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Abstract. In this paper, we introduce and analyze a composite steepest-descent algorithm for solving the
triple hierarchical variational inequality problem in a real Hilbert space. Under mild conditions, the strong
convergence of the iteration sequences generated by the algorithm is established.

1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. Let C be a nonempty closed convex
subset of H and P¢ be the metric projection of H onto C. If {x} is a sequence in H, then we denote by x; — x
(respectively, xx — x) the strong (respectively, weak) convergence of the sequence {x¢} tox. LetS: C - H
be a nonlinear mapping. We denote by Fix(S) the set of fixed points of S. A mapping S : C — H is called
L-Lipschitz if there exists a constant L > 0 such that

ISx = Syll < Lllx — yll, Vx,yeC.

In particular, if L = 1 then S is called a nonexpansive mapping; if L € [0, 1) then S is called a contraction.
Let A : C — H be a nonlinear mapping. The classical variational inequality problem (VIP) is to find
x € C such that

(Ax,y—x)=>20, VYyeC (1)

The solution set of VIP (1) is denoted by VI(C, A).
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The VIP (1) was first discussed by Lions [23]. There are many applications of VIP (1) in various fields;
seee.g., [9,10,13,15,16, 18, 34, 37, 39, 41, 43, 44, 47]. 1t is well known that, if A is a strongly monotone and
Lipschitz-continuous mapping on C, then VIP (1) has a unique solution. In 1976, Korpelevich [22] proposed
an iterative algorithm for solving the VIP (1) in Euclidean space R":

Yk = Pl — 1Ax),

Xis1 = Pe(xx — tAyx), Vk >0,
with T > 0 a given number, which is known as the extragradient method. The literature on the VIP is
vast and Korpelevich’s extragradient method has received great attention given by many authors, who
improved it in various ways; see e.g., [1, 7, 12, 14, 33, 35, 38, 40, 42] and references therein.

In 2001, Yamada [32] introduced the following hybrid steepest-descent method for solving the VIP
(1) with C = Fix(S), 2441 = (I = AyuA)Sx,, ¥n > 0, where S : H — H is a nonexpansive mapping with
Fix(S) # 0, A : H — H is a x-Lipschitzian and n-strongly monotone operator with positive constants «, n > 0
and 0 < pu < i—’;, and then proved that under appropriate conditions, the sequence {x,} converges strongly to
the unique solution of VIP (1). The problem of finding a point in VI(Fix(S), A) is called a hierarchical VIP or
a hierarchical fixed point problem. Yamada’s hybrid steepest-descent method has received great attention
given by many authors, see e.g., [3, 4, 6, 8, 11, 24, 27, 30, 36, 45] and references therein.

Let A:C — Hand B : H — H be two mappings. Consider the following bilevel variational inequality
problem (BVIP).

Problem 1.1. Find x* € VI(C, B) such that
(Ax*,x —x") 20, Vxe VI, B).

In particular, whenever H = R", the BVIP was recently studied by Anh, Kim and Muu [1]. Bilevel
variational inequalities are special classes of quasivariational inequalities ([2, 31]) and of equilibrium with
equilibrium constraints. However it covers some classes of mathematical programs with equilibrium
constraints, bilevel minimization problems ([26]), variational inequalities ([18, 45]) and complementarity
problems.

In what follows, suppose that A and B satisfy the following conditions:

(C1) Bis pseudomonotone on H and A is -strongly monotone on C;
(C2) Ais Li-Lipschitz continuous on C;

(C3) Bis Ly-Lipschitz continuous on H;

(C4) VI(C,B) # 0.

In 2012, Anh, Kim and Muu [1] introduced the following extragradient iterative algorithm for solving
the above bilevel variational inequality.

Algorithm 1.2. ([1]). Initialization. Choose u € R", xp € C, k =0, 0 < A < i—f, positive sequences
{0k}, {Ak), lauch, ABi), Ay} and {éx} such that

lim&y = 0, Z@k < oo,
k—oc0 pr .
Ozk+ﬁk+)/k =1, Vk >0, Z‘(Xk = 00,
k=0
l}imak =0, I}imﬁk =£€(0,1] I}imAk =0, Ay < &, Vk>0.

=1,

Step 1. Compute yy := Pc(xx — ABxy) and zy := Pc(xx — ArByi).
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Step 2. Inner loop j = 0,1, .... Compute

Xk0 = Zk — AAZk,

Ykj = Pelxij — 6jBxy),

Xk, j+1 = QjXk0 + ﬂ]’xk,]' + )/]-Pc(xk,]- - (SjByk,]').

If [lxk, j+1 — PvicsyXoll < & then set I := x;,j41 and go to Step 3.
Otherwise, increase j by 1 and repeat the inner loop Step 2.

Step 3. Set Xyy1 := ot + PrXi + Yihk. Then increase k by 1 and go to Step 1.

On the other hand, recall the variational inequality for a monotone operator A; : H — H over the fixed
point set of a nonexpansive mapping T : H — H:

Find x e VI(Fix(T), A1) := {x € Fix(T) : (A1%,y — %) 2 0, Vy € Fix(T)},

where Fix(T) := {x € H : Tx = x} # 0. In [19, 20], liduka introduced the following three-stage variational
inequality problem, that is, the following monotone variational inequality with variational inequality
constraint over the fixed point set of a nonexpansive mapping.

Problem 1.3. ([20]). Assume that

(i) T : H — H is a nonexpansive mapping with Fix(T) # 0;

(ii) Ay : H — H is a-inverse strongly monotone;
(iii) A : H — H is p-strongly monotone and L-Lipschitz continuous;
(iv) VI(Fix(T), A1) # 0.

