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Abstract. This article aims to present (q, h)-analogue of exponential function which unifies, extends h-
and q-exponential functions in a convenient and efficient form. For this purpose, we introduce generalized
quantum binomial which serves as an analogue of an ordinary polynomial. We state (q, h)-analogue of
Taylor series and introduce generalized quantum exponential function which is determined by Taylor
series in generalized quantum binomial. Furthermore, we prove existence and uniqueness theorem for
a first order, linear, homogeneous IVP whose solution produces an infinite product form for generalized
quantum exponential function. We conclude that both representations of generalized quantum exponential
function are equivalent. We illustrate our results by ordinary and partial difference equations. Finally,
we present a generic dynamic wave equation which admits generalized trigonometric, hyperbolic type of
solutions and produces various kinds of partial differential/difference equations.

1. Introduction

The h-analysis and the concepts of difference equations date back to seventeenth century, to the cele-
brated fundamentals of calculus of Isaac Newton [3]. In the nineteenth century, Boole [10] published the
calculus of finite differences. On the other hand, the origins of the q-analysis started in the eighteenth
century by Euler [13] and developed by Gauss, Ramanujan and Jacobi [23]. After Jacsons’s pioneering arti-
cles [17–22], that systematically presented q-calculus, the number of studies in q- and h-analysis have been
grown rapidly in many areas of mathematics such as in number theory-combinatorics [4], in orthogonal
polynomials [5, 6], in ordinary and partial differential equations [1, 28], in mathematical physics [2, 26, 27],
in approximation theory [12] and also in physical disciplines such as quantum mechanics and relativity
[30]. For the very detailed information about q-calculus, we refer to [24].

In the literature, the study of discrete dynamical equations is widely investigated in two main separate
discrete sets: h-lattice

hZ := {hx : x ∈ Z, h > 0}, (1)

and q-numbers

Kq := {qn : n ∈ Z, q ∈ R, q , 1} ∪ {0}. (2)
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The parameters h and q were not chosen accidentally. The parameter q is the first letter of ”quantum” as well
as it denotes the number of elements in finite fields while the parameter h is used to remind the Planck’s
constant in quantum mechanics. The set (1) and (2) recover R as h → 0 and q → 1, respectively. This fact
can be also governed by limiting h-derivative and q-derivative [17]

Dh f (x) :=
f (x + h) − f (x)

h
, Dq f (x) :=

f (qx) − f (x)
(q − 1)x

(3)

respectively as

lim
h→0

Dh f (x) =
d f
dx

= lim
q→1

Dq f (x).

For almost a century, the scientists have been presenting the discretization of continous equations in two
separate approaches: h-discretization and q-discretization. Referring to different behaviours of such quan-
tum derivatives, each discretization has dissimilar features such as dissimilarity in elementary functions
and their properties (polynomials, exponential functions etc.) Therefore, it is not straightforward to inten-
sify on a unified discrete set, instead of studying in hZ andKq, separately. The main objective of the concept
of time scales, introduced by Hilger [16], is unification and extension of not only such discrete settings but
also any type of continuous and discrete sets. In [11], a special discrete time scale T(q,h) is introduced which
unifies and extends h- and q-analysis in order to present (q, h)-fractional calculus. Some contributions on
the so-called (q, h)-analysis have being created such as representation of Newton’s binomial formula with
(q, h)-binomial coefficients [7], (q, h)-analogue of Laplace transform [25] and (q, h)-analogue of quantum
splines [14].

The definition of exponential function on time scales is implicit and inapplicable. The fundamental pur-
pose of the current article is to introduce (q, h)-analogue of exponential function in a precise, concrete and
efficient form, which unifies and extends h-, q-exponential functions. For this purpose, we first present
(q, h)-analogue of Taylor’s formula, which leads us to discover the form of (q, h)-analogue of polynomials.
We introduce the generalized quantum binomial (x − x0)n

q,h whose role in T(q,h) is as significant as the role
of (x − x0)n in ordinary calculus, for any point x0 ∈ R. We state and prove (q, h)-analogue of Taylor series
via generalized quantum binomials from which we introduce generalized quantum exponential function.
Another way to construct the generalized quantum exponential function is to present it as a solution of
a first order, linear, homogeneous (q, h)-initial value problem. We prove existence and uniqueness of its
solution, where the solution appears to be in an infinite product form. In the light of uniqueness, both
representations of generalized quantum exponential functions (infinite series and infinite product) are con-
cluded to be equivalent. As a consequence of generalized quantum exponential function, we introduce the
generalized quantum trigonometric and hyperbolic functions.

This paper is organized as follows. In Section 2, we present prelimanary properties of delta and nabla
(q, h)-derivatives. Section 3 is devoted to present generalized quantum Taylor’s formula and generalized
quantum binomial. As an application, Cauchy-Euler type of (q, h)-difference equation whose solution is
in the form of the generalized quantum binomial is presented. Furthermore, we introduce (q, h)-analogue
of partial derivatives and present a (q, h)-analogue of a partial difference equation admitting a traveling
wave-like solution. In Section 4, we introduce the generalized quantum exponential function and as
direct consequences generalized quantum trigonometric and hyperbolic functions. As an application, we
present a dynamic wave equation on T(q,h) ×T(q̄,h̄). This generic equation produces various kinds of partial
differential/difference equations, which can be regarded as a generalized wave equation.

