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Polynomial Interpolation on the Unit Sphere and
Some Properties of Its Integral Means

Phung Van Manh?, Nguyen Van Khiem?®

* Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam

Abstract. We study Hermite interpolation on the unit sphere. We give poised Hermite schemes on parallel
circles with odd and even number of points on each circle. We also prove continuity and convergence
properties of integral means of Hermite interpolation polynomials.

1. Introduction

Let P, (R¥) be the space of all polynomials of degree at most 7 in IR¥. It is known that dim®,,(IR) = (";k).
We denote by S the unit sphere in R3, i.e., S = {(x,1,z) € R® : x> + y? + z2 = 1}. The polynomials of degree
at most  in IR3, when restricted to S, form a vector space, say $»(S), with

dim®P,(S) = (n+1)%,, n>0.

In one variable, the Lagrange and Hermite interpolation polynomials of functions at given points always
exist. When the interpolated function is fixed and is sufficiently smooth, the interpolation polynomial is
continuous with respect to the interpolation points (see Theorem 2.3 below). Moreover, if an array of
interpolation points is suitably distributed, then the sequence of interpolation polynomials converges
uniformly to the function.

Multivariate polynomial interpolation problems are more difficult. The problem of Hermite interpo-
lation means to find a polynomial which matches, on a set of distinct points, values of a function and its
partial derivatives. We deal with the case in which the number of interpolation conditions is equal to the
dimension of the polynomial space. If the interpolation problem has a unique solution, then we say that
the problem is poised. Unlike the univariate Hermite interpolation, the multivariate Hermite interpolation
is not always poised. Moreover, it is difficult to check whether a particular Hermite scheme is poised. In
addition, the above-mentioned continuity property of Hermite interpolation is not true in the multivariate
case without additional assumptions (see for instance [1, 9]). In other words, multivariate interpolation is
unstable when the interpolation points coalesce. Similarly, it is not easy to find an array of interpolation
points such that the interpolation polynomials of smooth functions converge uniformly to the function (see
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for example [2, 3, 8, 12]). The trouble here is that the interpolation operator has bad behavior when interpo-
lation points tend to an algebraic hypersurface. Furthermore, multivariate interpolation polynomials lack
compact formulas and error formulas which are the main tools to prove the continuity and convergence
properties. It is to be expected that weaker properties hold true. In [16], we study the continuity and
convergence properties of integral means of Bojanov-Xu interpolation [4]. It is a kind of bivariate Hermite
interpolation in which the interpolation points are equidistributed on d = [5] + 1 concentric circles centered
at the origin. Let {s,...,s4} be a set of multi-radii and let H[{sy, ..., s4}; f] be the Bojanov-Xu interpolation
polynomial of a function f. We prove that the integral means of the interpolation polynomial over a fixed
circle and a fixed annulus are continuous functions of the radii s;'s. We also give a distribution of the radii
such that the integral means are convergent. More precisely, Theorem 3.2 in [16] asserts that the following
two maps are continuous:

(s1,...,84) € [pl,pZ]d — i fII—I[{sl,...,sd};f](rcos 0,rsin 0)dO

and

(Sll"'lsd) € [plr PZ]d — f H[{Sll-”rsd};f](xr y)dXdy
A(p1,p2)
Here f belongs to C”H(A(pl, p2)), where A(p1, p2) is the annulus defined by two circles of radii 0 < p1 < pz

Moreover, it is also showed in [16] that if f € CM(A(p1, p2)) and the Lebesgue constant A({s% e d AL [pl, ])
grows at most like a polynomial of degree N in d with A; = {s14,...,54} C [p1, p2], then

sup |— f]I—I[Ad,f](TCOSQ rsin 6)d6 — — ff(rcos@ rsm@)d6| = 0 N)
re p1 pz

and

1
f H[A4 f1(x, y)dxdy — f flx, y)dxdy‘ = o(nM_N), p1 < p3 < ps < po.

Ap3,pa) A(p3,pa)

The aim of this paper is to investigate Hermite interpolation on the unit sphere. Our study is inspired
from [10, 19] in which the authors studied the following problem of Lagrange interpolation on S:
Problem. Let A = {a; : 1 <i < (n + 1)%} be a set of distinct points on S. Find conditions on A such that there
is a unique polynomial p € $,(S) satisfying

pa)=fi, 1<i<m+1)?

where {f;} is an arbitrary given data.

Xu in [19] gave a large amount of interpolation sets solving the problem. More precisely, the (n + 1)
interpolation points are distributed on n + 1 distinct latitudes (parallel circles on S), and each latitude
contains an odd number of equidistant points. The number of points on two latitudes can be different. In
particular, Corollary 3.2 in [19] points out that, when n = 2m, the set A consisting of (2m + 1)? points lying
on 2m + 1 latitudes, each of them contains 2m + 1 equidistant points, solves the problem. In [10], the authors
gave an analogous result, but each parallel circle contains an even number of points. To investigate the
problem, the authors use the spherical coordinates

(sinOsing,sinfcos¢p,cosf), 0<0<m, 0<¢ <27,

to write a function f defined on S into the form

ﬂ@, ¢) := f(sin O sin ¢, sin O cos ¢, cos O). (1)
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Hence f(0,¢) will be a trigonometric polynomial in 6 and ¢ when f is a polynomial on S. Then, using
the uniqueness of trigonometric interpolation for equidistant points and certain spaces of functions, they
reduced the interpolation constraints to conditions relating to Chebyshev systems. Then they proved
factorization theorems and used them to solve the problem.

