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Abstract. In this paper we introduce the notion of a bilateral contraction that combine the ideas of Ćirić
type contraction and Caristi type contraction with a help of simulation functions. We investigate the
existence of a fixed point of such contractions in the framework of complete metric spaces. We present an
example to clarify the statement of the given result.

1. Introduction and Preliminaries

There exists a consensus on the initiation of the metric fixed point theory that Banach’s fixed point
theorem [12] is the pioneer and the most significant result in this research area. From that point on, a
huge number of publications appeared to extend and generalize the renowned fixed point result of Banach.
On the other hand, most of the mentioned results just have used the same techniques that appeared in
Banach’s proof. There were also some attempts that aimed to shorten the proof of Banach’s fixed point
results. Among them, Caristi [16, 17] studied the curtailment of the Banach’s proof and he has discovered
another interesting result during this process: If a self-mapping T on a complete metric space (X, d) satisfies
the inequality d(x,Tx) ≤ ϑ(x) − ϑ(Tx), then T possesses a fixed point, where, ϑ : X → R is a lower semi-
continuous function and it is bounded below. Obviously, the statements are quite different. Indeed, the
structures of the proofs are also distinct from each other.

In this short note, we propose a new fixed point theorem based on the new notion, bilateral contraction,
that is inspired by Ćirić type contraction (an extension of a Banach’s contraction) and Caristi type contraction,
by using a simulation function, in the context of complete metric spaces.

In what follows, we shortly examine the auxiliary function: Simulation function. This notion was
introduced by Khojasteh et al. [21] and it is announced in 2015:

Definition 1.1. (See [21]) A simulation function is a mapping z : [0,∞) × [0,∞) → R satisfying the following
conditions:

(z1) z(0, 0) = 0;

(z2) z(t, s) < s − t for all t, s > 0;
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(z3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

z(tn, sn) < 0. (1)

In the same year, 2015, this notion is refined by Argoubi et al. [7] by removing the first axiom (z1). Indeed, it is derived
form (z2). From now on, we consider the simulation functions in the sense of Argoubi et al. [7], that is, z satisfies only
(z2) and (z3). In the sequel, the the letterZ will denote the family of all simulation functions z : [0,∞) × [0,∞)→ R
that satisfy (z2) and (z3). Notice also that due to the axiom (z2) yields that

z(t, t) < 0 for all t > 0. (2)

Example 1.2. (See e.g.[5, 21, 22]) Suppose that φk : [0,∞)→ [0,∞), k = 1, 2, 3, are continuous functions so that
φi(t) = 0 if, and only if, t = 0. We introduce the function zi : [0,∞) × [0,∞)→ R, i = 1, 2, 3, 4, 5, 6 as

(i) z1(t, s) = φ1(s) − φ2(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for all t > 0.

(ii) z2(t, s) = s−
f (t, s)
1(t, s)

t for all t, s ∈ [0,∞),where f , 1 : [0,∞)2
→ (0,∞) are two continuous functions with respect

to each variable such that f (t, s) > 1(t, s) for all t, s > 0.

(iii) z3(t, s) = s − φ3(s) − t for all t, s ∈ [0,∞).

(iv) If ϑ : [0,∞)→ [0, 1) is a function such that lim supt→r+ ϑ(t) < 1 for all r > 0, and we define

z4(t, s) = sϑ(s) − t for all s, t ∈ [0,∞).

(v) If η : [0,∞)→ [0,∞) is an upper semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0, and we
define

z5(t, s) = η(s) − t for all s, t ∈ [0,∞).

(vi) If φ : [0,∞)→ [0,∞) is a function such that
∫ ε

0 φ(u)du exists and
∫ ε

0 φ(u)du > ε, for each ε > 0, and we define

z6(t, s) = s −
∫ t

0
φ(u)du for all s, t ∈ [0,∞).

It is clear that each function zi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

We refer to [3–5, 10, 11, 18–22] for more details and examples on simulation function.
Assume that T is a self-mapping on a metric space (X, d) and z ∈ Z. A function T is called aZ-contraction

with respect to z [21], if

z(d(Tx,Ty), d(x, y)) ≥ 0 for all x, y ∈ X. (3)

Due to (z2), we have the following inequality

d(Tx,Ty) , d(x, y) for all distinct x, y ∈ X. (4)

Accordingly, we deduce that T cannot be an isometry whenever T is aZ-contraction.

Theorem 1.3. EveryZ-contraction on a complete metric space possesses a unique fixed point.
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2. Main Result

We start with the definition of a bilateral contraction:

Definition 2.1. Let T be a self-mapping on a metric space (X, d). If there exists z ∈ Z and ϕ : X→ [0,∞) such that

d(x,Tx) > 0 implies z(d(Tx,Ty), (ϕ(x) − ϕ(Tx))CT(x, y)) ≥ 0, (5)

in which

CT(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(y,Tx) + d(x,Ty)

2

}
for all x, y ∈ X, then T is called a bilateral contraction of Ćirić-Caristi.