2. Basic notions

A time scale T is an arbitrary nonempty closed subset of real numbers. For any time scale T, the forward
jump operator σ and the backward jump operator ρ are defined by

σ(x) := inf{s ∈ T : s > x}, ρ(x) := sup{s ∈ T : s < x}. (4)
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In [11], a two-parameter time scale T(q,h) is introduced as follows

T(q,h) := {qnx + [n]h : x ∈ R, n ∈ Z, h, q ∈ R+, q , 1} ∪
{

h
1 − q

}
, (5)

where [n] :=
qn
− 1

q − 1
. The forward and backward jump operators act on every x ∈ T(q,h) as

σn(x) = qnx + [n]h, ρn(x) = q−n(x − [n]h), n ∈N.

Clearly, T(q,h) is a set of regular discrete points [15], namely

(σ ◦ ρ)(x) = (ρ ◦ σ)(x) = x, x ∈ T(q,h). (6)

The classicial derivative can be approximated in various derivatives such as h-derivative, q-derivative [17],
symmetric h-derivative, symmetric q-derivative [24] or conformable derivative [8]. In addition, it is possible
to introduce more general quantum derivatives which comprise and extend h-derivative and q-derivative.

Definition 2.1. Let f : T(q,h) → R be any function. The delta (q, h)-derivative of f , denoted by D(q,h)( f ), is defined
by

D(q,h) f (x) :=
f (σ(x)) − f (x)
σ(x) − x

=
f (qx + h) − f (x)

(q − 1)x + h
. (7)

while the nabla (q, h)-derivative of f , denoted by D̃(q,h), is given as

D̃(q,h) f (x) :=
f (x) − f (ρ(x))

x − ρ(x)
=

f (x) − f ( x−h
q )

x − ( x−h
q )

. (8)

Note that, delta (q, h)-derivative D(q,h), recovers h-derivative, q-derivative and standard derivative in the
appropriate limits of q and h. Similarly, this fact holds for nabla (q, h)-derivative. In addition, we can define
symmetric (q, h)-derivative by

D̄(q,h) f (x) :=
f (σ(x)) − f (ρ(x))
σ(x) − ρ(x)

=
f (qx + h) − f ( x−h

q )

qx + h − ( x−h
q )

. (9)

In this case, (9) recovers the symmetric h-derivative and the symmetric q-derivative respectively

lim
q→1

D̄(q,h) f (x) =
f (x + h) − f (x − h)

2h
, lim

h→0
D̄(q,h) f (x) =

f (qx) − f (q−1x)
(q − q−1)x

.

The generalized symmetric quantum derivative (9) will play an important role in algebra such as in quantum
groups.

Proposition 2.2. Let f (x) be a function.

(i) D(q,h) f (x) = 0 if and only if f (x) is constant.

(ii) D(q,h) f (x) = D(q,h)1(x) for all x ∈ R if and only if f (x) = 1(x) + c with some constant c.

(iii) D(q,h) f (x) = c1 if and only if f (x) = c1x + c2 where c1, c2 are constants.
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Proof. It is sufficient to prove if parts of the statements, since only if parts follow directly from the definition
of delta (q, h)-derivative. Consider

D(q,h) f (x) =
f (qx + h) − f (x)

(q − 1)x + h
= 0,

which implies that f (qx + h) = f (x) for all x ∈ R i.e., f is a constant function. Using (i) for h(x) := f (x)− 1(x),
it follows that h is constant. For (iii), let D(q,h) f (x) = c1, then we have

(E − 1) f = c1[(q − 1)x + h],

where E( f (x)) := f (σ(x)) = f (qx + h). Thus

f (x) = (E − 1)−1c1[(q − 1)x + h] = −c1

∞∑
i=0

Ei[(q − 1)x + h]

= −c1

[(q − 1)x + h]
∞∑

i=0

qi + h
∞∑

i=0

[i]

 = c1x + h

 c1

q − 1
−

∞∑
i=0

[i]

 = c1x + c2,

provided that q < 1.

Similarly Proposition (2.2) holds for nabla (q, h)-derivative.

Proposition 2.3. Let f , 1 be arbitrary functions. Then product and quotient rules of D(q,h) and D̃(q,h) are as follows:

D(q,h)[ f (x)1(x)] = f (x)D(q,h)1(x) + 1(qx + h)D(q,h) f (x)
= 1(x)D(q,h) f (x) + f (qx + h)D(q,h)1(x),

D̃(q,h)[ f (x)1(x)] = f (x)D̃(q,h)1(x) + 1(
x − h

q
)D̃(q,h) f (x)

= 1(x)D̃(q,h) f (x) + f (
x − h

q
)D̃(q,h)1(x),

D(q,h)

[
f (x)
1(x)

]
=
1(x)D(q,h) f (x) − f (x)D(q,h)1(x)

1(x)1(qx + h)

=
1(qx + h)D(q,h) f (x) − f (qx + h)D(q,h)1(x)

1(x)1(qx + h)
,

D̃(q,h)

[
f (x)
1(x)

]
=
1(x)D̃(q,h) f (x) − f (x)D̃(q,h)1(x)

1(x)1( x−h
q )

=
1( x−h

q )D̃(q,h) f (x) − f ( x−h
q )D̃(q,h)1(x)

1(x)1( x−h
q )

.

The proofs follow immediately from the definitions of delta and nabla (q, h)-derivatives.