In this paper, we generalize [19, Corollary 3.2] and a special case of [10, Theorem 3.1] in which all latitudes
contain the same number of points. Here, Lagrange interpolation is extended to Hermite interpolation that
can be viewed as a result of coalescing latitudes with respect to the variable 0. Hence the derivatives in
0 appear in the constraints for Hermite interpolation. The first main results are Theorem 3.2 (with odd
number of points on each circle) and Theorem 3.5 (with even number of points on each circle). To prove
the theorems, we modify the methods given in [10, 19]. Some arguments in [10, 19] are repeated suitably in
this paper. Next we wish to study the continuity and convergence properties of the Hermite interpolation
polynomials. Note that an explicit formula or an error formula for Hermite interpolation is not available
yet. Hence strong versions are very difficult to obtain. It is of interest to know whether there are similar
results as above-mentioned properties of Bojanov-Xu interpolation. Fortunately, the nice distribution of
interpolation points enables us to write the integral mean of the Hermite interpolation polynomials on S
into a sum of univariate Hermite interpolation polynomials. It is the key to show desired results. Theorems
4.2 and 4.3 show continuity and convergence properties of the integral means of Hermite interpolation
polynomials on S in the case of odd number of points. The analogous results for the case of even number
of points are given in Theorems 4.6 and 4.8. It is worth pointing out that our theorem are analogous of that
mentioned above of Bojanov-Xu interpolation. Finally, a problem of Hermite interpolation was studied
in [13] in which we gave poised interpolation schemes and investigated some continuity properties of
interpolation polynomials. For recent account of Hermite interpolation on algebraic hypersurfaces, we
refer the reader to [6, 7] and the references therein.

The paper is organized as follows. In Section 2, we recall some facts about univariate Hermite and
Lagrange interpolations. Some results relating the vanishing of derivatives are also given. Section 3 deals
with problems of Hermite interpolation on the sphere. In the final section, we study integral means of the
Hermite interpolation polynomials over circles and spherical zones.

2. Preliminaries

2.1. Univariate Hermite interpolation

Let t1,...,t) be A distinct real numbers. Let v4,...,v, be A positive integers and d = v; + -+ + v,. The
following theorem is well-known.

Theorem 2.1. Given a function g for which g¥=V(t;) exists fori = 1,..., A. Then there exists a unique p € Py_1(R)
such that

Pty =gP(t), 1<i<A 0<j<vi-1.

The polynomial p in Theorem 2.1 is denoted by H[{(t1,11), ..., (tr,va)}; g] and is called the Hermite inter-
polation polynomial. The coefficient of 4=V in H[{(t1,v1), ..., (tr,va)}; g] denoted by g[(t1,v1),..., (tr,va)] is
called the divided difference.

In studying Hermite interpolation, it is convenient to use interpolation sets in which elements may be
repeated. For example, if A = {1,-2,3,-2,1, 1}, then we can write A = {(1, 3), (-2, 2), (3,1)}. More generally,
any multipoint set A = {s1,...,54} can be identified with the set of pairs of nodes and multiplicities
{(t1,v1),...,(tx,va)}. Here, (t;,v;) means that t; is repeated v; times. Hence we can write H[{sy, ..., s4}; 7]
and g[s1,...,sq] instead of H[{(t1,v1),..., (tr,va)}; gl and g[(t1,v1), ..., (tr, va)] respectively. In the case where
the s;’s are pairwise distinct, the interpolation polynomial becomes the ordinary Lagrange interpolation
polynomial and will be denoted by L[A; g].

The divided difference is continuous with respect to interpolation points (see for instance [5, Corollary
1.5]).
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Lemma 2.2. Let I C R be an interval and g € C*~Y(I). Then the function

(s1,...,84) € I — gls1,-..,54]
is continuous.
Using the Newton formula

H[{s1,...,54}; g1(t) = gls1] + gls1, s21(t = s1) + - - - + gls1, ..., 8ql(t = 51) - - - (£ — 54-1)
and Lemma 2.2, one can prove the continuity property of the univariate Hermite interpolation.
Theorem 2.3. Let I C R be an interval and g € C*~Y(I). Then the map
(s1,.-.,84) € I H[{s1,...,54}; 9] € Pa-1(R)

is continuous. Here the topology in Py_1(IR) is induced by any norm on Py_1(R).

From the formula for Hermite interpolation polynomial given in [5, Theorem 1.1], we proved in [14] a
factorization property of the generalized Vandermonde determinant.

Lemma 2.4. Let vy, ..., v, and d be positive integers such that vi + --- + vy =d. Let T = {(t1,v1),...,(tr, v1)} and
let F =1{g1,...,9a4) be given sufficiently smooth functions. We denote by VDM(F ; T) the generalized Vandermonde
determinant

g1(t) @) o gaa(h) ga(t1)
g;(tl) gy(t) 9;,1(t1) 7,(t)
7" ”(t) B g “(t) 73" ”(to
VDM(F T) = : : :
_l]l(fA) apty) - gd—l(t)\) ga(tr)
!Ji(fA) !]ﬁ(fA) e !7;_1("—)\) g;(t/\)
7w e 7" 1><t> g&”ﬁ’(t) 95" e
Then

[y

VDM(F;T) = ﬁVk_ il H —)"D(F;T),

k=1 i=0 1<i<j<A

where
g1[t1] go[t1] e g4lt1]
7l 2)] g2l(t1,2)] gal(t1,2)]
DFT =| il )] gl v)] - gal(tr,v)]
91[(t1/ Vl)r (t2/ 1)] gZ[(tl/ Vl)l (tZ/ 1)] e gd[(tll Vl)' (tZ/ 1)]
Bl vt v)] gal v v e gallta v (b )]

Here the factor [[1<i<j<(tj — )"/ does not appear when A = 1.
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Using Lemmas 2.2 and 2.4, we easily obtain the following result. Here and in the sequel, we sometimes
use the tuple (t1, ..., t;) instead of the set {1, ..., t4}.

