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Abstract. In this paper we first obtain two generalized identities for twice differentiable mappings involv-
ing generalized fractional integrals defined by Sarikaya and Ertugral. Then we establish some midpoint
and trapezoid type inequalities for functions whose second derivatives in absolute value are convex.

1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable
significant in the literature (see, e.g.,[9], [14], [28, p.137]). These inequalities state that if f : I — R is a
convex function on the interval I of real numbers and a4,b € I with a < b, then

b b
(5ot [ L0510

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard'’s inequality may
be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.

The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a
natural geometrical interpretation and many applications, has drawn attention much interest in elementary
mathematics. A number of mathematicians have devoted their efforts to generalise, refine, counterpart and
extend it for different classes of functions such as convex mappings.

The overall structure of the study takes the form of six sections including introduction. The remainder
of this work is organized as follows: we first mention some works which focus on Hermite-Hadamard
inequality. In Section 2, we introduce the generalized fractional integrals defined by Sarikaya and Ertugral
along with the very first results. In section 3 we prove an identity for twice differentiable functions and
using this equality we prove some trapezoid type inequalities for twice differentiable mappings. In Section
4 by giving an identity, some midpoint type inequalities for functions whose second derivatives in absolute
value are convex are presented.

Barani et al. established inequalities for twice differentiable convex mappings which are connected with
Hadamard'’s inequality, and they used the following lemma to prove their results:
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Lemma 1.1. ([4],[5]) Let f : I° C R — R be twice differentiable function on 1°, a,b € I° witha < b. If f" € L1[a, b],
then we have

for /) f o -

(b—tl f(l 1+ta+1;tb)+f”(1;ta 1+tb)]d

Over the last twenty years, the numerous studies have focused on to obtain new bound for left hand
side and right hand side of the inequality (1). For some examples, please refer to ([1], [3], [6], [7], [10], [15],
[25], [30]-[32]).

On the other hand, Sarikaya et al. obtain the Hermite-Hadamard inequality for the Riemann-Lioville
fractional integrals in [36]. Then, many authors have studied to generalize this inequality and establish
Hermite-Hadamard inequality for other fractional integrals such as k-fractional integral, Hadamard frac-
tional integrals, Katugampola fractional integrals, Conformable fractional integrals, etc. For some of them,
you can check the refrences ([2], [8], [11], [12], [16]-[22], [24], [26], [27], [29], [33], [35], [37]-[42]). For more
information about fractional calculus please refer to ([13], [23]).

In this paper, we obtain the new generalized trapezoid and midpoint type inequality for the generalized
fractional integrals mentioned in the next section.

2. New Generalized Fractional Integral Operators
In this section, we summarize the generalized fractional integrals defined by Sarikaya and Ertugral in

[34].
Let’s define a function ¢ : [0, o) — [0, o0) satisfying the following conditions :

fo(p()dt<

We define the following generalized fractional integral operators, as follows:

I f0) = f Pl f(t)dt x>a, 3)

oI f(x) = f AG f(t)dt x <b. (4)

The most important feature of generalized fractional integrals is that they generalize some types of
fractional integrals such as Riemann-Liouville fractional integrals, k-Riemann-Liouville fractional integrals,
Katugampola fractional integrals, Conformable fractional integral, Hadamard fractional integrals, etc.
These important special cases of the integral operators (3) and (4) are mentioned below.

i) If we take ¢ (t) = t, the operator (3) and (4) reduce to the Riemann integral as follows:

I f(x)=fxf(t)dt, x>a,

b
Iy f(x) = f f(bdt, x <b.



H. Budak et al. / Filomat 33:15 (2019), 4967-4979 4969

ii) If we take @ (f) = %,a > 0, the operators (3) and (4) reduce to the Riemann-Liouville fractional
integrals as follows:

I° f(x) = ﬁ f (x =) f(tydt, x> a,

b
I f(x) = ﬁ f (t—x)*" f(H)dt, x <D.

iii) If we take @ (t) = mt%,a,k > 0, the operators (3) and (4) reduce to the k-Riemann-Liouville
fractional integrals as follows:

1 ¥ .
I f(x) = @ f (x =D f(tdt, x> a,

I ) = ﬁa) f "0 fot, x<b
where

Iy (a) = fo Tt R@) > 0
and

Ty (@) = k%*lr(%), R(@) > 0;k > 0
which are given by Mubeen and Habibullah in [26].