3. Generalization of quantum Taylor’s formula and quantum binomial

We begin this section by presenting a motivation example which inspire us to introduce (q, h)-analogues of
Taylor’s formula and polynomials.
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Example 3.1. Let us consider the delta (q, h)-derivative of the monomial xn, n ∈ Z+. By the use of the standard
binomial expansion, we have

D(q,h)(xn) =
(qx + h)n

− xn

(q − 1)x + h
=

n∑
i=0

(n
i
)
(qx)ihn−i

− xn

(q − 1)x + h
. (10)

If h→ 0, we have

lim
h→0

D(q,h)(xn) =
(qx)n

− xn

(q − 1)x
= [n]xn−1,

We stress that [n]xn−1 tends to nxn−1 as q → 1. To be more precise, the monomial xn has the same nice structure in
q-calculus similar to its behaviour in ordinary calculus. However, if q→ 1 (10) reduces to

lim
q→1

D(q,h)(xn) =
(x + h)n

− xn

h
=

n∑
i=1

(
n

i − 1

)
xi−1hn−i,

which implies that in h-calculus xn does not behave as properly as it behaves in ordinary calculus or q-calculus.

On account of such differences between h- and q-calculus, it is worthwhile to discover (q, h)-analogue of a
polynomial, acting similar to the polynomials in ordinary calculus.

Theorem 3.2. Let x0 ∈ R and {P0(x),P1(x), ...} be a sequence of polynomials satisfying the conditions simultaneously

(i) P0(x0) = 1 and Pi(x0) = 0, for i = 1, 2, 3, . . .

(ii) de1Pi = i for i = 0, 1, 2 . . .

(iii) D(q,h)Pi = Pi−1 for i ≥ 1.

Then any polynomial f (x) of degree n, admits the generalized quantum Taylor’s Formula

f (x) =

n∑
i=0

(Di
(q,h) f )(x0)Pi(x), (11)

where Di
(q,h) stands for the delta (q, h)-derivative of order i and

Pi(x) =
(x − x0)(x − (qx0 + h))(x − (q2x0 + [2]h)...(x − (qi−1x0 + [i − 1]h))

[i]!
. (12)

Here [i]! := [i].[i − 1]...[2].[1] and for convention [0]! = 1.

Proof. Let W be the vector space of polynomials of dimension n + 1. Since de1Pi = i, for each i, then
B := {P0(x),P1(x), ...Pn(x)} is a linearly independent set of polynomials with |B| = n + 1. Therefore B spans
W and B becomes a basis for W. In other words, any polynomial f (x) ∈ W can be written as a linear
combination of polynomials in B

f (x) =

n∑
i=0

aiPi(x). (13)

Now we need to construct the polynomials Pi. In general, such polynomials have the following form

Pi(x) := ci(x − x0)(x − x1)....(x − xi−1), (14)
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where xi’ s are functions of x0, q and h. Clearly by the setting (14), de1(Pi) = i, and Pi(x0) = 0, for any i ≥ 1.
Assume P0(x) = c0 ≡ 1. In order to fulfill the condition (iii), we need to compare the leading coefficients of
xi in D(q,h)Pi and Pi−1, from which we obtain

ci =
1

[i]!
. (15)

Comparing the coefficient of xi−1 in D(q,h)Pi and Pi−1, we derive

x1 = qx0 + h, x2 = q2x0 + qh + h. (16)

Inductively, we obtain

xi−1 = qi−1x0 + [i − 1]h. (17)

Thus, (14), (15) and (17) imply that Pi is of the form (12). To find the constants ai explicitly, we first use the
condition (i) on (13) and we obtain f (x0) = a0. Since D(q,h) is a linear operator, we have

D(q,h) f (x) =

n∑
i=0

aiD(q,h)Pi(x) =

n∑
i=1

aiPi−1(x),

where we also used the condition (iii). At x = x0, we obtain D(q,h) f (x0) = a1. Similarly, applying D(q,h), i
times to f (x), we get

Di
(q,h) f (x0) = ai, i ≥ 0,

which finishes the proof.

Definition 3.3. We define the generalized quantum binomial, (q, h)-analogue of (x − x0)n, as the polynomial

(x − x0)n
q,h :=


1 if n = 0,
n∏

i=1

(
x − (qi−1x0 + [i − 1]h)

)
if n > 0,

(18)

where x0 ∈ R.

Remark 3.4. The generalized quantum binomial (18) reduces to q-binomial [24],

(x − x0)n
q = (x − x0)(x − qx0)...(x − qn−1x0),

as h→ 0 and to h-binomial

(x − x0)n
h = (x − x0)(x − (x0 + h))(x − (x0 + 2h))....(x − (x0 + (n − 1)h)),

as q→ 1. Furthermore, it approximates the ordinary binomial

lim
(q,h)→(1,0)

(x − x0)n
(q,h) = (x − x0)n.

When x0 = 0, the generalized quantum binomial (18) becomes

(x − 0)n
q,h = x(x − h)(x − [2]h)...(x − [n − 1]h)

and its reduction toKq reduces to the monomial (x − 0)n
q ≡ xn, unlike the reduction on hZ, which appears as

x(x − h)(x − 2h)....(x − (n − 1)h)) , xn.
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Nevertheless, the generalized quantum binomial (x − x0)n
q,h plays the same role in T(q,h) as (x − x0)n plays in

ordinary calculus, which is proved in the following Proposition.

Proposition 3.5. The generalized quantum binomial (18) admits the following identities:

(i) D(q,h)(x − x0)n
q,h = [n](x − x0)n−1

q,h , n = 1, 2, ....

