AB){1,3}.
for T = A" or T belongs to any set of A{1,4}, A{1,3,4}, A{1,2,4}.
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(v) (A'AB)TAT = (AB)" or (ATAB)T AT belongs to any of (AB){1,3}, (AB){1,2,3}, (AB){1, 3,4}.
Proof. (i) < (ii) By (2) and (3), since AB = A11B11 ®0® 0 and

(AnAj; + AnAj,)AnBn
ApAl,A1Bn
0
0

0 0
. 0 0] . . .
AA*AB = 0 0 with A1q, B11, A are invertible,
00

we get R(AA*AB) - R(AB) — R(AQQAbAnBH) = {0} == A22A;2A11811 =0 A;Z =0 A]2 =0.
(i) & (iii) By Theorem 2.1, items (i) and (iii), for T = A" or for every T € A{1,4}, or T € A{1,3,4}, or
T € A{1,2,4}, we have

B

0 8 8 BiIATL 0 0 Bl 0 0 0
TAB=| o o ol @BL34=| 0« «, (TAB}{L3,4 =0 » = x|
0 00 0 * % 0 % % %

Hence,

1
* *

BiAy —BhAjdndy O
(TAB){1,3,4}- A{1,3,4} = 0
0 * *
It follows that (TAB){1, 3,4} - A{1,3,4} = (AB){1,3,4} < A, =0.
(i) & (iv) Similar to (i) & (iii).
(i) & (v) By Theorem 2.1, items (i) and (iii),

By 0 0 _ 1o 1 a- _
0 0 O Bnl 000 BnlAnl _BnlAnlAlZAzz1 0
AYTAB = , (ATAB'=[ 0 0 0 0|, A'ABfAt=| 0 0 0.
0 00
0 0 0 0 00 0 0 0 0

Since (AB)" = B[ A @00, it follows that (A'AB)'A" = (AB)" & Aj, = 0. By Theorem 2.1, item (iii), it is
easy to get that (ATAB)'A" belongs to any of (AB){1,3}, (AB){1,2,3}, (AB){1,3,4} & A, = 0.

O

Next theorem gives some mixed-type reverse order laws results associated to A{K}, B{K} and (AB){K}.
These results don’t need any additional conditions.

Theorem 3.2. Let A and B have the matrix representations (2) and (3), respectively.Then the following statements
hold.

(i) M - (ABN){1,3} C (AB){1,3} for M = Bf, N = B" or M, N belong to any set of B{1,3}, B{1,2,3}, B{1,3,4}.

(ii) M - (ABN){1, 2,3} C (AB){1,2,3} for M = B, N = Bt or M, N belong to any set of B{1,3}, B{1,2,3}, B{1,3,4}.
(iii) (EAB){1,4} - AT C (AB){1,4} for E = A" or E belongs to any set of A{1,4}, A{1,2,4}, A{1,3,4}}.

(iv) (EAB){1,2,4} - AT C (AB){1,2,4} for E = A" or E belongs to any set of A{1,4}, A{1,2,4}, A{1,3,4}}.

(v) (EAB){1,4} - F = (AB){1,4} for E = At,orE,F belong to any set of A{1,4}, A(1, 2,4}, A{1,3,4}}.

(vi) (EAB){1,2,4} - F = (AB){1,2,4} for E = A", or E, F belong to any set of A{1,4}, A{1,2,4}, A{1,3,4}}.

Proof. (i) We only show that B{1, 3} - (ABN){1, 3} € (AB){1,3} when N = BforN belong to any set of B{1, 3},
B{1,2,3}, B{1,3,4}. The rest of the proof is similar. So we omit it. Note that

AnBiABj, 0 AnBjABy(I-ByBl) 0
ABN = 0 0 0 0|, (AB)(1,3)=
0 0 0 0

* * *

* * *

“14-1
BHlA11 0 0]
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I\in N:z 1\113 AB; N1 + ABy, (I - B3»BY))Na1 = B A7/,
(ABNIL3} =\ N. N | Withy ABjNip+ABj (I - BypBL,)Ns =0,
JroE U ABNiz + AB; (I — BBY,)Ng; = 0.
Hence,
AB:, 0 AB;, (I - B3,B) 0 I\iu 1\112 1\113
B{1,3}-(ABN){1,3} = |-BL,Bs1AB;, 0 B}, — B! BsiAB; (I-BsBl) 0 Ne Ne N
31 32 33
Yz Y3 Y33 ETY] I
BiAn 0 0
= | BLNs — B} BBl A7l BY N3, B! N |C (AB)(1,3).
* * %

(ii) Similar to (i).

