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Abstract. In communication theory, for possible outcomes of an experiment, we have two basic problems
for the statement of the experimenter: we may not have enough information (vague statement) or some
of the information may be incorrect, which make inaccurate in either or both of these situations. In this
article, a measure of inaccuracy and its residual between distributions of concomitants of generalized order
statistics (1os) and parent random variable are extended. Results of inaccuracy for family distributions and
stochastic comparisons are obtained. Furthermore, some properties of the proposed measure are discussed.
The unique characterization of the distribution function of parent random variable by the inaccuracy is
shown.

1. Introduction

The Farlie-Gumbel-Morgenstern (FGM) family is a highly flexible class of bivariate distributions, it
was originally introduced by Morgenstern [21] for Cauchy marginal distribution. This structure was
investigated by Gumbel [9] for exponential marginal distribution and further was generalized by Farlie [7].
Accordingly, in the present study we deal with the distribution theory and applications of concomitants of
the FGM family of bivariate distributions, which is specified by the Cumulative distribution function (cd f )
and Probability density function (pd f ), respectively, as follows:

FX,Y(x, y) = FX(x)FY(y)[1 + α(1 − FX(x))(1 − FY(y))], (1)

fX,Y(x, y) =
∂2FX,Y(x, y)
∂x∂y

= fX(x) fY(y)[1 + α(2FX(x) − 1)(2FY(y) − 1)],
(2)

where −1 ≤ α ≤ 1, fX(x), fY(y), and FX(x), FY(y) are the marginal pd f ’s and cd f ’s of X and Y respectively.
The association parameter α is known as the dependence parameter of the random variables X and Y. If α is
zero, then X and Y are independent. This system provides a general expression of bivariate distribution, as
this model depends on the marginal distributions. Since both the bivariate cd f and pd f are given in terms of
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marginal distributions, it is easy to generate a random sample from the FGM distribution. Thus, members
of this family can be used in simulation studies, especially when weak dependence between variates is of
interest. It follows that the conditional density of Y given X = x is given by:

fY|X(y | x) =
fX,Y(x, y)

fX(x)

= fY(y)[1 + α(2FX(x) − 1)(2FY(y) − 1)],−1 ≤ α ≤ 1.
(3)

The concept of 1os is a general model which contains all types of ordered observations such as order
statistics, sequential order statistics and kth record values as a special cases of 1os. It was introduced by
Kamps [13] as follow: let n ∈N, k ≥ 1, m1, ...,mn−1 ∈ R, Mr =

∑n−1
j=r m j, 1 ≤ r ≤ n− 1, be parameters such that

γr = k + n− r + Mr ≥ 1 for all r ∈ {1, 2, ...,n−1}, and let m̃ = (m1, ...,mn−1) ∈ Rn−1. If m1 = m2 = . . . = mn−1 = m,
the pd f of X(r,n,m,k) can be written as:

f(r,n,m,k)(x) =
cr−1

(r − 1)!
(1 − F(x))γr−1 f (x)1r−1

m (F(x)), (4)

where cr−1 =
∏r

j=1 γ j, 1m(z) = hm(z) − hm(0), 0 < z < 1,

hm(z) =


−(1−z)m+1

m+1 , m , −1,

− ln(1 − z), m = −1.

Originally, David et al. [3] studied the concomitants of order statistics. For some bivariate population
with cd f F(x, y), let (Xi,Yi), i = 1, 2, ...,n, be n pairs of independent random variables. Let X(r;n) be the rth
order statistics, then Y associated with X(r;n) is called the concomitant of rth order statistics and is denoted
by Y[r;n]. The pd f and cd f of Y[r;n] are given by:

1[r;n](y) = 1Y[r;n] (y) =

∫
∞

−∞

fY|X(y | x) f(r;n)(x)dx, (5)

G[r;n](y) =

∫
∞

−∞

FY|X(y | x) f(r;n)(x)dx, (6)

where f(r;n)(x) is the pd f of X(r;n). The double sampling can give an application of concomitants, as we can
investigate for example a group of patients, such that their weights are ordered before they response to a
treatment (X(i;n)’s ), then record their weights after obtaining the treatment (Y[i;n]’s ). We can see that Y[i;n]’s
need not have a similar order, therefore, Y[i;n]’s are concomitants of the order statistics X(i;n)’s.