(ii) Dk
(q,h)(x − x0)n

q,h = P(n, k)(x − x0)n−k
q,h , 0 ≤ k ≤ n,

where P stands for the permutation coefficient

P(n, k) :=
[n]!

[n − k]!
. (19)

Proof. (i) Using the definition of delta (q, h)-derivative (7) on generalized quantum binomial (18), we obtain

D(q,h)(x − x0)n
q,h =

(qx + h − x0)n
q,h − (x − x0)n

q,h

(q − 1)x + h

=
qn−1(qx + h − x0) − (x − qn−1x0 − (1 + q + ... + qn−2)h)

(q − 1)x + h
· (x − x0)n−1

q,h

=
(qn
− 1)x + (1 + q + ...qn−1)h

(q − 1)x + h
· (x − x0)n−1

q,h

= [n](x − x0)n−1
q,h .

The Leibnitz rule (ii) is a direct consequence of part (i).

Example 3.6. We present a (q, h)-analogue of Cauchy-Euler type of equation as

α1(x − qa − h)D(q,h)y + α2y = 0, a ∈ R, α1, α2 ∈ R/{0}.

By Proposition (3.5), one can show that y = (x − a)r
q,h is a solution provided that r = 2 and

α1[2] + α2 = 0.

It is possible to consider an n-th order Cauchy-Euler type of equation

αnB0Dn
(q,h)y + αn−1B1Dn−1

(q,h)y + ... + α1Bn−1D(q,h)y + α0y = 0,

where αi ∈ R/{0}, for all i = 0, 1, ...,n and the functions Bi depend on x, q, h and the parameter a

Bi := (x − qia − [i]h)(x − qi+1a − [i + 1]h)...(x − qn−1a − [n − 1]h).

Here, it is possible to show that y = (x − a)r
q,h is a solution provided that r = n and

n∑
i=0

αiP(n, i) = 0, (20)

where P(n, i) is the permutation coefficient defined in (19). The equation (20) can be considered as a characteristic
equation which provides a relation between the coefficients αi, i = 0, 1, ..,n.

As another illustration, we present (q, h)-analogue of a partial difference equation. For that purpose, we
first introduce partial delta and nabla (q, h)-derivatives.
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Definition 3.7. We define the partial delta (q, h)-derivative of f (x, t) : T(q,h) × T(q,h) → R as

∂x
(q,h) f (x, t) :=

f (qx + h, t) − f (x, t)
(q − 1)x + h

, (21)

and the partial nabla (q, h)-derivative of f (x, t) as

∂̃x
(q,h) f (x, t) :=

f (x, t) − f ( x−h
q , t)

x − ( x−h
q )

, (22)

Example 3.8. Consider the first order partial (q, h)-difference equation

∂x
(q,h)u(x, t) + ∂̃t

(q,h)u(x, t) = 0. (23)

By the use of Proposition 3.5, one can show that the generalized quantum binomial (x − t)n
q,h satisfies

∂x
(q,h)(x − t)n

q,h = −∂̃t
(q,h)(x − t)n

q,h = [n](x − t)n−1
q,h ,

which implies that

(∂x
(q,h) + ∂̃t

(q,h))(x − t)n
q,h = 0.

In ordinary calculus, a formal power series can be given as

f (x) =

∞∑
i=0

cixi, (24)

which can be regarded as a polynomial of infinite degree in a way that we can differentiate or integrate
on the series formally without questioning the convergence of the series. Inspired by (24), it is possible to
introduce a formal power series in terms of generalized quantum binomial (x − x0)i

q,h as follows

f (x) :=
∞∑

i=0

ci(x − x0)i
q,h , (25)

which can be considered as a polynomial of infinite degree. Therefore, we can operate on this series
formally,

D(q,h) f (x) =

∞∑
i=0

ciD(q,h)

(
(x − x0)i

q,h

)
=

∞∑
i=1

ci[i](x − x0)i−1
q,h , (26)

By a similar fashion, it is possible to represent the formal power series as

1(x − t) :=
∞∑

i=0

ci(x − t)i
q,h . (27)

We conclude that 1(x − t) is a solution of the partial (q, h)-difference equation (23) which is in the form
of a travelling wave with velocity 1. Note that by Remark 3.4, as h → 0 the equation (23) reduces to
(∂x

q + ∂̃t
q)u(x, t) = 0, whose solution can be given in terms q−binomial as 1(x − t) =

∑
∞

i=0 ci(x − t)i
q , while

as q → 1 the equation (23) reduces to (∂x
h + ∂̃t

h)u(x, t) = 0 which admits a solution in terms h−binomial as
1(x − t) =

∑
∞

i=0 ci(x − t)i
h. Furthermore as (q, h)→ (1, 0), the equation (23) reduces to ux + ut = 0. The power

series solution derived from (27), 1(x − t) =
∑
∞

i=0 ci(x − t)i is in the integral surface as expected.
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4. Generalized Quantum Exponential Function

It is possible to extend the Theorem 3.2, on the vector space of formal power series equipped with the same
conditions. In this section, we first aim to present (q, h)-analogue of Taylor Series.