Then the objective is to
find x* € VI(VI(Fix(T), A1), A2) := {x" € VI(Fix(T), A1) : {(Axx*,v —x") > 0, Vv € VI(Fix(T), A1)}.

Very recently, some authors continued the study of liduka’s THVIP (i.e., Problem I) and its variant and
extension; see e.g., [5, 8, 46]. In 2012, Ceng, Ansari and Yao [6] proposed a relaxed hybrid steepest-descent
algorithm for solving Problem 1.3.

Algorithm 1.4. ([6]). Assume that the operators T : H — Hand A; : H — H (i = 1,2) satisfy conditions (i)-(iv)
in Problem 1.3.

Step 0. Tnke {ak},‘z‘lo c (0,1], {/\k};‘;O c (0,2a], {yk},jio c (0, i—f), choose xq € H arbitrarily, and let k := 0.

Step 1. Given xx € H, compute x;,1 € H as

Vi = Tl — ArArxy),

Xks1 °= Yk — UkOxA2Yk.
Update k := k + 1 and go to Step 1.

Moreover, the authors [6] also considered the following monotone variational inequality with the variational
inequality constraint over the intersection of the fixed point sets of N nonexpansive mappings T; : H — H,
where N > 1 an integer.

Problem 1.5. ([6]). Assume that

(i) fori=1,..,N, T; : H — H is a nonexpansive mapping with ﬂf\z’lFix(Ti) +0;
(ii) Ay : H — H is a-inverse strongly monotone;
(iii) A, : H — H is B-strongly monotone and L-Lipschitz continuous;
(iv) VI(NY,Fix(T3), Ay) # 0.
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Then the objective is to

N N N
find x* € VI(VI(ﬂFix(T,-), A1), As) = {x' € VI(ﬂFix(Ti),Al) S (Apx", v — X"y > 0,V € VI(ﬂFix(Ti),Al)}.
i=1 i=1 i=1

The authors [6] also proposed another relaxed hybrid steepest-descent algorithm below for solving Problem
1.5, and established the strong convergence result for the proposed algorithm.

Algorithm 1.6. ([6]). Assume that the operators T; : H — H (i = 1,..,N) and A; : H — H (j = 1,2) satisfy
assumptions (i)-(iv) in Problem 1.5.

Step 0. Tnke {“k};:lo c (0,1], {/\k};io c (0,2a], {yk};‘io c (0, i—f), choose xo € H arbitrarily and let k := 0.
Step 1. Given xx € H, compute x;,1 € H as

Yk = Ty (v — AeA1xk),
Xpal = Yk — UkrA2Yx.
Update k := k + 1 and go to Step 1.

In this paper, we introduce and analyze a composite steepest-descent algorithm for solving the triple
hierarchical variational inequality problem (THVIP) with the constraints of the monotone variational in-
equality problem (VIP) and the common fixed point problem of finitely many nonexpansive mappings in
a real Hilbert space. The proposed algorithm is based on Korpelevich’s extragradient method [22], hybrid
steepest-descent method [32] and Halpern’s iteration method. Under mild conditions, the strong conver-
gence of the iteration sequences generated by the algorithm is derived. Our results improve and extend the
corresponding results announced by some others, e.g., liduka [20, Theorem 4.1], Ceng, Ansari and Yao [6,
Theorem 3.2] and Anh, Kim and Muu [1, Theorem 3.1].

2. Preliminaries

Throughout this paper, we assume that C is a nonempty closed convex subset of a real Hilbert space H.
We use wy(xx) to denote the weak w-limit set of the sequence {x¢}, i.e.,

wy(xk) := {x € H : x;, = x for some subsequence {xy,} of {x;}}.

Recall that a mapping A : C — H is called

(i) monotone if
(Ax —Ay,x-y)>0, Vx,yeC
(if) n-strongly monotone if there exists a constant 17 > 0 such that
(Ax = Ay, x —y) = 1llx - y||2, Vx,yeC;
(iii) a-inverse-strongly monotone if there exists a constant a > 0 such that
(Ax — Ay, x —y) > al|Ax - Ayl?, Vx,yeC

The metric (or nearest point) projection from H onto C is the mapping Pc : H — C which assigns to each
point x € H the unique point Pcx € C satisfying the property

llx — Pcxl| = inf [|x — y|| =: d(x, C).
yeC

Some important properties of projections are gathered in the following proposition.
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Proposition 2.1. For given x € Hand z € C:
(i) z=Pcx © (x—z,y—2)<0, VyeC;
(i) z=Pcx & |x—zP <lx—ylP - lly -zl Yy eC
(iii) (Pcx — Pcy,x — y) > ||IPcx — Pcyll?, Yy € H.

If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious that A is 1-Lipschitz
continuous. We also have that, forallu,v € Cand A > 0,

(I = AA)u — (I = AA)Y|P < [lu = olI* + A(A = 2a)||Au — Ao|l*. )
So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.

Definition 2.2. A mapping T : H — H is said to be firmly nonexpansive if 2T — I is nonexpansive, or equivalently,
if T is 1-inverse strongly monotone (1-ism),

(x—y,Tx=Ty) > ||Tx - Tyllz, Vx,y € H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as T = (I + S), where S : H — H is
nonexpansive.

It can be easily seen that if T is nonexpansive, then I - T is monotone. Itis also easy to see that a projection
Pc is 1-ism. Inverse strongly monotone (also referred to as co-coercive) operators have been applied widely
in solving practical problems in various fields.