The concept of entropy was introduced by Shannon [28] in the information theory literature. The
Shannon entropy (uncertainty) of a continuous random variable X1 measures the average reduction of
uncertainty of X1. The Shannon entropy for a non negative random variable X1 with pd f fX(x) = f1(x) is
defined as:

H(X1) = H( f1) = −

∫
∞

0
f1(x) ln f1(x)dx. (7)

Divergence measures are used to quantify the dissimilarity of two probability distributions. They are equal
to zero if and only if the distributions are the same. An important and well-known divergence measure
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was introduced by Kullback and Leibler [18]. The Kullback-Leibler divergence (information divergence)
for two non negative continuous random variables X1 and X2 with pd f ’s f1 and f2, respectively, is given by:

K(X1,X2) = K( f1, f2) =

∫
∞

0
f1(x) ln

(
f1(x)
f2(x)

)
dx, (8)

K(X1,X2) is non negative, invariant under one-to-one transformation of (X1,X2) and it is not symmetric.
Adding (7) and (8), we get:

H( f1) + K( f1, f2) = −

∫
∞

0
f1(x) ln f2(x)dx

= I( f1, f2),
(9)

which is Kerridge measure of inaccuracy associated with random variables X1 and X2 as an expansion
(generalization) of uncertainty, see Kerridge [17]. If we consider F1 as the actual distribution function then
F2 can be interpreted as reference distribution function. In survival analysis and life testing, the current
age of the system under consideration is also taken into account. Thus, for calculating the remaining
uncertainty of a system which has survived up to time t, the measures defined in (7), (8) and (9) are not
suitable. Ebrahimi [5] considered a random variable Xt = (X − t)|X > t, t ≥ 0 and defined uncertainty of
such a system, given by:

H( f1; t) = −

∫
∞

t

(
f1(x)

F1(t)

)
ln

(
f1(x)

F1(t)

)
dx, (10)

where F1(t) = 1 − F1(t) is survival function. Clearly when t = 0, (10) reduce to (7). Taneja et al. [24]
defined the dynamic measure of inaccuracy associated with two residual lifetime distributions F1 and F2

corresponding to the Kerridge measure of inaccuracy given by:

I( f1, f2; t) = −

∫
∞

t

(
f1(x)

F1(t)

)
ln

(
f2(x)

F2(t)

)
dx, (11)

where F2(t) = 1 − F2(t) is survival function. Clearly for t = 0, (11) reduces to (9).

In this paper, we propose the measure of inaccuracy and residual inaccuracy of concomitants of 1os.
There are many articles and several books published on concomitants of order statistics, but not much
attention has been given to the study of inaccuracy properties for concomitants of 1os. Several authors
have worked on information theoretic aspects of order statistics, for details refer to Ebrahimi et al. [6] and
Zarezadeh and Asadi [29]. Recently, Thapliyal and Taneja [25] have introduced the concept of inaccuracy
using order statistics. They have proposed the measure of inaccuracy between the rth order statistics and
the parent random variable and proved a characterization result for it. Thapliyal and Taneja [26] have
proposed the measure of residual inaccuracy of order statistics and prove a characterization result for it.
For a further view of the literature survey on inaccuracy measure see Kundu and Nanda [19], Kayal et al.
[14], Psarrakos and Di Crescenzo [22], Kayal et al. [16], Kayal and Sunoj [15] and Di Crescenzo et al. [4]. The
rest of this dissertation is organized as follows: Section 2 derives the inaccuracy and its dynamic residual of
the distribution of the rth concomitants of 1os and f (y) and vice versa. Moreover, studies some properties
of a special cases of 1os. Section 3 presents some results of inaccuracy for some specific distributions. Also,
achieves the upper bound of the residual inaccuracy. Besides, considering some characterization results.
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2. A measure of inaccuracy and residual inaccuracy of concomitants of 1os