Lemma 2.5. Let d,vy,...,v, be positive integers such that vi + ---+v)y =d. Let ¥ = {g1,...,94} be a subset of
CHY(I) with I = [a,b]. Let T° = ((t?,vl), e, (to,vA)) be tuples of points in . Let TN = (tll\’, . ,tfi\’) be tuples of d
distinct points in I such that the j-th element of TN tends to the j-th element of T, i.e.,

. N_ 0 . . N_ 0 .
I\l{lirc}ot]. =t for1<j<wy, I\l]l_r)l;lotj =t forvi+-+vg+1<j<vi++y, 2<I<A
Then

. VDM(F; TN) VDM(F; T°)
lim =

—00 . N _ Ny — A -1 i
N H1S1</Sd(t]‘ tl‘ ) ( k=1 HVk l') HlSi<jS/\(t? - t?)vlv/

i=0

2.2. The Lebesgue inequality

Let A = {s1,...,5s4} be a set of d distinct points in I = [a, b]. Let us define the Lebesgue constant

d

A(A,I) = sup
te[a,b] =1

d )
t—s]

e 5T
It is known that A(A, I) is the norm of the Lagrange operator L[A; '] : g € C(I) = P4-1(R), where the space
C(I) of all continuous functions on I is endowed with the usual sup-norm. The Lebesgue inequality shows
that

sup ()~ L[A; f1(0)] < (1 + A, D)disty(f, a1 (R)), 2

where distI( f ?d_l(lR)) = inf{sup;|f —pl : p € Pa_1(R)}. By the Jackson theorem in [17, Theorem 1.5], if
f € CM(I), then there exists a constant Cy depending only on 4, b and M such that

1

i) ©)

diStI(f, Pdfl) < (dij—Ol)Ma)(DMf

where w(g; %) = supflg(s) — g(t)l : s,t € L|s -t < %} is the modulus of continuity. On the other hand,

A(A,I) grows at least like logd. The optimal growth can be obtained when A is the zero set of orthogonal
polynomials on I = [-1,1]. Recently, Calvi and Phung proved in [8] that the Lebesgue constant of the first
d points of a ‘R-Leja sequence grows like O(d® log d).

Remark that the Lebesgue constant is invariant under affine transformations of R. Let £(t) = at + p with
a#0,] ={(I) and B = €(A). Then it is easy to verify that

A(A,T) = A(B, ).

Hence, from sets of points in [-1, 1] with Lebesgue constants growing moderately, we can construct analo-
gous sets in [4, b]. Finally, we say that A(Ag, ) with A; = {s‘li, e, sg} C I grows at most like a polynomial of
degree N in d if there exists a constant C > 0 such that A(Ay, I) < Cd" ford > 1.

2.3. Vanishing of derivatives of functions
We need the following elementary results. For completeness, we give their proofs.

Lemma 2.6. Let k be a natural number. Let g and h be k-times differentiable functions at ty € R. If g(to) # 0 and
(gh)(to)) =0fori=0,...,k then hD(ty) =0 fori =0,...,k
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Proof. By hypothesis that g(tp)h(tp) = 0 and g(fo) # 0, we have h(fp) = 0. Assume that the assertion holds for
i=0,...,j—1with j < k; we will prove it for j. By Leibniz’s formula, we get

= (gh)(to) = glto)hV(to) + Z( ) D(t)nI= (ko) = g(to)h (ko).

Hence h)(ty) = 0, which completes the proof. [

Lemma 2.7. Let g be a k-times differentiable function in a neighborhood of 6y € (0, m). If, for every i = 0,...,k,
£ g(cos 0)|,_, =0, then g% (cos 09) = 0 for everyi =0, ...,k

Proof. The assertion is trivial when k = 0. Assuming the assertion holds up to k — 1, we will prove it for k.
We first note that (cos 6)) = cos(0 + jn/2). Using Faa di Bruno’s formula in [18], we obtain

k

d k! . cos(0g + &) \n
T eosO) =} >(coseo)H ]—) :
j=1

0=

where n = ny + - - - + n and the sum is over all values of ny, ..., n, € IN such that ny +2n, + - - - + kn = k. Note
thatn < kandn = konlyifn; =k, n, = --- = n = 0. Hence, by induction hypothesis, all terms in the last sum
vanish except the term corresponding to ny = k, 11, = --- = n; = 0. It follows that (—1)kg(k)(cos 6o) sinf 6, = 0,
and hence g®(cos 6y) = 0. The proof is complete. [J

Corollary 2.8. Let g,g1, ..., 94 be k-times differentiable functions in a neighborhood of 6y € (0, ) such that

i

delg(COSQ l zd: di (COSQ) ‘ oo i=0,...k
=

Then

d
79 (cos 6p) = Z g¥(cos o), i=0,...k

j=1

3. Hermite interpolation on the sphere

3.1. Hermite interpolation with odd number of points on circles

In this subsection, we always assume that n is an even number, i.e., n = 2m. Applying generalized
Rolle’s theorem, we can use similar arguments as in the proof of [19, Lemma 2.4] to obtain the following
result.

Lemma 3.1. Let k and m be positive integers such that k < 2m. Let pyy,_x be a polynomial of degree at most 2m — k,
and let gy, be a polynomial of degree at most k — 1. If the function h(t) = poy—i(t) + (1 — £2)" K125, (t) has 2m + 1
roots, taking multiplicity into account, in [-1,1], then pay—r = gi—1 = 0.

For a € [0, 2), we denote by O, ,, the set of angles

v o Qjtom
@a,mz{(p:(p.—

j ]—m, =0,1,...,2m}.
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Theorem 3.2. Let m be a positive integer. Let 01, ..., 0; be | distinct numbers in (0, 7). Let p1, ..., 1 be positive
integers such that uy + --- + y; = 2m + 1. Then, for suitably defined function f on the sphere, there exists a unique
polynomial p € P»,(S) such that

a@,P(Q o)) ae,f( )|,y 1S7SL0<i<puj=1, ¢ €O,

0=0;

where fand p are defined as in (1).

Proof. The number of interpolation conditions is equal to (2m + 1)? that matches the dimension of Py,,(S).
Hence it suffices to show that if p € $,,,(S) satisfying the following condition

aez( <p)] 0, 1<j<L0<i<u—1, ¢ €Oy, @)

then p = 0. From relation (2.1) in [19], we can write

2m
p(0, ) = ap(cos 6) + Z [(sin 0)ai(cos 6) cos k¢ + (sin 0)*bi(cos 6) sin kqb],
k=1

where ai(t) and by(t) are polynomials of degree 2m — k. For every ¢ € ©, , using [19, Lemma 2.2], we have

p(0, ) = ap(cos 6) + Z [(sin G)kgk(cos 0) cos k¢ + (sin 0) hi(cos 0) sin k¢], (5)
k=1

where gi(t) = ar(t) + (1 = £2)" 1 2up, g (), hi(t) = be(t) + (1 = £2)" 1205, 4 (8) fork =1,...,m, and
Uam—k+1(t) = Am-k+1(t) cOS AT + boy—g41(¢) sinar,

O2m—k+1(t) = Aom—k+1(t) Sin QT = byyy—g41(t) cos am.