Proposition 2.3. ([17]). Let T : C — C be a nonexpansive mapping. Then the following hold:

(1) Fix(T) is closed and convex;
(ii) Fix(T) # 0 when C is bounded.

Recall that, a mapping A : C — H is called hemicontinuous if for all x, y € C, the mapping g : [0,1] — H,
defined by g(t) := A(tx + (1 — #)y), is continuous. Some properties of the solution set of the monotone
variational inequality are mentioned in the following result.

Lemma 2.4. ([21, 28]) Let A : C — H be a monotone and hemicontinuous mapping. Then the following hold:

(i) VI(C, A) is equivalent to MVI(C,A) := {x* € C: (Ay,y —x*) 2 0,Vy € C};
(ii) VI(C, A) # 0 when C is bounded;
(iii) VI(C, A) = Fix(Pc(I — AA)) for all A > 0, where I is the identity mapping on H;
(iv) VI(C, A) consists of only one point, if A is strongly monotone and Lipschitz continuous.

Lemma 2.5. ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a nonexpansive
self-mapping on C with Fix(S) # 0. Then I — S is demiclosed. That is, whenever {xy} is a sequence in C weakly
converging to some x € C and the sequence {(I — S)xi} strongly converges to some y, it follows that (I — S)x = y. Here
I is the identity operator of H.

Recall that, a mapping T : C — C is called a C-strictly pseudocontractive mapping (or a C-strict pseudo-
contraction) if there exists a constant C € [0, 1) such that

ITx = Tyl? < llx = yI? + NI = T)x = (I = TYylP>, Vx,yeC.

Note that the class of strictly pseudocontractive mappings strictly includes the class of nonexpansive
mappings. It is clear that T is nonexpansive if and only if T is a O-strict pseudocontraction.

Lemma 2.6. ([25]). Let C be a nonempty closed convex subset of a real Hilbert space Hand T : C — C be a mapping.
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(i) If T is a C-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

1
Ce-yll, VoyeC

+
Tx-Tyll <
ITx =Tyl < 1=

(ii) If T is a C-strictly pseudocontractive mapping, then the mapping I — T is semiclosed at 0, that is, if {x,} is a
sequence in C such that x, — % and (I — T)x, — 0, then (I - T)X = 0.

(iii) If T is C-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is closed and convex so that the
projection Prixr) is well defined.

Lemma 2.7. ([35]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be a C-strictly
pseudocontractive mapping. Let v and 6 be two nonnegative real numbers such that (y + 6)C < y. Then

y(x—y)+(Tx =Tyl < +0)llx—yll, VYx,yeC

Lemma 2.8. ([16]). Let {“k};:;o be a bounded sequence of nonnegative real numbers and {bk},‘(";0 be a sequence of real

numbers such that limsup,_, by < 0. Then, limsup,_, . axby < 0.

Let A be a number in (0,1] and let u > 0. Associating with a nonexpansive mapping S : C — H, we
define the mapping S™) : C — H by SW#x := Sx — AuF(Sx), ¥x € C, where F : H — H is x-Lipschitzian
and n-strongly monotone.

Lemma 2.9. ([30]). S* is a contraction provided 0 < p < % s that is,
ISMx — Sy < (1= AD)llx —yl, Yx,y€C,

where T :=1— /1 - u2n— ux?) € (0,1].
Lemma 2.10. ([29]). Let {ay} be a sequence of nonnegative real numbers satisfying the property
A < (1= sp)ag + spte + 0k, Yk >0,

where {si}, {tx} and {0k} are sequences of real numbers such that

(i) {sk} € [0, 1] and Y2 sk = oo;
(it) either imsup,_, t <0, 0r Y12 Isktil < 00;
(ifi) T2 Ok < 00 with 8 > 0, Vk > 0.

Then, limy_,e a; = 0.

Lemma 2.11. ([16]). Let H be a real Hilbert space. Then the following hold:

(@) |lx = yl> = lIxI?> = Iyl* = 2¢x — y, y) forall x, y € H;
(b) IAx + pylP? = Allxl® + pliyl> = Aullx =yl forall x,y € Hand A, p € [0, 1] with A + u = 1;
(c) If {xx} is a sequence in H such that x, — x, it follows that

lim sup ||xx — y|P* = limsup [, — x|* + lx — yI>, VyeH.

k—o0 k—o0

3. Iterative Algorithm and Convergence Criteria

Let H be a real Hilbert space. In this section, we always assume the following:

T; : H — H is a nonexpansive mapping for each i = 1, ..., N such that N}Y Fix(T;) # 0;

A : H — H is n-strongly monotone and L-Lipschitz continuous, and 8 : H — H is a-inverse strongly
monotone;

{ar}, {Be} € (0,11, {Ak} € (0,2a] and {ux} < (0 2n) satisfy the conditions (A1)-(A3):

/L%
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A2) limyeo(tixs1 — %[Jk) =0and Z}:o:() a1 — gl < oo,

(A3) ZZO:() |ﬁk+1 - ﬁk| < ooand Z]to:() Ak < 005
A:H — Hand B : H — H are two mappings such that the hypotheses (H1)-(H4) hold:

1/ 2_c[2 2
(A1) | — L’—%I < % for some c € (0, Z—%),
(

(H1) B is monotone on H,

(H2) A is p-inverse-strongly monotone on H,

(H3) B is L,-Lipschitz continuous on H,

(H4) VI(VI(Q, B),A) # 0 where Q = VI(ﬂfilFix(T,v),B).