Theorem 4.1. Any formal power series f (x) can be written in terms of generalized quantum Taylor series about
x = 0

f (x) =

∞∑
i=0

(Di
(q,h) f )(0)

(x − 0)i
q,h

[i]!
. (28)

Proof. We seek for polynomials of order i with arbitrary constants ci, in the form

Pi(x) = ci(x − 0)i
q,h,

such that Pi satisfies the conditions of Theorem 3.2. To fulfill P0(0) = 1 we assume P0(x) = c0 = 1. Clearly,
P1(x) = c1(x − 0)1

q,h satisfies P1(0) = 0. To have D(q,h)P1(x) = P0(x) = 1, we get c1 = 1. Processing in the same
way, we obtain

P2(x) := c2(x − 0)2
q,h =

(x − 0)2
q,h

[2]
.

Inductively, Pi yields as

Pi(x) :=
(x − 0)i

q,h

[i]!
,

which verifies the conditions Pi(0) = 0 for i ≥ 1 and D(q,h)Pi(x) = Pi−1(x) by Proposition 3.5. Now for any
formal power series f (x), we have

f (x) :=
∞∑

i=0

aiPi(x),

where ai are some constants. Since P0(0) = 1 and Pi(0) = 0 for i ≥ 1, we have f (0) = a0. Acting D(q,h) on f ,
we obtain

D(q,h) f (x) =

∞∑
i=0

aiD(q,h)Pi(x) =

∞∑
i=1

aiPi−1(x),

which implies that D(q,h) f (0) = a1 by using the conditions P0(0) = 1 and Pi(0) = 0 for i ≥ 1. Similarly acting
Dk

(q,h) on f , we get

Dk
(q,h) f (x) =

∞∑
i=k

aiPi−k(x),

which implies Dk
(q,h) f (0) = ak, k ≥ 0. Therefore f (x) yields as in (28).

In order to introduce (q, h)-analogue of an exponential function f (x), we expect it to admit (q, h)-analogue
of Taylor series expansion (28) and to satisfy

f (0) = 1, D(q,h) f (x) = α f (x), (29)
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for any nonzero constant α. The conditions (29) imply that D2
(q,h) f (x) = α2 f (x) and thus D2

(q,h) f (0) = α2. Thus,
such f (x) has to satisfy

Di
(q,h) f (0) = αi, ∀i ≥ 0. (30)

Hence, Theorem 4.1 and the constraint (30) enable us to determine f uniquely as

f (x) =

∞∑
i=0

αi(x − 0)i
q,h

[i]!
. (31)

Moreover the series (31) is absolutely convergent with radius of converge R = ∞. Indeed, by utilizing Ratio
test on (31) and triangle inequality, we conclude that

lim
i→∞

∣∣∣∣∣∣∣α
i+1(x − 0)i+1

q,h

[i + 1]q!
·

[i]!
αi(x − 0)i

q,h

∣∣∣∣∣∣∣ = α lim
i→∞

∣∣∣∣∣∣ (x − (1 + q + .. + qi−1)h
1 + q + .. + qi

∣∣∣∣∣∣
≤ α lim

i→∞

[∣∣∣∣∣∣ x
1 + q + .. + qi

∣∣∣∣∣∣ +

∣∣∣∣∣∣ (1 + q + .. + qi−1)h
1 + q + .. + qi

∣∣∣∣∣∣
]

≤ α lim
i→∞

[∣∣∣∣∣∣ x
1 + q + .. + qi

∣∣∣∣∣∣ + h +

∣∣∣∣∣∣ qih
1 + q + .. + qi

∣∣∣∣∣∣
]

= 2αh < 1,

provided that q > 1 and h is sufficiently small. One can show that the remainder of the series (31)

Rn(x) =
Dn+1

(q,h) f (c)

[n + 1]!
· (x − 0)n+1

q,h =
αn+1 f (c)
[n + 1]!

· (x − 0)n+1
q,h , 0 < c < x,

converges to 0.

Definition 4.2. We define generalized quantum exponential function, denoted by exp(q,h)(αx) as

exp(q,h)(αx) :=
∞∑

i=0

αi(x − 0)i
q,h

[i]!
, (32)

where α is arbitrary nonzero constant.

Clearly exp(q,h)(0) = 1. As h→ 0, the generalized quantum exponential function (32) becomes

exp(q,0)(αx) =

∞∑
i=0

αi(x − 0)i
q

[i]!
=

∞∑
i=0

(αx)i

[i]!
. (33)

In this case, if also α = 1, (33) reduces to the so-called q-exponential function [24]

exp(q,0)(x) =

∞∑
i=0

xi

[i]!
. (34)

Note that, additive property for q-exponential identity does not hold

exp(q,0)(x) · exp(q,0)(y) , exp(q,0)(x + y) if yx , qxy.

As q→ 1, the generalized quantum exponential function (32) implies

exp(1,h)(αx) =

∞∑
i=0

αi(x − 0)i
h

i!
=

∞∑
i=0

[
x
h

(
x
h
− 1) · · · (

x
h
− (i − 1))]

(αh)i

i!
=

∞∑
i=0

( x
h

i

)
(αh)i = (1 + αh)

x
h . (35)



B. Silindir, A. Yantir / Filomat 33:15 (2019), 4907–4922 4917

UnlikeKq case, additive property for h-exponential function

exp(1,h)(αx) · exp(1,h)(αy) = (1 + αh)
x
h (1 + αh)

y
h = (1 + αh)

x+y
h = exp(1,h)(α(x + y))

holds. Additionally, if α = 1, (35) reduces to the so-called h-exponential function

exp(1,h)(x) = (1 + h)
x
h . (36)

Proposition 4.3. The generalized quantum exponential function (32) obeys the chain rule

D(q,h) exp(q,h)(αx) = α exp(q,h)(αx),

where α is a nonzero constant.