Taking derivatives of the function 6 — p(0, ¢) to order 0,1, ..., u; — 1 at 6; and using relation (4), we obtain
trigonometric polynomials of degree at most m in ¢ that vanish at 2m + 1 distinct points in ®,,,. The
uniqueness of the trigonometric interpolation implies, for 1 < j <[, 0<i<u;—-1, 1<k<m,

ddG ap(cos 6)‘ =0
and

10 ((sm o) Jr(cos 6))| =20 ((sm 0)hi(cos 6))| 0-0, =0.
Lemma 2.6 now yields

di dl

10 —gx(cos 9)’ 0 =g —hy(cos 9)’

By Lemma 2.7, above relations show that

)(COSG)— D(cos0)) = h(cos0:)=0, 1<j<l, 0<i<pu;—1, 1<k<m.
P j k j J Hj

The uniqueness of univariate Hermite interpolation forces ap = 0. Using Lemma 3.1 for g, and h, we get
ax = b = Upygs1 = Voam—ks1 = 0fork =1,...,m. Hence ar = by = 0 for 0 < k < 2m, which completes the
proof. O
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The polynomial p defined in Theorem 3.2 is called a Hermite-type interpolation polynomial of f and is
denoted by H[{(01, t11), - .-, (01, t1); Oaml; f1-
If 91,92, ..., 92u+1 € (0, 1) are not assumed to be distinct, then we can write

{‘91/ ‘92/ ey ‘92m+1} = {(01/ [Jl)/ ey (611 [Jl)}

We will write HO[{91, 85, ..., S241; Onm}; f1 for HOW[{(O1, 1), ..., (O1, th); Oam}; f1. Otherwise, the inter-
polation polynomial becomes the Lagrange interpolation polynomial Lodd[{91, 9, ..., Qomsi; Ounml; f1

3.2. Hermite interpolation with even number of points on circles

In this subsection, we always assume that 7 is an odd number, i.e.,, n = 2m — 1. The following result
generalizes [10, Proposition 2.4] which plays a crucial role in our proof.

Proposition 3.3. Let v and s be two integers such that r > s > 0. For €; € {-1,1} and €, € {0, 1}, let
g(t) = p(t) + 91 = ) 7146, (),

where p, and Gs_14¢, are polynomials of degree r and s — 1 + e, respectively. If g has r + s + 1 + €, roots, taking
multiplicity into account, in (0, 1), then p, = gs—14¢, = 0.

Proof. The proof strongly relies on that given in the proof of Proposition 2.4 in [10]. We will prove the case
€1 = 1 and e, = 0. The remaining cases are similar. By performing the change of variable ¢ — *, we need
to show that if

7(t) = p(H) + VE1 = £ q,1(8)

has r + s + 1 roots, taking multiplicity into account, in (0, 1), then p, = gs-1 = 0. Using the generalized Rolle’s
theorem repeatedly, we see that the function

r+1
h(t) tr+1/2 d —y (t) — tr+1/2

der+1 VH1 - 17g,- 1(t))

Adtr+l (
has s roots, taking multiplicity into account, in (0,1). Let T° = {(t%,11),...,(t2,v2)} be the set of s roots of
h(t), vi +---+ v, = s, where (t?,v,-) means that the root t? has the multiplicity v;. Here we identify T9 with
the tuple ((t(l’,vl), e, (tg,m)). We write gs_1(t) = by + bt + -+ + bs_1#*"1. From the computations in [10, p.
161], we get

s—1
nt) =Y bih(t),
k=0
where
(_1)r—k k-1 s—k—-1 r—s
b = by [J@i+D H Qi-1) and I(t) = Zak 4,
i=0 i=1 j=0

in which the a; ;’s are given by

( S)ﬁ2k+21+1)ﬁ (20 -k-i)-1)>0

1=

By the definition of the multiple root, we have

s—1
W) =Y Br(E), 1sjsA, 0<isvi-1. ©)
k=0
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The determinant of the coefficient matrix corresponding to the system of homogeneous linear equations in
(6) is given by
VDM(F;TY), F = {ho, 1, ..., hs_1}.
In order to prove the proposition it suffices to check that VDM(F; T°) # 0 since, in this case, (6) gives b; = 0

fork=0,...,5 — 1. Therefore by =0 for k =0, ...,s — 1. This forces gs-1 = 0, and hence, p, = 0.
Let TN = (), ..., tY) be a tuple of pairwise distinct numbers in (0, 1) such that t;‘] converges to the j-the

element of T when N — oo forj=1,...,s. From equation (2.12) in [10, p. 163], we get

r—s r—s+1
VDM(TT) o ' o
I — tN) 0,jy81,j,-1 * ** As=1,j, 1 ~(s=1)S o, j1 ot (T ),
1<z<]<s jo=0 j1= js—1=5—1

wheres;, i, i isa certain symmetric polynomial. Note thats;, ;. i, isidentical with the Schur polynomial
when j; = yj+s—i—T1with yg > pg > -+ 2 ps-1 2 0 (see [10, p. 162]). In any case sj, j,,.. ;. (t1, ..., L) is a
symmetric polynomial in ty, ..., f; which is of constant sign or equal to 0 when t; > 0 fori =1,...,s. Lemma
2.5 now yields

VDM(F; T°) . _VDM(TY)
(Hk 1 Hvk li ) H1<z<]</\(t - to)v i N HlSi<J'S5(tN - tf\l)
r=s r—s+1
= Z Z Z 0,y -1 51 jo (=)o oo (TO)-
jo=0 j1= Jom1=s-1

Analysis similar to that in [10, p. 163] in which t is replaced by T° shows that the last sum is positive. It
follows that VDM(F; T°) # 0, and the proof is complete. [

Let p(t) = YN, a;it' be a polynomial of degree N. Let us denote by pe¥" and p°34 the even part and odd
part of p respectively, that is,

Peven(t)z Z a2it2i and pOdd(t)= Z‘ Ll2i+1t2i+1.