Next, we introduce the following triple hierarchical variational inequality problem (THVIP) with the
constraints of the monotone VIP and the common fixed point problem of finitely many nonexpansive
mappings.

Problem 3.1. The objective is to

find x" e VI(VI(Q,B),A) := {x" € VI(Q2, B) : (Ax",x —x") > 0, Vx € VI(Q2, B)}.
That is, the objective is to find x* € VI(Q, B) such that

(Ax',x —x*) >0, VxeVIQ,B), (3)
where VI(Q, B) denotes the set of solutions of the VIP: Find y* € Q such that

By, y-y)=0, YyeQ. (4)

Algorithm 3.2. Initialization. Chooseu € H, xo € H, k =0, 0 < A < 28, positive sequences {0}, {Ar}, {aw), {Bx}, (i)
and {&;} such that

(o)
limé, =0, Zék < 00,
k—oo par

ar+pPr+yr=1, Vk >0, ]}imﬁkzée(o,%],

Zak = oo, I}imak =0, Ay =o(ag), Ak < le, Vk > 0.
k=0 —00

Step 1. Compute

g = Ty (X — ABxi),
Uk = Uy — oA,

Y := Pa(ux — AxBuy),
zk := Po(ox — AkByg)-

Step 2. Inner loop j = 0,1, .... Compute
Xk0 = Zk — AAZk,
Yr,j := Pa(xk,j — 0iBxy ),
Xk, j+1 = QjXgo + ﬁ]‘xk,j + )/jPQ(xk,j - 6jByk,j)-
If [lxk, j+1 — Pvica,ByXkoll < & then set iy := xi j41 and go to Step 3.
Otherwise, increase j by 1 and repeat the inner loop Step 2.

Step 3. Set Xii1 1= gt + Prxx + yihi. Then increase k by 1 and go to Step 1.
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In the sequel we always suppose that the inner loop in the Algorithm 3.2 terminates after a finite number
of steps.

Lemma 3.3. Let sequences {vi}, {yi} and {zx} be generated by Algorithm 3.2, B be Ly-Lipschitzian and monotone on
H, and p € VI(Q, B). Then, we have

llzk = pIP* < llox = pIP = (1 = AeLo)llog = yall® = (1 = AxLa)llyx — 2zl ()

Proof. Letp € VI(Q, B). That means (Bp,x—p) > 0, Vx € Q. Then, for each A; > 0, p satisfies the fixed point
equationp = Po(p—A(Bp). Since B is monotone on H and p € VI(Q, B), we have (Byx, yx—p) = (Bp, yx—p) = 0.
Then, applying Proposition 2.1 (ii) with vy — AxByx and p, we obtain

llzx = pI* < llox = AkByi — pII* = llox — AkByx — zil®
= llox = pIP* = llox — zill* + 2Ac(Byi, p — z¢)
= |lox = pI* = llox — zil* + 2Ac(BYi, p — i) + 2Ac(BYi, i — zk)
<ok = pIP* = llox — zill* + 2Ac(Byi, i — i)

(6)

Applying Proposition 2.1 (i) with vy — A Bvy and z, we also have (vx — AxBvg — yx, zk — Yx) < 0. Combining
this inequality with (6) and observing that B is L,-Lipschitz continuous on H, we obtain
llzx = pIP < llo = pI* = (o = y&) + vk = 2017 + 2A(Byi, Yk — k)
= |lox = pII* = llox — ykll® = llyx — zxll* — 2¢ox — AkBog = yi, Y — z&) + 2Ax(Box — Byx, zx — )
< llox = pI* = llox = yell® = lyx = 2¢l* + 2A(Bog — Byk, zi — yi)
< llok = pIP = llok = vl = llyx = 2P + 2AxlBog = Bylllze — yill (7)
< o = pIP = ok = yell® = lyi — 26l* + 2AcLallog — yillllze — il
<o = pI* = llox = yell® = llyi = zel® + ALa (o — yell® + 11z — vl ®)
< log = pI* = (1 = AL)llox — viell® = (1 = AeLa)llye =zl
|

Lemma 3.4. Suppose that the conditions (A1)-(A3) and (H1)-(H4) hold. Then the sequence {x} generated by
Algorithm 3.2 is bounded.

Proof. Take an arbitrary p € VI(VI(Q2, B), A). Since S@)p = p — aupAp, by Lemma 2.9 we have

llox — pll < ISty — S@rtp|| +||S@kt)y — p]|
< (1 = art)llug — pll + a il Apll,

where 1 := 1 - \/1 — we(2n — pL3).
We claim that 7, > 7, where T = 1 — V1 — ¢. Indeed, it follows from condition (A1) that

n— M —cL? n+ Jm —cl? 2n
—p SWS—— <=
L L Ly

DU,
and hence
/nz _ CLZ [772 _ CLZ
( — 1 —1 . — 1 — —1 <0
1 1
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This implies that L3u? — 2nu + ¢ < 0. Observe that 1 (2n — l3) 2 c=1-[1-(1- VI-o) =1-(1 - 1),

where7:=1- V1 -c. Hence, we have 7, =1 — \/1 - ur(2n - [ukL%) > 1, Yk =2 0. Thus, from (8) we get

llox = pll < (1 = )l — pll + el Apll

9)
< max{llug - pll %uﬂpn}.