iv) If we take @ () = t(x - H%71, the operator (3) reduces to the conformable fractional operators as
follows:

I*f(x) = f ) t f(hdt = f ) f(tydat, x>a, a€(0,1)

which is given by Khalil et.al in [22].
v) If we take

_ 1 [(ogx —log(x - H)]*"
()= I'(a) x—t
and
1 [(log(t - x) —log x]* !
(p(t)_l"(a)t t—x !

in the operators (3) and (4), respectively, the operator (3) and (4) reduce to the right-sided and left-sided
Hadamard fractional integrals as follows [23]:

* t
I, f(x) = ﬁf (logx — log £)*”! Jydt, 0O<a<x<b,

b
I f(x) = ﬁ‘fx (logt —logx)*™" @dt, O<a<x<b.
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vii) If we take ¢ (t) = é exp (— 1%“ t) in the operators (3) and (4), respectively, the operator (3) and (4) reduce to
the right-sided and left-sided fractional integral operators with exponential kernel for « € (0, 1) as follows:

I f(x) = if exp (—1 2 - t))f(t)dt, <z,

b p—
I% f(x) = i f exp (-% (t— x)) Fbyt, x <b

which are defined by Kirane and Torebek in [24].
Sarikaya and Ertugral also establish the following Hermite-Hadamard inequality for the generalized
fractional integral operators:

Theorem 2.1. [34] Let f : [a,b] — R be a convex function on [a, b] with a < b, then the following inequalities for
fractional integral operators hold

b
7552 = s tos @ 1 1] < Z25 L0 ®)

where the mapping W : [0, 1] — R is defined by

 [eb-a
W(x) = f .
0

3. Trapezoid Type Inequalities for Generalized Fractional Integral Operators

In this section, we obtain some trapezoid type inequalities for functions whose second derivatives in
absolute value are convex.

Lemma 3.1. Let f : I € R — R be an absolutely continuous mapping on I such that f” € L([a, b]), wherea,b € I
with a < b. Then the following equality for generalized fractional integrals holds:

miw_ﬁde%%mﬁegﬂ

1

_ (b-ap L1+t 1-t (1=t 1+t
0
where
1 S b—a
AW = [V(s)ds, V() = [ AT -
t 0

Proof. First, we consider

1 1

I=fA(t)f”(%a+%b)dt+fA(t)f”(%a+¥b)dt=Il+Iz. ®)

0 0
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Calculating I; and I, by integration by parts twice, we have

1

f NV (¥a + %b)dt

0

I

2 (14t 1—t
- A(t)b—af( 2 at

1
2 1+t 1—t
O—b—fvu)f e+ — b)dt
0
(a+b

2 2 1+t 1-t\
_b—al_v(t)b—af( 2 "t b)

1 b—a
2 a+b 4 (P(Tt) 1+t 1-¢
= A0 f( ; )+V(1)( a)zf(a)_(b—a)zof t f( o b)dt
+b 4 ¥(P<%_9‘) 2
= A(O)—f( )+V(1)( a)zf(a)_(b_u)zaj.szu(‘%b_x)f(X)b—adx
2 fa+b 4 a+b
= A(O)b—af( 2 )+(b—a)2 [V(l)f(a) ‘”I@f( )]

and similarly,

1

f A(t)f" 17 %a)dt

0

2 b 4 b
gz (5 b ()

I

Substituting I; and I, then multiplying the result by (é’v(”l) , we get the desired result. [J

Remark 3.2. If we choose @(t) =t in Lemma 3.1, then the identity (6) reduces to the inequality (2)..

Corollary 3.3. If we choose ¢(t) = in Lemma 3.1, then we have the following identity

T(a)
fl@)+ f(b) 297 T(a+1) a+b a+b
2 - (l’]—{l)“ [ b— f( ) +f( )]

1

_ (ba_-f)l f t““ 1;ta+—1;tb)+f”(—1;ta+—1;tb)]dt.
0

Theorem 3.4. Let f : I C R — R be twice differentiable function on I° such that f € L([a, b]),where a,b € I with
a < b. If the function [a, b], then we have the following inequality for generalized fractional integral
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operators

- (5 (5]

1
f sl [0l
0

where A(t) is defined as in (7).