0<2i<N 1<2i+1<N

Using Proposition 3.3 and the same method as in the proof of [10, Proposition 2.5], we obtain the following
result. Here we use the Leibniz rule to get the fact that the roots of functions in (0, 1) are unchanged when
they are multiplied by 1/t.

Proposition 3.4. Let M and k be integers such that 1 < k < M. Let pop—x-1 and qx—1 be polynomials of degree
2M -k — 1 and k — 1 respectively. If

P () + g (O = M and  pgt, () + g (B - Y

has M common roots, taking multiplicity into account, in (0,1), then pops—k-1 = Gi—1 = 0.
For a positive integer m and a > 0, we set

2i +
ﬂ i=0,1,...,2m -1},

am — {qba . (Pa _
Theorem 3.5. Let m and I be positive integers and o € [0,2). Let 01,...,0; be | distinct numbers in (0, 11/2) and
Oysi—i=m—0;fori=1,...,1 Let uy,..., Uy be positive integers such that uy + --- + y; = mand poj-; = Wi for
i=1,...,1. Then, for suitably defined function f on the sphere, there exists a unique polynomial p € Po—1(S) such
that

al

5570, 9) aezf( B, 12iSLO0Si<—1, Eedy,

6=0;
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and

891 (9¢)| . aGlf(ecp) SIS 0SiS=1, G D

Proof. The number of interpolation conditions is equal to (2m)? that matches the dimension of P,,-1(S).
Hence it suffices to show that if p € $,,_1(S) satisfying the following conditions

J_ . .

(0, ¢)|9:9,- =0, 1<j<L0<i<p—1, ¢€dy, @)
and

881 ¢)’ 0, I+1<j<2,0<i<uj~1, ¢ € Pyy1m, 8)

then p = 0. From relation (2.1) in [19], we can write

2m-1
p(6, ¢) = ap(cos 6) + Z [(sin 0) ax(cos 6) cos ke + (sin 0)*bi(cos 6) sin kd)],
k=1

where ax(t) and bi(t) are polynomials of degree 2im —1—k. By [10, Lemma 2.1], for ¢ € Dg 1y with € {a, a+1},
we can write

m—1
p(0, ) ap(cos 0) + Z ax(cos 0)(sin O)* + u _(cos O)(sin 0)*m= k) cos(ke)
k=1
+ (b (cos 0)(sin O)F + v _(cos O)(sin [2) ki k) sm(kqb)]
+ (am(cos 0) cos ‘82_71 — by, (cos 0) sin ‘82—71)(sin 0)" cos(mep — %),
where, fork=1,...,m—-1,

uh (£ = Boi(t) cOS(BTT) + boy_k(t) sin(Brr),

o) o (B) = @p_i(t) SIN(BT) = bay_i(t) cos(Bm)

are polynomials of degree k — 1. Taking derivatives of the function 6 — f(0, ¢) to order 0,1,...,u; — 1 at 0;
and using relations (7) and (8), we obtain a trigonometric polynomial of the form

m—1
Co + Z(ck cos(ke) + di sin(k)) + cyn cos(mep — %”)
k=1

that vanishes at 2m points in ®g,,. As in the proof of [10, Lemma 2.2], the uniqueness of the trigonometric
interpolation follows that, for 1 < j<2/,0<i<yu;—Tlandf € {a,a +1},

dd;l ap(cos 6)| =0, )
d ((am(cos 0) cos @ — byy(cos 0) sin ﬁ—)(sm 9)’”)| =0 (10)
do 2 0=0;

and
10 ((sm G)k . (cos 9))’6=6 dcgl ((sm Q)khﬁ (cos 6))| =0, (11)

I
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where ¢f (t) = ax(t) + 15, (H(1 = 2" * and K(t) = by(t) + o} (A — )" fork =1,...,m — 1. Here, in (10)
and (11), ﬁ—awhenl <]<landﬁ—0z+1whenl+1 <j<2l

Applying Lemma 2.7 in (9) we get —ao t)| =0for1<j<2[,0<1i< u;—1. This forces ay = 0 since
dpisa polynomial of degree 2m — 1. Applymg Lemma 2.6 and then Lemma 2.7 in (10) we obtain

an  d . am ) .
dtl(am( ))t COsgjcos7 - %( m(t ))t cosefSHlT =0, 1<j<[0<i<p;-1
and
@+ 4 . (a+ 1
= e Mg 208 5 )], sin T =0,

I+1<j<2l, 0<i<u;—1.Since a,(t), b,(t) are univariate polynomials of degree m — 1, and y1 +--- + 1y =
j Hj poly & H t
Hi+1 + -+ - + po = m, the last two relations along with the uniqueness of Hermite interpolation give

an(t) cos % — by (t) sin % = a,(t) sin % + by (t) cos % =0.

It follows that a,, = b, = 0. Similarly, looking at Lemmas 2.6 and 2.7, we conclude from (11) that, for
1<k<m-1,

d 2\m—k —
L (et + g, (DA - ) )t:mssj_ =0 i .
Lo +os, wa-md) =0 TV IEIERTE -
ar ( k m—k t=cos 0; -
and
L (o) + ugt! (1 - 2y ) o, =0 ’ '
o i i I+1<j<2,0<i<pu;-1 (13)
Foo+oploa-) =0
Since cos 0y141-j = —cos 0 and py41-; = pj for 1 < j <, relation (13) is equivalent to
(o=t —ug, (HA-2F) = 4 ‘
/ 1<j<0<i<syu;j-1 (14)

t=cos 0;

L (b=t = 08,_ (-1 = ")
Combining (12) and (14), we obtain, for 1 < j <[, 0<i<yu;-1,k=1,..., m-1,
S0+ gioa-r)
=CO0Ss J

L(pt, 0+ g - =0,

t=cos 0;

where either po,—r—1 = ar and g1 = Uus s OF Pom—k-1 = by and g1 = 05, Note that pom—r—1 and gx—1
are of degree 2m — k — 1 and k — 1 respectively. It follows from Proposition 3.4 that py;,——1 = k-1 = 0 for
k=1,...,m—1,and hence gy = by =0 for 1 < k < 2m — 1 and k # m. Consequently, p = 0, and the proof is
complete. [