Furthermore, utilizing the nonexpansivity of T and the a-inverse strong monotonicity of 8, we deduce
from {Ax} C (0,2a] that
ek = pll = | Tpgr1y(xx — AeBxx) — pll
< Ty (e = AkeBxx) = Ty (p — M Bp)ll + T3 (p — ABp) — TPl
< e = MeBx = (p — M Bp)ll + llp — 4Bp — pll (10)
= |k = p — A(Bxi — Bp)ll + AlIBpll
< llxx = pll + AlIBpll.

Combining (9) and (10), we obtain

o= pll < ma{le — pl, Z1Apl)
< max{llvc = pll + AdSpll, Sl )

< max{llx — pll, gllﬂpll} + Al Bpll.

Taking into account p € VI(VI(B,Q),A). Then we have (Ap,x —p) > 0, Yx € VI(Q, B), which implies
p = Pviap(p — AAp). Then, it follows from (2), Proposition 2.1 (iii), f-inverse strong monotonicity of A, and
0 < A <28 that

IPvi(,B)(zk — AAz) — pII* = IPvia,p)(zk — AAzi) — Pvia,p)(p — AAp)II?
<A = AA)ze — (I = AA)plP
< llzx = pI* + A(A = 2B)l| Az — Apl?

2
< lzx = plII*-

(12)

Utilizing (7), (11), (12) and the assumptions 0 < A < 28, Y2 & < oo we obtain that

IxXee1 — pll = lleu + Brx + yihi — pll
< agllu = pll + Bellxx = pll + yrllhx — pll

< allu = pll + (Br + yx) max{|lxx — pll, gllﬂpll} + & + AdIBpll
= agllu = pll + (1 — o) max{|lxx — pll, %Ilﬂpll} + & + AlIBpll

< max{|xe = pll, llu = pll, gllﬂpll} + & + A1 Bpll

k
< max{llxo — pll, [l = plI, %Ilﬂpll} + Z(ék + AllBpll)

=0

< 00,

which shows that the sequence {x;} is bounded, and so are the sequences {1y}, {vi}, {yx} and {z¢}. O
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Lemma 3.5. Suppose that the conditions (H1)-(H4) hold. Assume that the sequences {v} and {z} are generated by
Algorithm 3.2. Then, we have

llzkr1 = zill < (1 + AgaL2)llosr = vkl + ArlIBYxll + Aga (1Bokall + 1By ll + [[Bugll).- (13)

Proof. Since limy_, B = & € (0, %], we may assume, without loss of generality, that {f} C [a,b] C (0,1) for
all k > 0. Taking into account the L,-Lipschitzian property of B, for each x, y € H we have

I = AkB)x — (I = AB)yll < llx = yll + AllBx — Byl
< (L + ALo)llx = yll.

Combining this inequality with Proposition 2.1 (iii), we have

1zks1 — z&ll < N(Oke1 — Ags1 Bysr) — o + ABud|
= [|(Vks1 — Aks1BURs1) — (Uk — A1 Bog) + A1 (BUks1 — By — Bor) + AxByil| (14)
< (1 + A L)l = vl + AklIByill + Agsa (1Bl + 1Byl + [1Boll).

This is the desired result (13). O

Lemma 3.6. Suppose that the conditions (A1)-(A3) and (H1)-(H4) hold. Assume that the sequence {xy} is generated
by Algorithm 3.2. Then, lim_,co ||Xk41 — Xkl = O

Proof. We write xx41 = (1 — Br)wi + Bixx for all k > 0. Then, we have

Qi1 + Virthis1 el + Yy
Wit — Wy = -

1 - ‘Bk+1 1 - ﬁk (15)
QA+l 2973 ')/k+1 )/k )/k+1
1= Bre 1—5k) (1_ﬁk+1 1_/3) T= B (a1 — hie)

Note that, for 0 < A <28, we have from (2) that
IPvi(,B)(Zk+1 — AAZks1) — Pyiap)(zk — AAzZR)|P < (T = AA)zksr — (I — AA)zI?
< izt — zl® + AA = 2B)|Azisr — Azil?
< lzksr — 2zl
Then, utilizing (13) and (15) we get
+1 Vi+1
ul| + hel| +
it ﬁ ll + 15255 = 5 ﬁ il + 2

@ k+1
|—= el + =L [(1Pvica,B)(zk — AAzZi)I| + &)

"B 1- ,Bk 1—Brs1 1- [3
N Vir1(1 + Agg1Lz)

Wker — hell

lwwgsr — wil] <

0 — Urll + €, + €
T [Oke1 = ol + 7= ﬁ " (Ers1 + &)
k+1
+ L (A1 (IBogs Il + [1BYiall + 1Bukll) + ArliByxll)
1- ﬁk+1
(03 04
= |2 el + | ——222 I(IPvip) (2 — AAze)l| + &) (16)

1_ﬂk+ 1 ﬁ 1_ﬂk+ 1 ﬁ

k1 (1 + Ags1Lo) ket _ _
+ 7/+—+||0k+1 — ol + 7/—Jr(€k+1 + &)
Ag+1 + Vi1 Ag+1 + Vi1
k+1
L (Ak+1(IBogsall + 1Byl + 11Bogll) + Al[Bykll)
Qk+1 T Vil

[l + IPvy,B)(zk — AAZ)|| + &
1-b
+ & + Aip1(Lollogsr — Ol + 1Bogsa |l + 1By Il + 11Bogll) + AxliByidl.

okt = vl + (laksr — al + 1Bre1 — Prl) €1
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On the other hand, from (2), the nonexpansivity of T and the a-inverse strong monotonicity of 8 with
{Ax} € (0,2a], we conclude that for all k > 0,