In this section, we use 1os to obtain the inaccuracy of concomitants of FGM distributions. Under the
FGM family, the cd f and pd f of the concomitant of 1os Y[r,n,m,k], 1 ≤ r ≤ n, is given by Beg and Ahsanullah
[1], respectively, as follows:

G[r,n,m,k](y) =

∫
∞

0
FY|X(y | x) f(r,n,m,k)(x)dx

= FY(y)
[
1 − αD∗(r,n,m, k)(1 − FY(y))

]
,

(12)

1[r,n,m,k](y) = fY(y)
[
1 + αD∗(r,n,m, k)(2FY(y) − 1)

]
, (13)

where f(r,n,m,k)(x) is the pd f of 1os X[r,n,m,k] defined in (4), D∗(r,n,m, k) = 1 −
2
∏r

j=1 γ j∏r
i=1(γi+1) , with parameters n ∈N,

k ≥ 1, m ∈ R, such that γr = k + (n − r)(m + 1) ≥ 1, for all 1 ≤ r ≤ n. Tahmasebi and Behboodian [23]
introduced the Shannon entropy for concomitants of 1os of FGM distributions by the following theorem:

Theorem 2.1. If Y[r,n,m,k] is the concomitant of rth 1os, then, from (7) and (13), the Shannon entropy of Y[r,n,m,k] for
1 ≤ r ≤ n, α , 0, −1 ≤ α ≤ 1 is given by:

H(Y[r,n,m,k]) = W(r, α,n,m, k) + H(Y)(1 − αD∗(r,n,m, k))
− 2αD∗(r,n,m, k)φ f (y),

(14)

where

W(r, α,n,m, k) =
1

4αD∗(r,n,m, k)

[
(1 − αD∗(r,n,m, k))2

× ln(1 − αD∗(r,n,m, k)) − (1 + αD∗(r,n,m, k))2

× ln(1 + αD∗(r,n,m, k))] +
1
2
,

(15)

φ f (y) =

∫
∞

0
FY(y) fY(y) ln fY(y)dy. (16)

A measure of inaccuracy associated with distribution of rth concomitant of 1os and parent distribution
function fY(y), analogous to the Kerridge measure of inaccuracy between two density functions f1 and f2
given by (9), is as follows:

In(1[r,n,m,k](y), fY(y)) = −

∫
∞

0
1[r,n,m,k](y) ln fY(y)dy

= −

∫
∞

0
fY(y)

[
1 + αD∗(r,n,m, k)(2FY(y) − 1)

]
ln fY(y)dy

= (1 − αD∗(r,n,m, k))H(Y) − 2αD∗(r,n,m, k)φ f (y).

(17)

Clearly, from (14) and (17), the Kullback-Leibler divergence is given by

K(1[r,n,m,k](y), fY(y)) = W(r, α,n,m, k). (18)

A measure of inaccuracy associated with parent distribution function fY(y) and distribution of rth concomi-



M. S. Mohamed / Filomat 33:15 (2019), 4931–4942 4935

tant of 1os is as follows:

In( fY(y), 1[r,n,m,k](y)) = −

∫
∞

0
fY(y) ln 1[r,n,m,k](y)dy

= −

∫
∞

0
fY(y) ln fY(y)

[
1 + αD∗(r,n,m, k)(2FY(y) − 1)

]
dy

= 1 + H(Y) −
(1 + αD∗(r,n,m, k))

2αD∗(r,n,m, k)
ln(1 + αD∗(r,n,m, k))

+
(1 − αD∗(r,n,m, k))

2αD∗(r,n,m, k)
ln(1 − αD∗(r,n,m, k)).