Proof. Consider the delta (q, h)-derivative of (32)

D(q,h) exp(q,h)(αx) =

∞∑
i=0

αi

[i]!
D(q,h)(x − 0)i

q,h = α
∞∑

i=1

αi−1

[i − 1]!
(x − 0)i−1

q,h = α exp(q,h)(αx),

where we used the Proposition 3.5.

Notice that, as q→ 1, we get

D(1,h) exp(1,h)(αx) = Dh(1 + αh)
x
h =

(1 + αh)
x+h

h − (1 + αh)
x
h

h
= α(1 + αh)

x
h . (37)

As h→ 0, we have

D(q,0) exp(q,0)(αx) = Dq

∞∑
i=0

αi(x − 0)i
q

[i]!
=

∞∑
i=0

αiDq(xi)
[i]!

=

∞∑
i=1

αixi−1

[i − 1]!
= α · exp(q,0)(αx).

Even though in [24], it is claimed that the chain rule fails for exponential function defined by (36), here we
proved the Proposition 4.3 and therefore its reduction (37) is correct. Hence, rather than the h-exponential
function defined by (36) in the literature, it is reasonable to introduce it in a more proper form

exp(1,h)(αx) := (1 + αh)
x
h , α ∈ R,

so that the chain rule holds.
As an alternative point of view, one can introduce the generalized quantum exponential function on T(q,h)
as the solution of linear, homogenous (q, h)-initial value problem

D(q,h)y(x) = αy(x), α ∈ R/{0}, (38)
y(x0) = 1. (39)

This iterative construction is inspired by the exponential function on time scales. For T = T(q,h), we present
such construction in a detailed process.
Using the definition of delta (q, h)-derivative (7), we obtain the recurrence relation

y(qx + h) =
{
1 + α

[(
q − 1

)
x + h

]}
· y(x). (40)

If x ∈ T(q,h) then x = qnx0 + [n]h for some n ∈ Z. Now we use the reduction formula (40) to obtain y(x) as a
function of x.
For x = x0, using the initial condition (39) we have

y(qx0 + h) = {1 + α
[(

q − 1
)

x0 + h
]
} · y(x0)

= 1 + α[(q − 1)x0 + h].
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For x = qx0 + h, we have

y(q2x0 + [2]h) = {1 + α[(q − 1)(qx0 + h) + h]} · y(qx0 + h)
= (1 + αq[(q − 1)x0 + h]) · (1 + α[(q − 1)x0 + h]).

Similarly for x = q2x0 + [2]h, one can obtain

y(q3x0 + [3]h) = (1 + αq2[(q − 1)x0 + h]) · (1 + αq[(q − 1)x0 + h]) · (1 + α[(q − 1)x0 + h]).

If we continue this process, the solution of (38)-(39) can be found as

y(qnx0 + [n]h) =

n−1∏
i=0

(
1 + αqi[(q − 1)x0 + h]

)
As a result, we can construct a solution of the IVP (38)-(39) by

y(x) =
∏

s∈(x0,x)T(q,h)

(
1 + α[(q − 1)s + h]

)
. (41)

Being the solution of linear, first order, homogeneous (q, h)-IVP (38)-(39); the function (41) can be regarded
as generalized quantum exponential function

eα(x, x0) :=
∏

s∈(x0,x)T(q,h)

(
1 + α[(q − 1)s + h]

)
.

More generally, let us consider variable coefficient linear homogenous (q, h)-IVP

D(q,h)y(x) = α(x)y(x), (42)
y(x0) = 1. (43)

Theorem 4.4. Let α(x) be a function such that α(x) ,
−1
qih

for all x and for all integer i. Let x0 ∈ T(q,h). Then

eα(x)(x, x0) :=
∏

s∈(x0,x)T(q,h)

(
1 + α(x)[(q − 1)s + h]

)
, (44)

is the unique solution of the initial value problem (42)-(43) on T(q,h).

Proof. Intuitively we may set

eα(x)(x0, x0) =
∏

s∈(x0,x0)T(q,h)

(
1 + α[(q − 1)s + h]

)
= 1

to satisfy the initial condition (43). In order to verify (42), we apply delta (q, h)-derivative to (44),

D(q,h)eα(x, x0) =
eα(qx + h, x0) − eα(x, x0)

(q − 1)x + h

=

∏
s∈(x0,qx+h)T(q,h)

(
1 + α[(q − 1)s + h]

)
−

∏
s∈(x0,x)T(q,h)

(
1 + α[(q − 1)s + h]

)
(q − 1)x + h

=

∏
s∈(x0,x)T(q,h)

(
1 + α[(q − 1)s + h]

)
[1 + α((q − 1)x + h) − 1]

(q − 1)x + h
= αeα(x, x0).
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Now we prove the uniqueness of the solution. Assume that φ(x) is also a solution of (42)-(43). Then using
the quotient rule, we have

D(q,h)

(
φ(x)

eα(x)(x, x0)

)
=

eα(x)(x, x0) ·D(q,h)(φ(x)) − φ(x) ·D(q,h)(eα(x)(x, x0))
eα(x)(qx + h, x0) · eα(x)(x, x0)

=
eα(x)(x, x0) · α(x) · φ(x) − φ(x) · α(x) · eα(x)(x, x0)

eα(x)(qx + h, x0) · eα(x)(x, x0)
= 0.