(iii)-(vi) We only show that (EAB){1, 4} - A{1,4} = (AB){1,4} when E = AtorE belongs to any set of A{1, 4},
Af1,2,4}, A{1,3,4}}. The rest of the proof is similar. So we omit it. For E = A" or E belongs to any set of
A{l,4}, A{1,2,4}, A{1, 3,4}}, we have

B

n 00 - _
0 0 0 B AL B » *
EAB = 0 o ol (AB){1,4} = 0 * +|, (EAB){1,4} =] 0 =% = =x|.
0 0 0 0 % % 0 % % %
Hence,
Blll % % Al_l1 _AI11A_112A521 X13 Bl_llAl_ll %
(EAB){1,4}-A{L,4) = |0 =+ » «|| 9 » Xo|_[ " L.
0 0 X33
0 0 * %
0 0 Xy3

Thus, (EAB){1,4} - A{1,4} = (AB){1,4}.
O
Using Theorem 2.1, the new equivalent conditions for B3; = 0 are derived.

Theorem 3.3. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) Bs1 = 0.

(ii) R(BB*A*) € R(AY).

(iii) B*A" € (AB){1,4)}.

(iv) B'AT € (AB){1,2,4}.

(V) B'T C (AB){1,4) for T € {A{1,4}, Af1,2, 4}, A{1,3,4}}.

(vi) Bt - A{1,2,4} C (AB){1,2,4}.
(vii) B{1,4} - A{1,4} C (AB){1,4}.

(viii) B{1,3,4} - T C (AB){1,4) for T e {A*, Af,4), A(1,2, 4}, A{1,3,4}},

(ix) BSAB = TAB for S {(AB)*, (AB){1,4}, (AB){1,2,4), (AB){1,3,4}} and T e {A*,A{1,4},A{1,2,4},A{1,3,4}}.
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Proof. (i) & (ii) See Theorem 2.4, items (i) and (iv).
(i) & (iii) Note that, by Theorem 2.1, items (i) and (ii),

1 _a-1 -1
AB:, 0 AB;, (I - B3BY,) 0 Aél AnAndy 8
TAt + * + + * +
B™AT = —B3233,1AB11 0 B32—B32B31A331(I—B32332) 0 0 62 0
0 0 0 0
0 0 0 (6)
AR AT AR AARA O
= —BSZB31AB;1A1_1 BSZB31AB;1A1_1A12A2_2 0f.
0 0 0

By Theorem 2.1, (iii), B'A" € (AB){1,4} if and only if AB} A}! = B;A;! and B},B31AB;, A} = 0if and only if
Bi,Bz = 0and A = B;}(B;,)" if and only if B3; = 0.

(i) & (iv), or (vi), or (vii) Similar to (i) & (iii).

(i) & (viii) For example, we only prove that B{1, 3,4} - A{1, 3,4} C (AB){1,4} if and only if B3; = 0. By
Theorem 2.1, item (iii), B{1, 3, 4} - A{1, 3,4} C (AB){1, 4} if and only if the first column of B{1, 3,4} - A{1, 3,4} is
same as the first column of (AB){1,4}, i.e.,

ABL AL = BiiAY,  BLBaABL AL =0, YsBsBiAj =0

if and only if (I — B3;B},)Bs1 = 0 and B},Bs; = 0 if and only if Bs; = 0 if and only if R(BB*A*) C R(A").
(i) & (ix) By Theorem 2.1, items (i) and (iii), we have

By 0 O Bi1 0 O
0 0 O 0 0 O
BSAB = By 0 0| TAB = 0 o ol
0 0O 0 0 0
Hence, BSAB = TAB < B3, = 0.
O
Remark 3.1.

(i) In [29], authors had pointed out that
B{1,3,4} - A{1,3,4} C (AB){1,4} < R(BB"A") C R(A").