(19)

Remark 2.1. Under order statistics (with m = 0 and k = 1) and record value (with m = −1 and k = 1) as a special
cases of 1os, denote Ios

n and Irv
n the inaccuracy of order statistics and record value, respectively, we get:

1. If n is odd and r = n+1
2 , orα = 0, then we have D∗(r,n,m, k) = 0, from (17) and (19), we have Ios

n (1[r,n,m,k](y), fY(y)) =
H(Y) and Ios

n ( fY(y), 1[r,n,m,k](y)) = H(Y), respectively.
2. If n is even, r = n

2 + 1 and n replaced with n + 1, or α = 0, then we have D∗(r,n + 1,m, k) = 0, from (17) and
(19), we have Ios

n (1[r,n+1,m,k](y), fY(y)) = H(Y) and Ios
n ( fY(y), 1[r,n+1,m,k](y)) = H(Y), respectively..

3. If λ ≥ 1 is an integer number and we change r to rλ and n to (n + 1)λ − 1, then from (17) and (19), we have
Ios
n (1[r,n,m,k](y), fY(y)) = Ios

n (1[rλ,(n+1)λ−1,m,k](y), fY(y)) and Ios
n ( fY(y), 1[r,n,m,k](y)) = Ios

n ( fY(y), 1[rλ,(n+1)λ−1,m,k](y)),
respectively.

4. If r = n = 2b
− 1, then Ios

n (1[2b−1,2b−1,m,k](y), fY(y)) = Irv
n (1[b,b,m,k](y), fY(y)).

Analogous to (11), the dynamic residual measure of inaccuracy associated with two residual lifetime
distributions G[r,n,m,k](y) and FY(y), respectively, is given by:

In(1[r,n,m,k](y), fY(y); t) = −

∫
∞

t

1[r,n,m,k](y)

G[r,n,m,k](t)

 ln
(

fY(y)

FY(t)

)
dy

= ln FY(t) −
1

G[r,n,m,k](t)

∫
∞

t
1[r,n,m,k](y) ln fY(y)dy

= ln FY(t) −
1

G[r,n,m,k](t)

∫
∞

t
fY(y)[1 + αD∗(r,n,m, k)

× (2FY(y) − 1)] ln fY(y)dy

= ln FY(t) −
1

G[r,n,m,k](t)
[(1 − αD∗(r,n,m, k))A f (Y; t)

+ 2αD∗(r,n,m, k)φ f (y; t)],

(20)

where φ f (y; t) =
∫
∞

t FY(y) fY(y) ln fY(y)dy, A f (Y; t) =
∫
∞

t fY(y) ln fY(y)dy.

Proposition 2.1. Let Q = fY(q) < ∞, where q = sup{y : fY(y) ≤M}, M is the mode of the distribution then

In(1[r,n,m,k](y), fY(y); t) ≥ ln FY(t) − ln M. (21)

Proof. As q is the mode of the distribution, hence ln fY(y) ≤ ln Q. Using this fact in (20) we get our result.

The dynamic residual measure of inaccuracy associated with two residual lifetime distributions FY(y)
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and G[r,n,m,k](y), respectively, is given by:

In( fY(y), 1[r,n,m,k](y); t) = −

∫
∞

t

(
fY(y)

FY(t)

)
ln

1[r,n,m,k](y)

G[r,n,m,k](t)

 dy

= ln G[r,n,m,k](t) −
1

FY(t)

∫
∞

t
fY(y) ln 1[r,n,m,k](y)dy

= ln G[r,n,m,k](t) −
1

FY(t)
[
(1 − αD∗(r,n,m, k))

2αD∗(r,n,m, k)
ln(1 + αD∗(r,n,m, k))

+ ln(1 + αD∗(r,n,m, k)) − A f (Y; t) − FY(t)

−
(1 − αD∗(r,n,m, k))

2αD∗(r,n,m, k)
ln((1 − αD∗(r,n,m, k)) + 2αD∗(r,n,m, k)FY(t))

+ (1 − αD∗(r,n,m, k)) − FY(t) ln(2αD∗(r,n,m, k)FY(t))].

