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Remarks on the Eigenpairs of Some Jacobi Matrices
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Abstract. In this note we show that the results recently established by D. Bozkurt and B.B. Altındaǧ can
be derived from the well-known literature.

1. Preliminaries

The eigenvalues of the Jacobi matrix

An =


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n×n

, (1)

are known for more than 60 years. Indeed we can find the spectrum of An in [13] or [5, p.46]

λk = a + 2b cos
kπ
n
, for k = 1, . . . ,n. (2)

For the eigenvectors, we can find a complete description in [9, Theorem 3]. Another interesting matrix is

Bn =
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n×n

. (3)
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Since the eigenvalues of

Jn =


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
n×n

. (4)

are

µ̃k = −2 cos
(k − 1)π

n − 1
, for k = 1, . . . ,n,

the eigenvalues of Bn = aIn + bJn are

µk = a − 2b cos
(k − 1)π

n − 1
, for k = 1, . . . ,n.

We can find the eigenvalues of Jn for example in [10, 11]. They were also fully determined in [4, Table 1],
as well as the corresponding eigenvectors. Notice that since p(x) = a + bx is a polynomial, if (µ̃,u) is an
eigenpair of Jn, then (p(µ̃),u) is an eigenpair of Bn = p(Jn) (cf. [8, Theorem 1.1.6.]). For more general results
and motivation the reader is referred to [6, 7].

The eigenpairs of An and Bn have been rediscovered by several authors. Knowing the eigenpairs of a
tridiagonal matrix is essential for the computation of the powers of that matrix. This topic has attracted
many researchers in the recent years. Our aim is to discuss the recent paper [3] by Bozkurt and Altındaǧ
about the powers of slight sign changes to An and Bn.

2. Eigenpairs of two Jacobi matrices

In [3], Bozkurt and Altındaǧ considered the two matrices

Ãn =


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, (5)

and

B̃n =
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
n×n

. (6)

While for the eigenvalues the minus signs are irrelevant, because each factor of the characteristic polynomial
contains the product of the entries (i, i+1) and (i+1, i), for the eigenvectors the situation is different. Indeed,
this symmetrization process is well-known for generic tridiagonal matrices (see, for example, [12]) or in
more general instances as the acyclic matrices [1, 2].
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Let us define the diagonal matrix Dn by

diag (1, 1,−1, 1, . . . ,−1, 1, 1)

if n is odd, and
diag (−1,−1, 1, . . . ,−1, 1, 1)

otherwise. It is clear that

DnAnDn = Ãn and DnBnDn = B̃n . (7)

Therefore if (λ,u) is an eigenpair for An, (λ,Dnu) is an eigenpair for Ãn. Analogously, for Bn and B̃n. This
means that the eigenvectors of Ãn and B̃n follow immediately. Actually, using the similarity relations (7),
all the main results of [3] follow immediately from [4].
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