(ii) Theorem 3.2, items (iii), (iv) and (vii) have been proved in [14, Theorem 2.3]. Our matrix expressions in Theorem
2.1 are brief and efficient ways to study the various generalized inverse relations.

In Theorem 2.2, we had proved that AB}; = Bﬁl — (- B32B§2)B31 =0 & R(B31) € R(Bsp) < Bz, is

invertible. In fact, further properties of B3, being invertible can be gotten by using Theorem 2.1.
Theorem 3.4. Let A and B have the matrix representations (2) and (3), respectively. Then

R(Bs1) € R(Bsp) < MN C (AB){1}

forM e {B*, B{1,3}, B{1,2,3}, B{1,3,4}}andN c {A*, A(L), AlL,2), Al1,3), A{L 4}, A{1,2,3), A{1,2,4), A{1,3,4}}.

Proof. By Theorem 2.1, MN C (AB){1} if and only if AB;lAl_l1 = B1_11A1_11 or AB;lAl_l1 + AB; (I - B32B;2)X31

B;lA{} for arbitrary X3 if and only if (I - BxB,)Bs1 = 0. By Theorem 2.2, we prove the result.
o

In Theorem 2.3, we have gotten that Aj; = 0 and R(Bz1) € R(Bs) <= R(A*AB) C R(B) <= R(A*AB)
R(B) © (R(B) N N(A)). In fact, there are various different methods to express these relations.
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Theorem 3.5. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(1) A1z = 0 and R(B31) € R(B32).
(ii) BfAt e (AB){1, 3}.
(iii) BfAt e (AB){1,2,3}.

(iv) W - A{1,3) C (AB){1,3} for W € {B*, B{1,3, B{1,2,3}, B{1,3,4}}.
(v) B{1,2,3] - A{1,2,3} C (AB){1,3}.

(vi) W - A* C (AB){1,3) for W e {3{1,3}, B{1,2,3), B{1,3,4}}.

(vii) B{1,2,3} - A* C (AB){1,2,3).

(viii) W - A{1,3,4) C (AB){1,3} for W € {B+, B{1,3}, B{1,2,3), B{1,3,4}}.

Proof. (i) & (ii) By (5) and Theorem 2.1, items (iii), B'A" € (AB){1,3} if and only if AB} A} = B} A}

and ABj,Aj]ApA;) = 0 if and only if A1z = 0 and B (I — Bs;B}))Bs; = 0 if and only if A1, = 0 and
(I - B32B§2)B31 =0ifand Ol’lly if A12 =0and R(B31) - R(B32)
(i) &= (iii)-(viii) We only show that B{1, 3}-A{1,3} C (AB){1,3} &= (i) & B(1,3,4}-A(1,3,4} C (AB)(1,3}.

The rest of the proofs is similar. Note that, by Theorem 2.1, items (i) and (ii),

AB;lAl_ll + AB;l(I — B32B§2)X31 _AB;1A1_11A12A521 + AB;l(I - B32B§2)X32 AB;l(I - Bnggz)Xg,g
* *

B{1,3}-A{1,3} =

*

* * *

and

117711 117711
* *

AB: A7l —AB: A_1A12A2_21 AB;l(I - B32B§2)X33
B{1,3,4} - A{1,3,4} = * .

* * *

By Theorem 2.1, item (iii),
B{1,3}- A{1,3} € (AB){1,3} (resp.B{1,3,4}- A{1,3,4} € (AB){1,3})

if and only if the first row of B{1,3} - A{1,3} (resp. B{1, 3,4} - A{1,3,4}) is same as the first row of (AB){1, 3},
ie.,
ABLAjl = B Ay, ABj A AnAy =0, ABj (I - BBiy)Xs =0

if and only if A1 = 0and (I - B32B§2)B31 = 0 if and only if R(A*AB) € R(B) by Theorem 2.3, item (i).
O

Remark 3.2.

(i) In [29], authors had pointed out that

B{1,3,4} - Al1,3,4} C (AB){1,3} & R(A*AB) C R(B).

(ii) Theorem 3.5, items (ii)-(iv) have been proved in [14, Theorem 2.2]. Our proofs are brief and efficient.
Moreover, we will establish the equivalent conditions for R(A*AB) C R(B) for the mixed-type reverse
order laws.