(22)

3. Results of inaccuracy for a family distribution and applications

We consider the scale family F of distributions with distribution function F of the form

FY(y) = 1 − exp(−η1(y)), y ≥ 1−1(0), η > 0, (23)

where 1 is assumed to be differentiable on (1−1(0),∞) and strictly increasing, with limy→∞ 1(y) = ∞. The
family F includes the Pareto and exponential distributions and Weibull distributions; for further details,
see Cramer and Kamps [2].

Next we want to prove an important property of inaccuracy measure using some properties of stochastic
ordering. For that we present the following definitions:

1. A random variable X is said to be less than Y in likelihood ratio ordering (denoted by X ≤lr Y) if fX(x)
1Y(x)

is non increasing in x.
2. A random variable X is said to be less than Y in the stochastic ordering (denoted by X ≤st Y) if

FX(x) ≤ GY(x) for all x, where FX(x) and GY(x) are the survival functions of X and Y respectively.

In the following remark we will discuss the constant D∗(r,n,m, k):

Remark 3.1. Since D∗(r,n,m, k) = 1 −
2
∏r

j=1 γ j∏r
i=1(γi+1) , with parameters n ∈ N, k ≥ 1, m ∈ R, such that γr =

k + (n − r)(m + 1) ≥ 1, for all 1 ≤ r ≤ n, then we can note the following:

1. −1 ≤ D∗(r,n,m, k) < 1 as 0 <
∏r

j=1 γ j∏r
i=1(γi+1) < 1, 0 <

2
∏r

j=1 γ j∏r
i=1(γi+1) ≤ 2.

2. D∗(r,n,m, k) is positive (negative) if 0 <
2
∏r

j=1 γ j∏r
i=1(γi+1) < 1 (1 <

2
∏r

j=1 γ j∏r
i=1(γi+1) ≤ 2).

D∗(r,n,m, k) could be zero if
2
∏r

j=1 γ j∏r
i=1(γi+1) = 1, which can be hold in many cases, for example:

1. m ∈ R, n = r = k = 1 then γr = 1.
2. m = −1, n ∈N, r = k = 1.
3. n is even, r = n

2 + 1, m = 0, k = 2.
4. n is odd, r = n+1

2 , m = 0, k = 1.

Theorem 3.1. Let Y1,Y2, . . . ,Yn be n concomitant of 1os. Let FY denote their distribution function defined in (23)
with η ≥ 1 is an integer number. If the following assumptions are satisfied:
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1. fY is decreasing in its support.
2. from Remark (3.1), 0 < α ≤ 1, −1 ≤ D∗(r,n,m, k) < 0 (or −1 ≤ α < 0, 0 < D∗(r,n,m, k) < 1).
3. 0 < 2FY(y) − 1 < 1,

then the corresponding inaccuracy defined in (20) is decreasing function of n.

Proof. As fY is decreases in its support, moreover, the product αD∗(r,n,m, k) is negative and 0 <

2FY(y) − 1 < 1, hence

1[r,n+1,m,k](y)
1[r,n,m,k](y)

=

[
1 + αD∗(r,n + 1,m, k)(2FY(y) − 1)

][
1 + αD∗(r,n,m, k)(2FY(y) − 1)

] , t ≤ y < ∞, (24)

is a decreasing function. This implies that Y[r,n+1,m,k] ≤
lr Y[r,n,m,k] which implies Y[r,n+1,m,k] ≤

st Y[r,n,m,k], refer
to Shaked and Shanthikumar [27]. Also, from the family defined in (23) with η ≥ 1 is an integer number,
we note that φ f (y; t) =