The polynomial p defined in Theorem 3.5 is called a Hermite-type interpolation polynomial of f. Remark

that p depends on {(01, i11), ..., (01, w); a} and f. It will be denoted by H**"[{(61, t11), .. ., (01, 1); a}; f1.
If 91, 92,..., 9, € (0, 11/2) are not assumed to be distinct, then we can write

{‘91/ ‘92/ cecs Sm} = {(91/ ‘Ul), M (Gl/ ‘Ul)},

where u; + --- + p; = m. Hence, we can identify the interpolation polynomial H®*"[{91, 3o, ..., 9m; a}; f]
with H®e"[{ (91, p1), ..., (61, w); al; f1. Otherwise, the interpolation polynomial becomes the Lagrange in-
terpolation polynomial Lever[{8q, 92, ..., Sms a); f1.
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4. Some properties of integral means of Hermite interpolation polynomials

4.1. Integral means of Hermite interpolation of the first kind
Fix a € [0,2). For 6 € (0, i), let us define

Modd({(glr ,ul),.- .,(6[, ,Ul) (9) f]I_IOdd(Q (P

where _
I[—IOdd(G, o) = lHOdd[{(Ql, U1), -, (01, 1); ®aml; f1(sin O sin ¢, sin 6 cos ¢, cos 0).

Evidently, Medd({(g;, U1),---, (01, uDk; £)(0) is a trigonometric polynomial of degree at most 2m in 0.
For a function f defined on S, we set

ﬁt) = f(V1-#2sing?, V1 -t2cos@f,t), te[-1,1],

i+ o)

where ¢f = ]

€ Oum for i = 0,...,2m. The following lemma plays an important role in this
subsection.

Lemma 4.1. Under the assumptions of Theorem 3.2 we have

2m
MO, 1), O ) O) = 5 ) H{(c03 01 1) .., (c0s Oy ) Flcos 0)
i=0

Proof. We write

2m
ﬁOdd(G, ¢) = ap(cos 0) + Z [ak(cos 0)(sin 0)* cos k¢p + br(cos O)(sin 0k sin kqb],
k=1

where a;(t) and by (t) are polynomials of degree 2n — k. Integrating both sides, we get

MY ({61, 1), -, (61, p)}; )(6) = f H®(6, ¢)d¢ = ag(cos 6). (15)

It is a trigonometric polynomial of degree 2m in 6. It follows from (15) and the quadrature formula for
trigonometric polynomials in [20, Vol 2., p. 8] or [19, p. 762] that

2m 2m
. 1 B
tn(cos0) = o [(F0, 006 = oL Y F0,00)
0 i=0

From the interpolation conditions for Hermite interpolation, for 1 < j < 1,0 <k < u; — 1, we have

dk 1 2111 dk ~ a4 —
@QO(COSQ)|9=9,:m;d_9kH 00y, = zm+12dekﬁ ad

Corollary 2.8 now leads to

2m

1
aék)(cos 0;) = 5

2m
1 (k) .
ffk)(COSGj)=(m § _]/Cl) (COSQJ'), 1S]Sl,0SkSH]—1
i=0



P. V. Manh, N. V. Khiem / Filomat 33:15 (2019), 4697-4715 4709

Above relation consists of yj + - -+ + y; = 2m + 1 equations. Since ag € $2,,(R), we conclude that

ao(t) = Hl[{(cos 01, ),...,(cos Oy, w)}; aol(t)
2m
- H[{(COSQl,‘ul),...,(cosQ;,yl)};ZmlﬁZﬂ(t)
i=0

2m
= Y Hll(cos 61, m),.... (cos 6, w)); FI®), teR (16)
i=0

2m+1 4
Combining (15) and (16), we get the desired relation. The proof is complete. [
For 0 < p1 < p2 <, we denote by Z(p1, p2) the following spherical zone:
Z(p1,p2) = {(sinOsin¢,sin B cos p,cos ) : p1 < O < p,0 < P < 2m}.

Theorem 4.2. Let m be a positive integer, a € [0,2) and 0 < p1 < p < 7. Let f be a function defined on Z(p1, p2)
such that f; € C*"([cos pa, cos p1]) for i = 0,...,2m. Then the following two maps are continuous:

(81, .+, Soma1) € [p1, p2 P — MO8y, ..., Sapar}; )

and
(‘91/ ceey \92m+1) € [pll p2]2m+1 — f HOdd[{Sll sy ‘92m+1; ®a,m}; f](x/ ]// Z)dﬂ),
Z(p1,p2)

where w is the surface area measure on S. Here, in the first map, the topology on the space of all trigonometric
polynomials of degree at most 2m is induced by any norm.

Proof. Using Lemma 4.1, we can write

2m

l —_
+1 ; H[{cos 91,,...,cos Sams1}; ﬁ](COS 0).

MOdd({Sll Ry ‘92m+1 }/ f)(e) = 2m

By hypothesis that the function ﬁis of class C¥"([cos P2, cos p1]), we can use Theorem 2.3 to get the continuity
property of the map

(81,...,92m11) € [pl,p2]2m+1 +— H[{cos 91,...,c08 p41}; fil, 0<i<2m,

which proves the first assertion.
Now, let {\9;‘};‘;1 be a sequence in [p1, p2] such that limy_, e Sf =9;fori=1,...,2m + 1. By the above,

lim MoK, ..., 88 1 ) = MOY((9y,..., Somsl; f).

k—oo

Above relation can be understood as the convergence under the sup-norm over [p1, p2]. It follows that

P2 p2
lim MO (9K, ..., 95 L} £)(0)sin 64O = f MY ({8, ..., S2ms1); £)(O) sin BO.
pP1 pP1

Using the change of variable formula

P2 2m

g(x,y,z)dw = 9(0, ¢) sin 6dOdp (17)
[T

Z(p1,p2)



P. V. Manh, N. V. Khiem / Filomat 33:15 (2019), 4697-4715 4710

we obtain

lim HOM[SE, ..., 95,1 Oumb; F1(x, y, 2)dw = f HOY[(91, ..., Sams1; Ol F1(x, , 2)dw,

k—oo

Z(p1,p2) Z(p1,p2)
which proves the continuity property of the second map. [J
For simplicity, we only give a convergence theorem relating to the Lagrange interpolation on the sphere.