21 — trll < N1(Xer1 = Apr1Bxkr1) — (xx — A Byl
< k1 = Aks1Bx5k41) — (i = A1 Bxi)ll + 1Ak = Agsa | Box| (17)
< logar = xll + [Ax = Agrall| Bl

From (17) and Lemma 2.9, we have

l0ps1 — vkl < ||S(ak+1/!1k+1)uk+1 _ S(ak+1,yk+1)uk|| + ||S(ak+1,yk+1)uk _ S(ak,yk)uk”
< (1 = a1 Trr) et — vl + |tk tier — il [ Al
< (1 = kT et = 3l + 1Ak = At 1Bl + I st — epiel | Al (18)
g
< (1 = k1D — xill + Qe lpiesr — K#kmﬂuk” + (A1 + ANIBxill.
+1

Utilizing the relation x41 = Bixx + (1 — Pr)wi, we obtain from (16) and (18) that

IXks2 = Xkt ll = N1Bra1Xker + (1 = Brr1)Wra1 — B — (1 — Br)ewkl|

< Bl — xill + (1 = Bollwgser — will + 1Bt — Brlllxirr — Wil
(233

< Bl — xill + (1 = Bl = aprr Oloksr — Xl + At lptesr — el Al

(09351
[[ull + IPvy,B)(zk — AAZ)|| + &
1-b

+ (Ags1 + ANBxill + (laxer — al + 1B — Prl)
+ €1 + € + Akr1(Lallvgr — vkl + [1Bogall
+IBygaall + IBoell) + ArlByill} + 1Bre1 — Brlllxess — wiaall
a
< (1= k1 (X = B Ok — xkll + arsr (1 = Bl i1 — Kklﬂkmﬂuk”
+

llell + 1Py By (zk — AAZK)I| + & (19)
1-0

+ Ekr1 + & + Aps1(Lalloksr — Okl + [IBogsr |l + IBYkrll + [|Bogll)

+ AlBykll + 1Br+1 — BrlllXes1 — Wl

+ (A1 + ADNBxll + (|atksr — al + |Brer — Prl)

[0
< (1= a1 = OOk = 3l + g (= fo)len = o= pulM
+

+ (A1 + AM + (lagsr — ol + 1Brar — Brl)M + € + & + k1M
+ MM + |Brs1 — PrlM
« M
< (1 = a1 (X = B Ok = xxll + @1 (1 = Br)Tlptirr — _k.Uk|—
Qg1 T

+ (Ags1 + Ak + k1 — arl + |Bre1 — Bel)2M + € + &,

where there is a constant M > 0 such that

[ull + IPvia,p) (zk — AAzi)| + Ek
sup{llAul| + [|Bxell + 1Byl + ( 1) -
k=0

+ k1 — Wl + Lallvesr = vl + [1Bogall + 1Bykall + [Buelh < M.

Since Y 5o €k < 00, Yook =00, Yoo laker —aul < coand Y2 |Bk+1 — Bkl < o0, itis easy to see from conditions
(A2) and (A3) that Y2 a1 (1 — BT = L2 ka1 (1 = D)7 = 00, limyeo |sr — =l = 0 and

Qk+1

Z[(Akﬂ + Ak + |1 — al + Bt — Prl)2M + Exi1 + &] < 0.
k=0
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Therefore, applying Lemma 2.10 to (19), we know that

%Ln; Ik — xill = 0. (20)

O
Lemma 3.7. Suppose that the conditions (A1)-(A3) and (H1)-(H4) hold. Then for any p € VI(VI(Q, B), A) we have

i1 — pIP < axllu — pIP? + Bellxe — pII* + yellok — pI* + 2yiéeliz — pll @1
+ 748 — 71 = ML) ok — well® + llye = zelP).

Moreover, if limy_,« ||xx — vkll = 0, then
I}I_{g IPvi,B)(zk — AkAzi) — zll = 1}1_{{)10 IPvi,B) (Yk — AkAyr) — yill = 0.

Proof. By [5], we know that lim; . X ; = Pvi(q,p)(zx — AAzk), which together with 0 < A < 2, inequality (5),
limy—,e0 B = & € (0, 3] and p € VI(VI(Q, B), A), implies that
kst = pI? = llou + Bk + iy — pII?
< agllu = pI* + Bellxi — pI* + il — pII?
< allu = pI* + Billxk — pIP + y(IPvico,py(zx — AAzi) — pll + &)
< agllu = plP* + Bellxi = pI? + y(l(T = AA)z = (I = AA)pl| + &)
< allu = plP? + Bellxi — pIP® + yillze — pll + &) (22)
< agllu = pl* + Bellxk — pIP + 2y€llzi — pll + yiér
+ yillox = pl* = (1 = AeLo)llog = vl > = (1 = AxL)llye — zl?)
= apllu — pIP* + Bellx = pII* + yillox = pII* + 2peéillze — pll + iér
= (1 = ML) ok — vl + llyk — zll?).
On the other hand, note that [|vx — uk|l = prarlAull < pollAull. Since A is Li-Lipschitz continuous and

{uy} is bounded, we know that {Auy} is bounded. Hence, it follows that

lim o — 1] = 0, (23)

which together with the assumption limy_,e ||xx — vkl = 0, yields

Lim lxc = well = 0. (24)
Also, from (22) it is found that

yr(1 = AeLa)(lox — vl + Ny — zll?)
< apllu — pIP + Billx = pII? + yillok — pli? = llxesr — pI? + 2yxéxllze — pll + yxér
= ag(llu = pI* = lxeer = pIP) + rlllk = pIP* = llxier — pIP)
+ elllox = pIP = xe — pIP) + 2yeéillze — pll + yiéy
< agllu = pl® + yillox = xell + Il = xeal)(lox = pll + lxeen = pll)
+ Bellack — et (ke — pll + llxesr — plI) + 2yxéxllze — pll + yiér-