∫
∞

t FY(y) fY(y) ln fY(y)dy, A f (Y; t) =
∫
∞

t fY(y) ln fY(y)dy are decreasing functions of η.
Also from (17) and (20), the inaccuracy and the residual inaccuracy of the concomitant of 1os are given by,
respectively

In(1[r,n,m,k](y), fY(y)) = (1 − αD∗(r,n,m, k))H(Y) − 2αD∗(r,n,m, k)φ f (y),

and

In(1[r,n,m,k](y), fY(y); t) = ln FY(t) −
1

G[r,n,m,k](t)
[(1 − αD∗(r,n,m, k))A f (Y; t)

+ 2αD∗(r,n,m, k)φ f (y; t)],

then, we have

In(1[r,n,m,k](y), fY(y)) − In(1[r,n+1,m,k](y), fY(y)) ≥ 0,

and

In(1[r,n,m,k](y), fY(y); t) − In(1[r,n+1,m,k](y), fY(y); t) ≥ 0.

This completes the proof.

Figure 1: 2FY(y) − 1.
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Figure 2: Inaccuracy of Weibull distribution.

In Figure 1, we plot 2FY(y) − 1 for Weibull distribution with λ = 4, c = 3 which satisfy the assumption
0 < 2FY(y) − 1 ≤ 1. In Figure 2, we plot the inaccuracy of the distribution in Figure 1 of order statistics for
n = 1, 2, ..., 40.

In the following subsections, we will apply the previous results to some subfamilies of the family defined
in (23) when the they are Weibull and Pareto, and obtain its inaccuracy.

Remark 3.2. In the computation of the following subsections, we use some important formulas as follows, see Golomb
[8] and Jain and Srivastava [12]:

1. Let T(t) =
∫
∞

−∞
[ f (x)]tdx, then [− ∂T(t)

∂t ]t=1 = H(X), t ≥ 1.

2. Let A(X) =
∫
∞

−∞
u(x) f (x) ln f (x)dx, U(t) =

∫
∞

−∞
u(x)[ f (x)]tdx, then [ ∂U(t)

∂t ]t=1 = A(X), t ≥ 1.

3.1. Weibull distribution

With the cd f of Weibull distribution:

FY(y) = 1 − e−λ yc
, y ≥ 0, c, λ > 0, (25)

Theorem 3.2. If Y[r,n,m,k] is the concomitant of rth 1os for Weibull distribution from (25) then, from (17), the
inaccuracy of Y[r,n,m,k] for 1 ≤ r ≤ n, α , 0, −1 ≤ α ≤ 1 is given by:

In(1[r,n,m,k](y), fY(y)) =
−1
2c

[2ν − c(2 + 2ν + αD∗(r,n,m, k)) + (c − 1)αD∗(r,n,m, k) ln 4

+2c ln c + 2 lnλ] ,
(26)

where ν = −Γ′(1) is the Euler’s constant.

Proof. From (17) and (25), we have:

In(1[r,n,m,k](y), fY(y)) = (1 − αD∗(r,n,m, k))H(Y) − 2αD∗(r,n,m, k)φ f (y)

= −(1 − αD∗(r,n,m, k))
∫
∞

0
fY(y) ln fY(y)dy

− 2αD∗(r,n,m, k)
∫
∞

0
FY(y) fY(y) ln fY(y)dy

= −(1 − αD∗(r,n,m, k)) A1 − 2αD∗(r,n,m, k) A2.

(27)
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To find

A1 = −H(Y) =

∫
∞

0
cλyc−1 exp(−λyc)(ln cλ)yc−1 exp(−λyc)dy,

first, we want to obtain

T(t) =

∫
∞

0
[ f (y)]tdy =

∫
∞

0
(cλ)tyt(c−1) exp(−tλyc)dy.

Let yc = v⇒ dy = c−1v
1
c −1dv, then

T(t) = ct−1
∫
∞

0
v

t(c−1)+1
c −1 exp(−tv)dv

= ct−1λt(tλ)−( t(c−1)+1
c )Γ

(
t(c − 1) + 1

c

)
.