Then by the Proposition 2.2,
φ(x)

eα(x, x0)
is constant. On the other hand, by the virtue of (43), we have

φ(x0)
eα(x0, x0)

= 1 which implies that φ(x) = eα(x, x0). To be more precise, solution of the IVP (42)-(43) is

unique.

Theorem 4.4 assures that the generalized quantum exponential functions (32) and (44) are equivalent for any
constant α and x0 = 0. Furthermore, the reductions obtained from both forms (32) and (44) of generalized
quantum exponential functions are also equivalent. Let q→ 1, then T(q,h) reduces to hZ. In this case

eα(x, x0) =
∏

s∈(x0,x)hZ

(1 + αh) = (1 + αh)
x−x0

h (45)

which is the exponential function on hZ [9]. Note that the reduction (45) is equivalent to (35) whenever
x0 = 0. Let h→ 0, then T(q,h) reduces toKq. In this case

eα(x, x0) =
∏

s∈(x0,x)Kq

(1 + α(q − 1)s) (46)

which is the exponential function on Kq [9]. Note that the reduction (46) is equivalent to (33) whenever
x0 = 0.
One can introduce the generalized trigonometric functions, as the solutions of linear, homogenous (q, h)
initial value problems. For instance, the (q, h)-IVP

D2
(q,h)y(x) + y(x) = 0,

y(0) = 0, D(q,h)y(0) = 1,

admits the unique solution y(x) =
1
2i

(exp(q,h)(ix) − exp(q,h)(−ix)) which can be introduced as generalized
quantum sine function. By a similar fashion other generalized quantum trigonometric functions and
hyperbolic functions can be defined.

Definition 4.5. We introduce generalized quantum sine function, denoted by sin(q,h)(x), as

sin(q,h)(x) :=
exp(q,h)(ix) − exp(q,h)(−ix)

2i
, (47)

and generalized quantum cosine function, denoted by cos(q,h)(x), as

cos(q,h)(x) :=
exp(q,h)(ix) + exp(q,h)(−ix)

2
. (48)

All other generalized quantum trigonometric functions can be defined analogously as

tan(q,h)(x) :=
sin(q,h)(x)
cos(q,h)(x)

, cot(q,h)(x) :=
cos(q,h)(x)
sin(q,h)(x)

, (49)

sec(q,h)(x) :=
1

cos(q,h)(x)
, csc(q,h)(x) :=

1
sin(q,h)(x)

. (50)
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Definition 4.6. We introduce generalized quantum hyperbolic functions,

sinh(q,h)(x) :=
exp(q,h)(x) − exp(q,h)(−x)

2
, (51)

and

cosh(q,h)(x) :=
exp(q,h)(x) + exp(q,h)(−x)

2
. (52)

Proposition 4.7. The generalized quantum trigonometric functions have the following properties

D(q,h) sin(q,h)(x) = cos(q,h)(x), D(q,h) cos(q,h)(x) = − sin(q,h)(x) (53)

whereas the generalized quantum hyperbolic functions admit the properties

D(q,h) sinh(q,h)(x) = cosh(q,h)(x), D(q,h) cosh(q,h)(x) = sinh(q,h)(x). (54)

Proof is a direct consequence of the Proposition 4.3. Delta (q, h)-derivatives of other trigonometric functions
follow immediately.

We emphasize that the generalized quantum trigonometric functions, hyperbolic functions and their prop-
erties constructed in the Proposition 4.7, recover standart versions, q-versions of such functions given in
[24] and h-versions presented in [29] in the appropriate limits of q and h.

Example 4.8. Consider the second order partial (q, h)-difference equation on T(q,h) × T(q̄,h̄)

(∂t
(q,h))

2u(x, t) − c2(∂x
(q̄,h̄))

2u(x, t) = 0, c ∈ R/{0}, (55)

which can be regarded as generalized wave equation. Note that, the quantum parameters q, q̄ and h, h̄ need not to be
equal. Let us apply the method of seperation of variables as u(x, t) = f (x)1(t). We have

(∂t
(q,h))

2u(x, t) = f (x) · ((Dt
(q,h))

21(t)), (∂x
(q̄,h̄))

2u(x, t) = 1(t) · ((Dx
(q̄,h̄))

2 f (x)),

which implies that

(Dx
(q̄,h̄)

)2 f

f
=

(Dt
(q,h))

21

c21
= K, (56)

where K is an arbitrary constant, since both sides of (56) are seperated with respect to only one variable. (56) produces
two ordinary (q, h)-difference equations

(Dx
(q̄,h̄))

2 f − K f = 0, (57)

(Dt
(q,h))

21 − Kc21 = 0. (58)

Case (i) K = 0: In the light of Proposition 2.2, the equations (57) and (58) imply that f (x) = c1x+c2 and 1(t) = c3t+c4
respectively where ci, i = 1, 2, 3, 4 are arbitrary constants. Therefore solution of (55) can be presented as

u(x, t) = c̃1xt + c̃2x + c̃3t + c̃4.

Case (ii) K > 0: In this case, starting with f (x) = exp(q̄,h̄)(rx) for (57), the Proposition 4.3 enables to obtain the

characteristic equation r2
− K = 0, which has roots r1,2 = ∓

√
K. Then f (x) = c1 exp(q̄,h̄)(

√
Kx) + c2 exp(q̄,h̄)(−

√
Kx).