Theorem 4.3. Let M and N be positive integers with M > N > 1. Let 0 < py < pp <mand f € CM(Z(pl,pz)).

Let Ay = {97,..., 95 .} be sets of distinct points in [p1, p2] such that A({cos 97, ..., cos 97}, [cos pa,cos p1])
grows at most lzke a polynomial of degree N in m. Then
2n
o 1
sup M, 0) - 5- [ 6,006 =of i)
0€[p1,p2]

0

and

1
‘ f LA, @ m); f1(x, v, 2)dew — f flx, y,z)da)‘ = o<mM_N ) pr<ps<pi<pn
Z(p3,pa) Z(p3,pa)

Proof. The idea of the proof is inspired by [16, Theorem 4.1]. Let us define two types of modulus of
continuity

1 M ~ M ~ 1
() = 5up |55 0.0, = 55O, |- 0102 € 0270 101-ul < 7, pr <0<

and

M M
17(%) = sup{|(;9W13(t‘,(1))|t:t1 - ;WF(t' ¢))|t:t2‘ 1 ty,tp € [cospy,cospi]l, |t —t| < ﬁ, ¢ €0, 2n]},

where F(t,¢) = f(V1 - t?sin¢, V1 — 2 cos ¢, t) for cos p, <t < cos p1, 0 < ¢ < 2m. Note that C and 1 can be
written in term of classical modulus of continuity

M 1

! d
C(a)=ees[;11}; of (pr(B ); ) n(m)—(PEsggn w(8tMF( (p);%).

oM ~ 1
Since f € CM(Z(p1, p2)), the function W f(6,¢) is continuous on [0, 0;] X [0,27]. It follows that C(E)

1 —~
tends to 0 when m — co. Similarly, lim,,,.. 7(—) = 0. As f; € CM([cos p2, cos p1]) the Jackson theorem in (3)
shows that there exists a constant Cy depending only on p1, p> and M such that

1

n(a) 0<i<2m,

dist;( ﬁ, Pon(R)) <

<2 i ) <

2MmM
1

where w(g; -) is the ordinary modulus of continuity, I = [cos p2,cos p1]. Combining the above estimates

with the Lebesgue inequality (2) and the hypothesis on the Lebesgue constant, we obtain

= C 1
sup |ﬁ(t) —L[{cos 87, ..., cos 97, ..} fil (t)| 1N17(a), 0<i<2m,
tel
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where C; is a constant independent of m. Lemma 4.1 now yields

Zﬁ(cosm M (Ag O < (L) (18)

For fixed 6 € [p1, p2], from the first Jackson theorem [11, Theorem 3, p. 57], we can find a constant
Cy = C2(M) depending only on M and a trigonometric polynomial T5,, of degree at most 2m (depending on
0) such that

— Cy 1
218, 70.0)~ Tt = ol G0 35) = i)

It follows that

. 1
2m+1Zf( S +1Z ZM((P’)|_2M;1MC("1)'

and

2n

2n
|%fﬂ9,¢)d¢_ %szm(gb)dgﬂ < zl\fﬁc(%)
9 0

On the other hand, using the quadrature formula for T,,, we obtain

27 om
1 1 .
o | Tt = 3 D T
0 =

From what has already been proved in the last three relations, we deduce that

2m 2n
1 — 1 (= G 1
3 LS00 3 [ Fo.ous] < 55mt(5), <0< (19)
= 0

Combining (18) and (19), we obtain the following uniform estimate on [p1, p2]

A

sup. [M™4(4,,; )(0) - o= f fo,oag| = —cn(L)e S )

6¢elp1,2] m

- O(ml\i—N)'

Using (17) and the first assertion, we easily prove the estimate for the surface integral over Z(p1, p2). The
details are left to the reader. [

Corollary 4.4. Under the hypotheses of Theorem 4.3 except for the Lebesgue constant, if the Lebesgue constant grows

ogm

like log m, then the same estimates in Theorem 4.3 hold in which o(—= ) is replaced by o(=:

Proof. We reuse the notations and estimates presented in the proof of Theorem 4.3. The Lebesgue inequality
and the hypothesis that the Lebesgue constant grows like log m enable us to find C3 > 0 such that

S lOgmn(l), 0<i<2m.

sup |ﬁ\(t) —L[{cos 87, ..., cos STm+1};ﬁ(t)| < p

M
tel m
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Lemma 4.1 now leads to

2m
1 - odds A . Cslogm /1
P [y D Fleos 6) =M (O] < = () (20)
1.2 i=0
Combining (19) and (20) we finally obtain
2n
1 ~ Cslogm /1 C, 1
odd .
s N0 - o [ Fo.oug| < 0BT 4 S Snd()
’ 0
logm
= 0( M )
The proof is complete. [
4.2. Integral means of Hermite interpolation of the second kind
For 6 € (0, ), let us set
27
1 —
MO, p), -, (O, pk (O) = 7 f HY(0, p)dep, (21)
0

where _
H*(6, ¢) = H*"[{(61, 1), - - -, (64, u); a}; f1(sin O sin ¢, sin 6 cos ¢, cos O).

Obviously, M®"({(01, 1), ..., (01, w)}; £)(0) is a trigonometric polynomial of degree at most 2m — 1 in 0.
Modifying the proof of Lemma 4.1 slightly, we obtain the following result.

Lemma 4.5. Under the assumptions of Theorem 3.5, we have

2m-1

MEEAO, ), -, O, 1) fO) = 5 Z H[{(cos 01, i), .., (cos O, )} f;](cos 0),
i=0

where
f(t) = f(V1=#£2sin¢f, V1 - t2cos Pf, 1) if ¢F ey, 0<t<1
i f( V1 - 2sin gb?“rl/ V1 =2 cos (;[)?Jrl,t) lf (P;Y‘Fl € Dpsrm —1<t<0.