=⇒
∂T(t)
∂t

= T′(t) = Qct−1λt(ln cλ)Γ
(

t(c − 1) + 1
c

)
+ Q′ct−1λt

× Γ

(
t(c − 1) + 1

c

)
+ Qct−1λt(

c − 1
c

)Γ′
(

t(c − 1) + 1
c

)
,

where Q = (tλ)−( t(c−1)+1
c ), Q′ = Q(−( t(c−1)+1

tc ) − ( c−1
c ) ln tλ).

=⇒ T′(1) = A1 = ln cλ −
c − 1

c
ν +

c − 1
c

lnλ − 1. (28)

To find

A2 = A1 −

∫
∞

0
cλyc−1 exp(−λyc)(ln cλ)yc−1 exp(−λyc)dy,

first, we want to obtain

U(t) =

∫
∞

0
exp(−λyc)[ f (y)]tdy =

∫
∞

0
(cλ)tyt(c−1) exp(−λ(t + 1)yc)dy

= ct−1λt(t + 1)−( t(c−1)+1
c )Γ

(
t(c − 1) + 1

c

)
.

=⇒ U′(1) = I −
c − 1

2c
ν −

1
2

(−
1
2

+
1 − c

c
ln(2λ)) +

1
2

ln(cλ), (29)

where ν = −Γ′(1) = 0.57722 is the Euler’s constant. By substituting (28) and (29) in (27) the result follows.

3.2. Pareto distribution
With the cd f of Pareto distribution:

FY(y) = 1 − y−c, y ≥ 1, c > 0, (30)

Theorem 3.3. If Y[r,n,m,k] is the concomitant of rth 1os for Pareto distribution from (30) then, from (17), the inaccuracy
of Y[r,n,m,k] for 1 ≤ r ≤ n, α , 0, −1 ≤ α ≤ 1 is given by:

In(1[r,n,m,k](y), fY(y)) =
1 + c

2c
(2 + αD∗(r,n,m, k)) − ln c. (31)

Proof. The proof is similar to the previous theorem.

In the following, we will describe the upper bound limit between the residual inaccuracy and the
entropy.
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3.3. Upper bound for residual inaccuracy

The lower and upper bounds are very important to determine the lowest and highest limits, which are
used in many applications in information theory. Moreover, to know where the residual inaccuracy lies
between, thereby making us capable to prevent or avoid it. We derive the upper bound for the residual
inaccuracy under the condition that the pd f for Y[r,n,m,k] is less than 1. Note that

In(1[r,n,m,k](y), fY(y); t) = −

∫
∞

t

1[r,n,m,k](y)

G[r,n,m,k](t)

 ln
(

fY(y)

FY(t)

)
dy

= ln FY(t) −
1

G[r,n,m,k](t)

∫
∞

t
1[r,n,m,k](y) ln fY(y)dy.

We know that, for t > 0, ln FY(t) ≤ 0. Using this we get:

In(1[r,n,m,k](y), fY(y); t) ≤ −
1

G[r,n,m,k](t)

∫
∞

t
1[r,n,m,k](y) ln fY(y)dy

≤ −
1

G[r,n,m,k](t)

∫
∞

0
1[r,n,m,k](y) ln fY(y)dy.

Hence

In(1[r,n,m,k](y), fY(y); t) ≤
H(Y[r,n,m,k])

G[r,n,m,k](t)
, (32)

when t −→ 0 we get the equality, H(Y[r,n,m,k]) is the Shannon entropy based on the concomitant of 1os. This
upper bound provides the best possible residual inaccuracy (as we try to avoid this inaccurate), which is
widely used for accurately predicting the inaccuracy and for other information measures and properties.
Noting that, writing the upper bound of the residual inaccuracy in terms of the shannon entropy make it
quite informative, as the entropy is widely studied in many works of literature.