This is the main result of this note.

Theorem 2.2. Let T be a bilateral contraction of Ćirić-Caristi in the setting of a complete metric space (X, d). Then,
T possesses at least one fixed point.

Proof. The proofs consists of several steps.

Step 1. Construction of an iterative sequence: For this purpose, take any initial point x ∈ X and rename as
x0 := x. Starting with this point, we construct an iterative sequence {xn} by xn+1 := Txn = Tnx0 for
each n ∈ N. Notice that in case of having an inequality xk = xk+1 = Txk, for some k ∈ N, the proof is
completed. Hereby, throughout the proof, we assume that xn , xn+1, for any n ∈N, that is,

d(xn, xn+1) = d(xn,Txn) > 0. (6)

Step 2. Dominating the ratio of adjacent distance by a constant κ: There exist κ ∈ [0, 1) such that

d(xn, xn+1) ≤ κd(xn, xn−1).

For simplicity, we assume that δn = d(xn, xn−1). On account of (5), we get

0 ≤ z(d(Tx,Ty), (ϕ(x) − ϕ(Tx))CT(x, y))
< (ϕ(x) − ϕ(Tx))CT(x, y) − d(Tx,Ty),

which yields

δn+1 = d(xn, xn+1) = d(Txn−1,Txn)

< (ϕ(xn−1) − ϕ(Txn−1))CT(xn−1, xn)

= (ϕ(xn−1) − ϕ(xn)) max{δn, δn+1,
d(xn−1,xn+1)

2 }

≤ (ϕ(xn−1) − ϕ(xn)) max{δn, δn+1}.

(7)

Now, we examine these cases explicitly.

Case 1: Let max{δn, δn+1} = δn. Regarding (7), we obtain

δn+1 = d(xn, xn+1) = d(Txn−1,Txn)
≤ (ϕ(xn−1) − ϕ(xn))d(xn, xn−1) = (ϕ(xn−1) − ϕ(xn))δn.

Consequently, we find

0 <
δn+1

δn
≤ ϕ(xn−1) − ϕ(xn) for each n ∈N.
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Thus, from the inequality above, we deduce that the sequence {ϕ(xn)} is necessarily positive and
non-increasing. Accordingly, it converges to some ` ≥ 0. On the other hand, for each n ∈ N, we
have

n∑
k=1

δk+1

δk
≤

n∑
k=1

ϕ(xk−1) − ϕ(xk)

= (ϕ(x0) − ϕ(x1)) + (ϕ(x1) − ϕ(x2)) + ... + (ϕ(xn−1) − ϕ(xn))
= ϕ(x0) − ϕ(xn)→ ϕ(x0) − ` < ∞, as n→∞.

It implies that

∞∑
n=1

δn+1

δn
< ∞.

Accordingly, we have

lim
n→∞

δn+1

δn
= 0. (8)

On account of (8), for κ ∈ (0, 1), there exists n0 ∈N such that

δn+1

δn
≤ κ, (9)

for all n ≥ n0, in other words,

d(xn+1, xn) ≤ κd(xn, xn−1), (10)

for all n ≥ n0.

Case 2: Let max{δn, δn+1} = δn+1. Taking the inequality (7) into account, we derive that

d(xn+1, xn) ≤ (ϕ(xn−1) − ϕ(xn))d(xn+1, xn).

Since {ϕ(xn)} is non-increasing and positive sequence, and so converges to some ` ≥ 0 (see the
similar argument in Case 1) thus we have 1 ≤ (ϕ(xn−1) − ϕ(xn)) → 0, as n → ∞ and this is a
contradiction. Consequently, max{δn, δn+1} = δn, and

d(xn, xn+1) ≤ κd(xn, xn−1) = κnd(x1, x0). (11)

Step 3: Showing the constructive recursive sequence {xn} converges to x∗ ∈ X. From the previous step,
we indicate that the sequence {d(xn+1, xn)} is non-increasing, bounded below with the relation (11).
Eventually, the {d(xn+1, xn)} is convergent to some L ≥ 0. Baring κ < 1 in mind, it can be easily affirmed
that L = 0. Furthermore, for each m,n ∈Nwith m > n, we have

d(xn, xm) ≤
m−1∑
k=n

d(xi, xi+1) ≤
κn

1 − κ
d(x0, x1).

It means that limn→∞ sup{d(xn, xm) : m > n} = 0. Therefore, {xn} is a Cauchy sequence and since X is
complete, there exists x∗ ∈ X such that {xn} converges to x∗.

Step 4: Showing that the limit x∗ of the constructive recursive sequence {xn} is the desired fixed point of T.