Moreover, if f, is an even function for i = 0,...,2m — 1, then

2m-1
1 —_—
Meveﬂ({(gl’ ,ul)r Ry (Glr .ul)/ f})(@) = % Z H[{(C052 61/ lul)/ ey (COSZ 61/ [Jl)}r fj](COSz 6)/
i=0
where]_‘:(t) = fi(\/f)foro <t<landi=0,...,2m—-1.
Proof. As in the proof of Theorem 3.5, we write

2m—1
H(0, ) = ag(cos 0) + Y, [ax(cos O)(sin O)" cos kep + bi(cos 0)(sin 0) sin ko],
k=1

where a,(t) and bi(t) are polynomials of degree 21 — 1 — k. It follows that

2n
MY ({01, 1), - -, (O, 1)} F)(O) = % f]ﬁeven(@, $)dp = ao(cos 0). (22)
0
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It is a trigonometric polynomial of degree at 2m — 1 in 0. It follows from (22) and the quadrature formula
for trigonometric polynomials in [20, Vol. 2, p. 8] that

2m—1

ao(cos 0) = Z HY(6,¢), Belaa+1).

From the interpolation conditions for Hever(-) we have, for 1 < J<LO<k<uj-1,

2m—1 2m—1
k 1’"dk _ 1N 4

d even LY — .
dekao(c056)| L dek]H 0,02 o ZO‘ =

and, for[+1<j<2,0<k<u;-1,

k 2m-1 2m—-1

d even a+l a+1
d@kaO(COSG)|9 0; T 2m Z d@k (©.9; ) 0=0; " 2m Z dekﬂ(e &L )

Using Corollary 2.8, we conclude from the definition of ?i that

2m— 2m—1

1
(k) N —
ay (cos 0) = o Ezo (cosG (Zm L

—\ ()
f) (cos0), 1<j<2, 0<k<p-1.

The number of equations in the last relation is p1q + - - - + pz; = 2m. Since a9 € Pop-1(R), it follows that

ap(t) = H[{(cost91,y1),.-.,(6059zz,yzz)};ao](t)

2m-1

= H[{(cos@l,y1) , (cos Oy, ua)}; 2 Zf]()

2m-1
1

= 5 Z H[{(cos 01, t1), ..., (cos Oz, yzt)};fi](t), teR. (23)
i=0

Combining (22) and (23), we get the first assertion.
By hypothesis, we see that cos 0; = — cos 0y41-; and y; = o1 fori =1,...,1. Since any function f,(t)
is even, we can use [15, Proposition 1] to get

H[{(COS 91/ (L'll)l ceey (COS 621/ HZZ)}I 7l](t) = H[{(C082 61/ lul)/ ey (COSZ 61/ [Lll)}, ?j](tz)
The second assertion now follows directly from the first one, and the proof is complete. [

Theorem 4.6. Let m be positive integer and 0 < py < pp < 7/2. Let f be a function defined on S such that
fi € C™1([cos pa, cos p1]) and f; is even in [—cos p1,—cos po] U [cos pp,cos p1] for i = 0,...,2m. Then the
following two maps are continuous:

(1., 9m) € [pr, p2l™ — M ({91, ..., Sul; f)

and
O1r-..,S) € [p1, pal" = f HE[(9y, .., Smiack; F1(x, v, 2o,
Z(p1,p2)

where w is the surface area measure on S. Here, in the first map, the topology on the space of all trigonometric
polynomials of degree at most 2m — 1 is induced by any norm.
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Proof. From Lemma 4.5 it follows that

2m—-1

ME{Sq, ..., Sl F)(O) = ﬁ Z H[{cos? 91, ..., cos? \9,41};]_(:](C052 0).
i=0

Since ]_‘1- is of class C"~1([cos p2, cos p1]) and j_f;(t) = f,-( V1), Theorem 2.3 leads to the continuity of the map

(O1,...,9m) € [p1, p2I" — H[{cos? 91, ..., cos> Sm};fz], 0<i<2m-1,

which along with the above relation proves the first assertion.
Now, let {S’i‘};‘;1 be a sequence in [p1, p2] such that limy_,o \9;‘ = 9;fori=1,...,m. The first assertion
gives
]}1_)11;10 Meven({sl{/ cecy ‘951}/ f) = Meven({sl/ crcy Sm}; f)
Hence
02 P2
%Lrg Meven(( 9k, ..., 95 £)(0) sin 040 = f MY ({91, ..., 9u); £)(O) sin OdO.
p1 P1
Using the change of variable formula (17), we obtain

k—o0

lim Hever[(8%, ..., 9% al; fl(x, y, z)dw = f HE (84, ..., 9 a); fl(x, v, 2)dw,
Z(p1,p2) Z(p1,p2)

which finishes the proof. 0O

Remark 4.7. The conclusion in Theorem 4.6 still hold true when we replace the hypothesis 0 < p1 < p < /2 by
the hypothesis /2 < p1 < p2 < .

We have a convergence theorem which proof is similar to that given in Theorem 4.3. We state the result
without proof.

Theorem 4.8. Let M and N be positive integers with M > N > 1 and let 0 < p1 < po < m/2. Let f be a function
defined on S such that f € CM(Z(pl, p2)) and f; is even in [~ cos py, — cos p2] U[cos pp, cos py] fori =0, ...,2m—1.
Let A, = {97,...,9m) be sets of distinct points in [p1, p2] such that A({cos® 97,...,cos? 9in}, [cos? pa, cos? p1])
grows at most like a polynomial of degree N in m. Then

sup
0€[p1,p2]

2n
Meven(Am;f)(Q) — % fﬂ@, (;l))d(]5| = O(mj\i—N)
0

and

1
‘ f L A, al; f1(x, y, 2)dew — f fey, Z)dw’ = O(mM_N)/ P1 = P3 < P4 = p2.
Z(p3,pa) Z(ps,p4)
Open problems. We only state some questions for the odd case.

1. Is there an explicit formula or an error formula for Hedd?
2. Let f € C*™(Z(p1, p2)) with 0 < p; < pp < 1. Is the map

(81, -+, B2ms1) € [p1, p2l*™ 1 +— HOY[{3, ..., S2ms1, Ou); F1 € Poa(S)
continuous?
3. Does exist an array {A,} C [p1, p2] such that, for any sufficiently smooth function f, the sequence
{ILOdd[{Am HC Y f]} converges to f uniformly on Z(p1, p2)?
4. Can we replace the estimates in Theorem 4.3 by L7 estimates?
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