Since g +Pr+yk =1, ax = 0, B > E€(0,3], & = 0, Ak = 0, [lxe — oxll = 0 and ||xgs1 — x¢ll = 0 (due to
(20)), we deduce from the boundedness of {x;}, {vx} and {z;} that

lim ffo = yd| =0 and lim [ly. =zl = 0, (25)
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which together with limy_,« [lxx — 0|l = 0, imply that

I}im llxx = y&ll =0 and I}im Ik — zll = 0. (26)
Again by Proposition 2.1 (iii), we have

IPvi,B) Yk — AAYk) — Xkl < lIPvi,B)(Yk — AAYk) — Pyvia,p)(zk — Az + IPvia,)(zx — AAzk) — Xl
< (1 + AL)Iyk — zill + allPvra,p) (zx — AAzx) — ul|
+ BillPvia,B)(zk — AAzZy) — x| + &k
< (1 + ALk — zill + alIPvya,p)(zx — AAzk) — ul| + &
+ BrllPvica,p)(zx — AAzr) — Pyvia,p)(Yk — Ayl
+ BellPvia,) (Yk — AAYk) — yill + Brllyk — x«ll
< (1 4+ ALk = zell + allPvio,py(zx — AAzk) — ull + &
+ Br(1 + ALz — yill + BrllPvia,8)(yx — AAYk) — il + Brllyx — xll-

(27)

Consequently, from (27), we have

IPviQ,B)(Yk — AAYk) — Ykl < IPvi,)(Yk — AAYK) — Xkl + X1 — 2kl + llxx — il
< (1 + ALk — zill + axllPvya,p)(zk — AAzk) — ull + &
+ Bre( + AL)IIzx — vl + BellPvia,s) (Yk — AAYk) — yill + Brllyie — xll
+ k1 = xill + ok — il
= (1 + B + AL)Iyk — zkll + axllPvia,p)(zk — AAzr) — ull + &
+ BillPvia,s) Yk — AAYk) — yell + (1 + Bllyk — xkll + llxke1 — xxll,

which immediately yields

1+ ﬁk 7 €k
1Py, (Wk — AAYK) — yill < (1 + ALD)yx — z«ll + 1Py, (zx — AAzy) — ul| +
1 - Bk 1 - Bk 1 - Bk
1+ B 1
+ 1_—‘8k||yk — x| + 1_—ﬁk||xk+1 = x¢l.

Since ag + P+ vk =1, ax > 0, pr > E€(0,1], & = 0, llyk —zll = 0, llxe — yll = 0 and ||y — x| = 0
(due to (20), (25) and (26)), we conclude that

Lim [|Pvi,p (e = AAYK) — yiell = 0. (28)
From Proposition 2.1 (iii), it follows that

[IPvia,B)(zk — AAzZk) — zill < I[Py, (zk — AAzk) — Py, (Yk — AAyll + IPvi,B) (Vk — AAyk) = il + 1y — z«ll
< (1 + ALDNzx = yill + IPvia,py(vk — AAYk) — yll + llyi — z«ll
< |IPyya,B)(yk — AAyk) = yill + (2 + ALk — zll-

Utilizing the last inequality we obtain from (25) and (28) that
Lim [IPvio,p)(2k — AAze) — 2l = 0. (29)
O

Theorem 3.8. Suppose that the conditions (A1)-(A3) and (H1)-(H4) hold. Then the two sequences {xi} and {zi} in
Algorithm 3.2 converge strongly to the same point x* € VI(VI(Q, B), A) provided ||xi — vl = o(a), which is a unique
solution to the VIP

(Ax,p-x") >0, VpeVIVI(Q,B),A).
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Proof. Note that Lemma 3.4 shows the boundedness of {x;}. Since H is reflexive, there is at least a weak
convergence subsequence of {x;}. First, let us assert that w,(x¢) € VI(VI(Q2, B), A). As a matter of fact, take
an arbitrary w € wy(xx). Then there exists a subsequence {x;,} of {x;} such that x;, = w. From (26), we
know that 1y, — w. It is easy to see that the mapping Pyyq (I — AA) : H — VI(Q, B) C H is nonexpansive
because Pyyq,p) is nonexpansive and I — AA is nonexpansive for f-inverse-strongly monotone mapping
A with 0 < A < 2B. So, utilizing Lemma 2.5 and (28), we obtain w = Pyyqg)(w — AAw), which leads to
w € VI(VI(Q, B), A). Thus, the assertion is valid.