Employing (5), if d(x∗,Tx∗) > 0, we find that

0 ≤ z(d(Tx∗,Txn), (ϕ(x∗) − ϕ(Tx∗))CT(x∗, xn))
= (ϕ(x∗) − ϕ(Tx∗))CT(x∗, xn) − d(Tx∗,Txn).
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On account the triangle inequality together with the inequality above, we derive that

d(x∗,Tx∗) ≤ d(x∗, xn+1) + d(xn+1,Tx∗)
= d(x∗, xn+1) + d(Txn,Tx∗)

= d(x∗, xn+1) + (ϕ(xn) − ϕ(Txn))CT(xn, x∗)

= d(x∗, xn+1) + (ϕ(xn) − ϕ(xn+1)) max
{

d(xn, x∗), d(xn,Txn), d(x∗,Tx∗),
d(xn,Tx∗)+d(Txn,x∗)

2

}

= d(x∗, xn+1) + (ϕ(xn) − ϕ(xn+1)) max
{

d(xn, x∗), d(xn,Txn), d(x∗,Tx∗),
d(xn,Tx∗)+d(xn+1,x∗)

2

}
(12)

Since the sequences {ϕ(xn)} tends to r ≥ 0, for sufficiently large n ∈N, we have

d(x∗,Tx∗) ≤ lim
n→∞

(d(x∗, xn+1) + (ϕ(xn) − ϕ(xn+1)))d(x∗,Tx∗) = 0.

Consequently, we obtain d(x∗,Tx∗) = 0, that is, Tx∗ = x∗.

From Theorem 2.2, we get the corresponding result for complete metric spaces. The following example
shows that the Theorem 2.2 is not a consequence of Banach’s contraction principle.

Example 2.3. Let X = {α0, α1, α2} endowed with the following metric:

d(α0, α1) = 1, d(α2, α0) = 1, d(α1, α2) = 3
2

and
d(a, a) = 0, ∀ a ∈ X d(a, b) = d(b, a) ∀ a, b ∈ X.

Let T(α0) = α0,T(α1) = α2,T(α2) = α0. Define ϕ : X → [0,∞) as ϕ(α2) = 2, ϕ(α0) = 0, ϕ(α1) = 4. Thus for all
x ∈ X such that d(x,Tx) > 0, (in this example, x , α0), we have

0 ≤ z(d(Tα1,Tα2), (ϕ(α1) − ϕ(T(α1)))CT(α2, α1)),
0 ≤ z(d(Tα2,Tα1), (ϕ(α2) − ϕ(T(α2)))CT(α2, α1)),
0 ≤ z(d(Tα1,Tα0), (ϕ(α1) − ϕ(T(α1)))CT(α1, α0)),
0 ≤ z(d(Tα2,Tα0), (ϕ(α2) − ϕ(T(α2)))CT(α2, α0)).

Thus the mapping T satisfies our condition and also has a fixed point. Note that d(Tα1,Tα0) = d(α1, α0). Thus, it
does not satisfy conditions of Banach contraction principle.

3. Immediate Consequence

In this section, we shall list some immediate consequence of our main result. We shall skip the proof of
these corollaries since they can be easily observed by verbatim of the proof of Theorem 2.2.

Corollary 3.1. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z
(
d(Tx,Ty), (ϕ(x) − ϕ(Tx)) max

{
d(x, y), d(x,Tx), d(y,Ty)

})
≥ 0,

for all x, y ∈ X, then, T possesses at least a fixed point.
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Corollary 3.2. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z
(
d(Tx,Ty), (ϕ(x) − ϕ(Tx)) max

{
d(x,Tx), d(y,Ty)

})
≥ 0, (13)

for all x, y ∈ X, then, T possesses at least a fixed point.

Corollary 3.3. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z

(
d(Tx,Ty), (ϕ(x) − ϕ(Tx)) max

{
d(x, y),

d(y,Tx) + d(x,Ty)
2

})
≥ 0, (14)

for all x, y ∈ X, then, T possesses at least a fixed point.

Corollary 3.4. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z
(
d(Tx,Ty), (ϕ(x) − ϕ(Tx))d(x, y)

)
≥ 0, (15)

for all x, y ∈ X, then, T possesses at least a fixed point.

Corollary 3.5. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z

(
d(Tx,Ty), (ϕ(x) − ϕ(Tx))

d(x, y) + d(x,Tx) + d(y,Ty)
3

)
≥ 0, (16)

for all x, y ∈ X, then, T possesses at least a fixed point.

Corollary 3.6. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z

(
d(Tx,Ty), (ϕ(x) − ϕ(Tx))

d(y,Ty) + d(x,Tx)
2

)
≥ 0, (17)

for all x, y ∈ X, then, T possesses at least a fixed point.

Corollary 3.7. Let T be self mapping on a complete metric space (X, d). If there exists z ∈ Z and ϕ : X → [0,∞)
such that d(x,Tx) > 0 implies

z

(
d(Tx,Ty), (ϕ(x) − ϕ(Tx))

d(x,Tx) + d(x,Ty) + d(y,Tx)
3

)
≥ 0, (18)

for all x, y ∈ X, then, T possesses at least a fixed point.

Remark 3.8. It is clear that the list of the corollaries can be extended. We aim to list only the immediate consequences.
As a continuation of this work, it will be interesting to investigate the characterizations of the given results of this
paper in the setting of b-metric space see e.g. [1]–[15].
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