Theorem 3.6. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) R(A*AB) € R(B).
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(i) ABQA = ABWfor Q e {(AB)*, (AB){1,3}, (AB){1,2,3], (AB){1,3,4}}and W e {B*,B{1,3},B{1,2,3},B{1,3,4}}.

Proof. (i) & (ii) By Theorem 2.1, items (ii) and (iii), for Q € {(AB) (AB){1,3},(AB){1, 2,3}, (AB){1, 3,4} }

W e {B*,B{1,3},B{1,2,3},B{1,3,4}}, we have

A A 0 0 AnBnAB;, 0 AnBnAB(I-ByBl,) 0
ABQA = 0 0 0|, ABW= 0 0 0 0f,
0 0 00 0 0 0 0

Hence, ABQA = ABW if and only if AnBHAB;l = A11 ’ A12 =0and AanAB;l(I - B3ZB§2)B31 = 0 if and
only if A1 =0and (I - B32B§2)B31 = 0 if and only if R(A*AB) C R(B).

O

We immediately get the mixed-type reverse order laws associated to the Moore-Penrose inverse and the
{1,3,4}-inverse.

Corollary 3.7. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) (see [13, Theorem 2.2 (c)]) R(BB*A*) € R(A*) and R(A*AB) € R(B).

(ii) B'AT = (AB)*.

(iii) A12 = 0 and By = 0.

(iv) Bt - A{1,3,4} C (AB){1,3,4).

(v) B - AT € (AB){1, 3,4}

(vi) B{1,3,4} - At C (AB){1, 3, 4}.

(vii) B{1, 3,4} - A{1,3,4} C (AB){1, 3,4}.

(viii) One of items in Theorem 3.1 & one of items in Theorems 2.4, 3.3 hold.

(ix) One of items in Theorems 2.4, 3.3 & one of items in Theorems 2.3, 3.5, 3.6 hold.

Proof. (i) < (ii) See [15] for matrix case and [13, Theorem 2.2 (c)] for the bounded operators case.

(ii) & (iii) By (6) and Theorem2 1, (iii), B'A" = (AB)" ifand only if A1, = 0, B},B3; = 0and A = B}(B}))™*
if and only if A1 = 0and B3; =
BilA7l 0 0
(iii) & (iv) By Theorem 2.1 again, (AB){1, 3,4} = 0 Zy» Zy|and
0 Zzn Zs
1 _ a1 -1
AB;, 0 AB;, (I - By,Bl,) (A ~AnAndy 8
B'-A{1,3,4) = |-BL,BuAB; 0 B}, - B},BuAB;(I-BxnBY) 0 S
0 0 0 0 0 0 Xis
AB;lAlll ABllAHlAle_ AB;l(I - B3zB§2)X33
= |-BL,BuAB} Al Bl,ByAB} Al AnA;! (B, - BY,ByABy, (I — BB Xas |-
0 0 0

Then B' - A{1,3,4} C (AB){1,3,4} if and only if Ay, = 0, B},B3; =
and B31 =0

(iii) & (v)-(vii) Similar to the proof of (iii) &= (iv).

(iii) & (viii)-(ix) See the proofs of Theorems 2.2-3.6.

O

0and A = B/ (B;,)" if and only if A1, = 0



R. Liu et al. / Filomat 33:14 (2019), 4361-4376 4374

Remark 3.3. Let A € B(H,K) and B € B(L, H) be such that R(A), R(B) and R(AB) are closed. Corollary 3.7,
items (i) and (vii) had been pointed out in [21, 29]

B{1,3,4} - A{1,3,4} C (AB){1,3,4} & R(A*AB) CR(B), R(BB'A") C R(A").

In fact, (AB){1,3,4} = (AB){1,3} N (AB){1,4}. The result follows immediately by Theorem 3.3, item (viii) and
Theorem 3.5, item (viii).

Theorem 3.8. Let A and B be denoted as the matrix forms (2) and (3), respectively. The following statements are
equivalent.

(i) B{1,2,4} - A{1,2,4} C (AB){1,2,4}.