By a similar fashion, (58) implies that 1(t) = c3 exp(q,h)(c
√

Kt) + c4 exp(q,h)(−c
√

Kt). Hence, a solution of (55) is of
the form

u(x, t) =
(
c̃1 cosh(q̄,h̄)(

√

Kx) + c̃2 sinh(q̄,h̄)(
√

Kx)
)
·

(
c̃3 cosh(q,h)(c

√

Kt) + c̃4 sinh(q,h)(c
√

Kt)
)
.
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Case (iii) K < 0: The characteristic equation of (57) is r2
− K = 0, which has roots r1,2 = ∓i

√
−K. Therefore the

solution of (57) can be found as

f (x) = c1 cos(q̄,h̄)(
√

−Kx) + c2 sin(q̄,h̄)(
√

−Kx).

In a similar way, (58) enables us to derive

1(t) = c3 cos(q,h)(c
√

−Kt) + c4 sin(q,h)(c
√

−Kt).

Hence, we end up with

u(x, t) =
(
c̃1 cos(q̄,h̄)(

√

−Kx) + c̃2 sin(q̄,h̄)(
√

−Kx)
)
·

(
c̃3 cos(q,h)(c

√

−Kt) + c̃4 sin(q,h)(c
√

−Kt)
)
.

To sum up, we conclude that a general solution of (55) arises as

u(x, t) =


c̃1xt + c̃2x + c̃3t + c̃4 , K=0;(
c̃1 cosh(q̄,h̄)(

√
Kx) + c̃2 sinh(q̄,h̄)(

√
Kx)

)
·

(
c̃3 cosh(q,h)(c

√
Kt) + c̃4 sinh(q,h)(c

√
Kt)

)
, K>0;(

c̃1 cos(q̄,h̄)(
√
−Kx) + c̃2 sin(q̄,h̄)(

√
−Kx)

)
·

(
c̃3 cos(q,h)(c

√
−Kt) + c̃4 sin(q,h)(c

√
−Kt)

)
, K<0.

(59)

Here the constants c̃i’s in ui depend on the arbitrary constants ci, i = 1, 2, 3, 4.

Remark 4.9. We notice that the equation (55) is a generic dynamic equation which produces various kinds of partial
differential/ difference type of equations. Using various choices of limits q→ 1, h→ 0, q̄→ 1, h̄→ 0 in (55), it is
possible to obtain fifteen more different kinds of partial differential/ difference equations. For instance, as h → 0 and
q̄→ 1, we obtain a q-difference-h̄-difference equation

(∂t
q)2u(x, t) − c2(∂x

h̄)2u(x, t) = 0,

onKq × h̄Z. Here, the solution arises as

u(x, t) =


c̃1xt + c̃2x + c̃3t + c̃4 , K=0;
(c̃1(1 +

√
Kh̄)x/h̄ + c̃2(1 −

√
Kh̄)x/h̄) · (c̃3 coshq(c

√
Kt) + c̃4 sinhq(c

√
Kt)) , K>0;

(c̃1(1 + i
√
−Kh̄)x/h̄ + c̃2(1 − i

√
−Kh̄)x/h̄) · (c̃3 cosq(c

√
−Kt) + c̃4 sinq(c

√
−Kt)) , K<0.

In this case if also q→ 1, we derive a differential-h̄-difference equation on R × h̄Z

(∂t)2u(x, t) − c2(∂x
h̄)2u(x, t) = 0,

or if h̄→ 0, we have a differential-q-difference equation onKq ×R

(∂t
q)2u(x, t) − c2(∂x)2u(x, t) = 0.

When h̄ = h→ 0, the equation (55) reduces to

(∂t
q)2u(x, t) − c2(∂x

q̄)2u(x, t) = 0,

onKq ×Kq̄ and its solution becomes

u(x, t) =


c̃1xt + c̃2x + c̃3t + c̃4 , K=0;(
c̃1 coshq̄(

√
Kx) + c̃2 sinhq̄(

√
Kx)

)
·

(
c̃3 coshq(c

√
Kt) + c̃4 sinhq(c

√
Kt)

)
, K>0;(

c̃1 cosq̄(
√
−Kx) + c̃2 sinq̄(

√
−Kx)

)
·

(
c̃3 cosq(c

√
−Kt) + c̃4 sinq(c

√
−Kt)

)
, K<0.

As q̄ = q→ 1, the equation (55) produces

(∂t
h)2u(x, t) − c2(∂x

h̄)2u(x, t) = 0,

on hZ × h̄Z and its solution is

u(x, t) =


c̃1xt + c̃2x + c̃3t + c̃4 ,K=0
(c̃1(1 +

√
Kh̄)x/h̄ + c̃2(1 −

√
Kh̄)x/h̄)(c̃3(1 + c

√
Kh)t/h + c̃4(1 − c

√
Kh)t/h) ,K>0

(c̃1(1 + i
√
−Kh̄)x/h̄ + c̃2(1 − i

√
−Kh̄)x/h̄)(c̃3(1 + ic

√
−Kh)t/h + c̃4(1 − ic

√
−Kh)t/h) ,K<0
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All reductions under the appropriate limits generate classical wave equation. We emphasize that for the
generalized quantum binomial, we face with

(x − 0)n
q,h · (t − 0)n

q,h , (x + t)n
q,h.

As a direct consequence, generalized quantum exponential function fails to admit the additivity property,
i.e.,

exp(q,h)(x) · exp(q,h)(t) , exp(q,h)(x + t).

This is the reason why we cannot express a solution of (55), in the form

f (x − ct) + 1(x + ct),

where f (x − ct) = exp(q,h)(x − ct) and 1(x + ct) = exp(q,h)(x + ct).
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