Also, note that A is n-strongly monotone and L;-Lipschitz continuous on H. Thus, by Lemma 2.4 (iv),
we know that there exists a unique solution x* € VI(VI(Q, B), A) to the VIP

(Ax",p—x") 20, VpeVIVI(Q,B),A). (30)

Next, let us show that x; — x*. Indeed, take an arbitrary p € VI(VI(Q, B), A). Utilizing the monotonicity
of A, we obtain from Algorithm 3.2 that for all k > 0,

llox = plI* = llux — praxAug — pli*

< Nk = p) — o Fuell*

= llux — pI* + 2uken{Aug, p — ugey + o | Au? 1)
< lluk = pIP* + 2ura{Ap, p — wi) + prag || Al
= |l — pI* + 2urei{Ap, p — xi + xi — i) + o | Awell*

<l = pIP + 2uxeic((Ap, p — xi0) + AP Nlxic — well) + prag | Al
Also, utilizing the nonexpansivity of each T; (i = 1, ..., N) and monotonicity of B, we have that for all k > 0,

Il = pIF = 1 Ty (e = AkBoxe) = Tiesappll®
<Gk = p) — MBxill®
= |l = pIP* + 2A(Bx, p — xi) + A7l By (32)
<l = pI* + 2A6(Bp, p — xi) + AIBxill*
< i = pIP + 2A4/1Bpllllp — xill + AN Bl >

Combining (31) and (32), we get

llox = pII* < llue — pIP + 2uraic((Ap, p — xi0) + | APNlIxi — well) + prag | A
< llxe = pI* + 2AlIBpllllp — xill + ALNBxil* + pgag | Al (33)
+ 2urar({(Ap, p — x> + APl — ull),

which immediately leads to

0 < [lxk — plI* = llox = pI* + 2AlIBplllp — xill + AZNBxl* + 2 (Ap, p — xie) + APl — well) + pac || A
< |l = will(llxe = pll + llox = pll) + 2AIBpllllp — xill + Al Bl
+ 2w ((Ap, p — xi) + 1Al — uill) + o\ Al

That is,

2

A
Il = pll + 1o = pll) + ——1Bpllllp — xell + 5—— 1Bl
Mkt

< Il — Uk||(
2kt (34)

2 Ukt
@
+(Ap, p — xi) + | Ap|lllocx — gl + %llﬂukllz.




L. C. Ceng et al. / Filomat 33:14 (2019), 4403—4419 4417

Since for any w € wy(x¢) there exists a subsequence {xi,} of {x;} such that x;, = w, we deduce from (34),
ar = 0, llxxe — ugll = 0, A = o(a) and [|xx — vl = o(a) that for all p € VI(VI(Q, B), A)

2
Al = ol Ak AL )
0 < im{——"(|lxx. = 2|l + llox. — pll) + ——||Bwllllp = xx.|| + ———||Bxx.
—iir?o{ 2o (Il = pll + ok, = plI) #kiaki|l pllllp — x|l 2,Uki0¢k,” x|
Uk Ok; 2
+<(Ap, p — xx;) + (AP|lllock; — g |l + — (| A |17}

= im(Ap, p - xx,)
i—00
= (Ap,p — w).
Thus, by Lemma 2.4 (i), we know that
(Aw,p—w) 20, Vpe VI(VI(Q,B),A);

that is, w is a solution of VIP (30). By the uniqueness of solutions of VIP (30), we get w = x*, which
hence implies that w,(xx) = {x"}. Therefore, it is known that {x;} converges weakly to the unique solution
x* € VI(VI(Q, B), A) of VIP (30).

Finally, let us show that [|x; — x*|| = 0 as k — . Indeed, in terms of Algorithm 3.2, we conclude from
(7) and the B-inverse-strong monotonicity of A with 0 < A < 26, that

kst — I = lloew + Brxx + yrhy — 7|
< Bk = x7) + yicle — X + 2051 — X°, a1 — X7)
< Belle = X1 + pillhie = X1 + 2051 = X, X1 — X°)
< Billxk — X1 + yr(IPvia,py(zx — AAzZr) — XI| + €)% + 2001 — X°, X1 — X°)
= Bellxi — x°17 + Y (IPvi By (zx — AAzi) — Pyya,p)(x" — AAX")|| + &) + 25t — X, X1 — X°).
It follows that
a1 = X1 < Bl = X717 + yx (T = AA)z — (I = AA)X|| + &) + 2a4{ut — X°, X1 — X7)
< Bellxk = X IP + yielllze = 71| + €)% + 205 — X7, Xpep1 — X7)
= Brllxe — X1 + yillze — X717 + yiér(2llzi — X7 + &) + 204(u — X7, Xy1 — X7)
< Bellxi = x°1P + yillog = x°11? + yié@llzi — X7l + &) + 2a,(u — X7, X — x7)
= Bellxe — X1 + pillxe = x* + v — Xl + yiéllzi — Xl + &) + 2y — X7, X1 — x7)
= Brllxe — 21 + pi(lle — 17 + 200 — %%, 0 = x5) + [[og — x¢l?)
+ Vi€i(2llzi = X| + &) + 2 — X7, g1 — X7) (35)
< Bl = [P + yielllxe — X117 + o — xell@llxe — x°1] + llox — xell)
+ Vi€ 2llze — XN + €k) + 200U — X7, Xps1 — X7)
< (1 = )l = X1 + [log — xill 2l = x| + Ilog — xill)
+ Ecllzk — X7l + &) + 205U = X7, Xje1 — X7)

a2 lox — xll . . .
= (1 - ap)llxx — X717 + ak[T(lexk = x| + ok — xill) + 2¢u — X7, 231 — x7)]

+ & 2llze — X'|| + &)
Since a — 0, [log — x|l = 0(ax), Lo €k < o and xx — x*, we deduce from the boundedness of {xi}, {v}, {z}
that Y12 €x(2llzx — x*|| + &) < o0 and

llox — xill

lim sup[ Qllxie = 27l + lloe = 2xell) + 2w = 27, xp01 — 2] < 0.

k—oo
Therefore, applying Lemma 2.10 to (35), we infer from } ;7 ay = oo that ||x; — x*|| = 0 as k — oo. Utilizing
(26) we also obtain that ||zx — x*|| = 0 as k — co. This completes the proof. O
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