(ii) Bs1 =0, L = {0} or H, = {0} where L, = R(B*) © R(B*A*) and Hy = R(A*) & N(B*) are defined in (1).

(iii) R(A*) = R(BB*A") & [R(A") N N(B")], N(AB) = N(B) or R(A*) @ N(B*) = {0}.

(iv) A*{1,2,3} - B*{1,2,3} C (B*"A"){1,2,3}.

Proof. By Theorem 2.1, items (i) and (ii),

0 0 0

-1 -1 -1
By =Y13Ba1By! Y12 Y13 Y1u ) (All —ApAndy, X“]
0 0 0

-1
B{124)A(124)= ( ~Y5BuBy Yz Yz Y 0 Ay X
0 0 0 O

(B =Y13Ba1 Bi)AT] —(Bi! =Y13Ba1 B[ DA ] AnAy +Y12 A5 (B! =Y13B31B{ ) X13+Y12X23
= ~Y23Ba B A7} Y23Ba1 Bl AT A A+ Y0 AS) —Y23B31 By} X13+Y 22 X3
0 0 0
Note that .
apya| P A 2
(AB){1,24}= o 0 0
0 0 0

and X.., Y.., Z.. are arbitrary by Theorem 2.1.
(1) & (11) B{1,2,4} A{1,2,4} c (AB){1,2,4} if and only if Y13B31 = 0, Y23B31 = O, Y22A£21 =0 and
Y2 Xp3 = 0if and only if B{1, 2,4} in Theorem 2.1 satisfies the additional conditions that

Y13B31 =0, Y23B31 =0, Y =0.

Which is equivalent with B3; = 0 and the second row or column in B{1, 2, 4} must disappear, thatis, B3; = 0,
and £; = R(B*) 8 R(B*A*) = {0} or R(A*) ® N(B*) = {0}.

(ii) & (iii) Since
B11Bj, A7, 00 R(AS(R(A)NN(B*))
a = | 0 Mool (ehge ) S| RN
BBy A3, 00 |+ (VT NAYSN(ANN(B))
0 00 NANN(B)

with Aj; and By being invertible by (2) and (3), we get R(BB*A*) = [R(A*) © (R(A") N N(B*))] ® R(Bz1), i.e.,
B3 =0 & R(A") = R(BB*A™) & [R(A") N N(B")]
and
L ={0} & R(B") = R(B"A") &< N(AB) = N(B)
since R(AB) and R(B) are closed.
(i) & (iv) Note that,
X € (AB){1,2,4} = X" € (AB)*{1,2,3} = X" € (B*'A"){1,2,3}.

O

It worth point out in [18, Theoren 3.2], the authors gave that B{1,2,4}- A{1, 2,4} € (AB){1, 2,4} if and only
if R(A*) = R(BB*A*) @ [R(A") N N(B*)], N(AB) = N(B) when A, B and AB have closed range. But this result
does not necessarily hold. We can see from the following example which is provided by the referee.
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100 10 0
Example1 LetB=| 0 0 0 [andA= ( ) By direct computation,
0 00
010
100 10
B'=10 0 1]/, ABz((l) 8 8), BA'=|1 0 0
0 00 0 0
and
1 xp 1 yi2
(AB){1/214} = { 0 0 ‘X2 € C}/ B{1/214}A{1/ 2, 4} = { 0 0 Y12 € C}
0 0 0 0

So L, # {0}, N(B) # N(AB) and B({1,2,4}A{1,2,4} = (AB){1,2,4}.
In [26, Theorem 3.1], the necessary and sufficient conditions for

B{1,2,4} - A{1,2,4} C (AB){1,2,4}, Bf{1,2,3}-A{1,2,3} C(AB){1,2,3}

were presented by using the expressions for maximal and minimal ranks of the generalized Schur comple-
ment.

In this paper, we study the mutual relationships of mixed-type generalized inverses. The range relations,
the properties of matrix entries, the inclusion or equal relationships of mixed-type generalized inverses
of corresponding closed range operators are obtained. Meanwhile some new necessary and sufficient
conditions for various generalized inverses relations are given, and some recent related results are covered.
It is worth pointing out that various relations of mixed-type generalized inverses which we do not discuss
can also be treated effectively by using our methods.
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