3.4. Some characterization results

Gupta et al. [10] studied characterizations of entropy of order statistics. Here, in this section, we present
some characterization results based on inaccuracy of the concomitant of 1os. Consider a problem of finding
sufficient condition for the uniqueness of the solution of the initial value problem (IVP)

dy
dx

= f (x, y), y(x0) = y0,

where f is a given function of two variables whose domain is a region D ⊂ R2, (x0, y0) is a specified point in
D, y is an unknown function. By the solution of the IVP on an interval I ⊂ R, we mean a function φ(x) such
that (i) φ is differentiable on I, (ii) the graph of φ lies in D, (iii) φ(x0) = y0 and (iv) φ′(x) = f (x, φ(x)), for all
x ∈ I. The following theorem together with other results will help in proving our characterization result.

Theorem 3.4. Let the function f be defined and continuous in a domain D ⊂ R2, and let f satisfy a Lipschitz
condition (with respect to y) in D, namely

| f (x, y1) − f (x, y2)| ≤ k|y1 − y2|, k > 0,

for every points (x, y1) and (x, y2) in D. Then the function y = φ(x) satisfying the IVP y′ = f (x, y) and φ(x0) = y0,
x ∈ I, is unique.
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Proof. See Gupta and Kirmani [11].

For any function f (x, y) of two variables defined in D ⊂ R2, we now present a sufficient condition which
guarantees that the Lipschitz condition is satisfied in D.

Lemma 3.1. Suppose that the function f is continuous in a convex region D ⊂ R2. Suppose further that ∂ f
∂y exists

and is continuous in D. Then, the function f satisfies Lipschitz condition in D.

Proof. See Gupta and Kirmani [11].
We now present our characterization results.

Remark 3.3. The pd f 1[r,n,m,k] is differentiable if its derivative exists at each point in its domain. This can be seen if
we apply it in well-known distributions, therefor, its domain will be identified.

Theorem 3.5. Let Y be a non-negative continuous random variable with distribution function FY. Let the dynamic
inaccuracy of the concomitant of rth 1os, based on a random sample of size n be denoted by In(1[r,n,m,k](y), fY(y); t) < ∞,
t ≥ 0. Then In(1[r,n,m,k](y), fY(y); t) characterizes the distribution. With considering that 1[r,n,m,k] is differentiable.

Proof. Suppose there exists two functions F1Y and F2Y such that:

In(11[r,n,m,k](y), f1Y(y); t) = In(12[r,n,m,k](y), f2Y(y); t),

for all t > 0. Then

I′n(1i[r,n,m,k](y), fiY(y); t) = ξi[r,n,m,k](t)[In(1i[r,n,m,k](y), fiY(y); t) − 1 + ξi[r,n,m,k](t)], i = 1, 2, (33)

where ξi[r,n,m,k](t) =
1i[r,n,m,k](t)
Gi[r,n,m,k](t)

is the hazard rate of the concomitant of rth 1os, i = 1, 2. Differentiating the

above equation with respect to t and simplifying, we get:

ξ′i[r,n,m,k](t) =
ξi[r,n,m,k](t)

ξi[r,n,m,k](t) + I′n(1i[r,n,m,k](y), fiY(y); t)
[I′′n (1i[r,n,m,k](y), fiY(y); t)

− ξi[r,n,m,k](t)I′n(1i[r,n,m,k](y), fiY(y); t)], i = 1, 2.

Suppose now

In(11[r,n,m,k](y), fiY(y); t) = In(12[r,n,m,k](y), fiY(y); t) = 1(t).

Then for all t ≥ 0,

ξ′i[r,n,m,k](t) = ψ(t, ξi[r,n,m,k](t)),

for i = 1, 2, where

ψ(t, y) =
y

y + 1′(t)
[1′′(t) − y1′(t)].

It follows from Theorem (3.1) and Lemma (3.4) thatξ′1[r,n,m,k](t) = ξ′2[r,n,m,k](t), which prove the characterization
result.
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