(b-a)
4V(1)

|, we obtain

)

. % OflA(t)f"(l” 1;tb)dt+oflA(t>f”(;t + o tb)ar
T R L
w‘“)ufmanl+tVR>1 Lt

8V(1)
1
ﬂ@% mmw}
/

Hence, the proof is completed. [J

IA

IA

f%ﬂw+fmm| |+

ﬂ@D}

b— > 17
- S @l

Remark 3.5. If we choose @(t) = t in Theorem 3.4, then we have the following inequality

b
f(a) + f(b) 1
. —b_aff(t)dt

which is given by Sarikaya and Aktan [33].

f”(ﬂ)) +
12 2

f”(b))]

Corollary 3.6. If we choose ¢(t) = g; in Theorem 3.4, then we have the following inequality

f@)+fb) 2% 'T(a+1) a+b a+b
0T [fbf( s3]

ﬂ@q

f”(ﬂ)) +
2

(b —a)*
4(a+2)

Theorem 3.7. Let f : I C R — R be twice differentiable function on I° such that f € L([a, b]),where a,b € I with
a < b. If the function |f” 1 g > 1is convex on [a, b], then we have the following inequality for generalized fractional




integral operators

IA

IA

where 1 p +
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(b-a)
8v(1)

(b-a)
21V(1)

=1.

OO s o (552 e (252

1 p{ 3
f IA(DF dt (
0

1 ’
f A dt l
0

f// (ﬂ)‘q+ f//(b)|q % f// (ﬂ)|q+3
1 " 1
f//(a)|+ f//(b)|
2

f"<b>|q]}*}

IN

IN

IN

IN

(b—a)?
8V(1)

b—-a)
8V(1)

b-a)
8V(1)

1
[O
(b—a)

8V(1)

0

X

b—-a)
8V(1)

., 1+t

f|<>|

e
[ [awr dt] [

0

{ [ awr dt]

1+t 1—t)

1 ;
{ f IA(H)P dt]

0

)f"( [+ 2

f”

f(a);rf(b)_ 2 [ (pf(a+b) - (pf(a+b)

—tb)‘dt+j|A(t)| f
0

%
q
dtJ

1+t - )

o

" l—t

g

it "(b)|"] dt]

e

1 i
1-t 1+t
ar| +| [ (et 125 dt]
RIGEEET)
q 1
f//(b ] + [ f// ( )|q
5
@+ ol (1@ +3
1 * 1

f"<b>|q]5}

q

|

4973

©)
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which completes the proof of first inequality in (9).

For the proof of second inequality, let a; = 3 |f’ (a) " by = £ (b) Ty = f (a)|q and b, =3 'f’ (b)‘q . Using
the facts that
n n n
Z(uk+bk)5SZaz+st,0§s<1 (10)
k=1 k=1 k=1

and 37 + 1 < 4, the desired result can be obtained straightforwardly. O

Corollary 3.8. If we choose @(t) = t in Theorem 3.7, then we have the following inequality

b
b
f(a);f( ) (bia) ff(t)dt

b-a2( 2 \ (Bl @ +|F@l' Y (I @[ 3]l
1 (2p+1) 1 " 1

b-a2( 2p V[l @|+|f®)
o+t \2p+1 2 '

Proof. The proof is obvious from the using the fact that

(A-BY < AP - PBF (11)
forA>B>0andp >0, thus

1

1
2p
— 2y _ 42 -
f(l t)dtsf(l £2P)dt Y
0

0

O

Corollary 3.9. If we choose ¢(t) = % in Theorem 3.7, then we have the following inequality

B IS

f(a) + f(b) B 20710 (@ + 1) [ a+b (a+b)

2 (b —a) 2
(b —ay? ( pla+1) )é 37 @)+ o) 3+ @[ +3|f @) g
8(a+ 1) \Pla+1)+1 4 n
w—W(;W+n)iﬂ@hﬁ%ﬂ
2a+1) \Pl@+1)+1 2 '

Proof. The proof is obvious from the inequality (11). O

4. Midpoint Type Inequalities for Generalized Fractional Integral Operators

In this section, we obtain some midpoint type inequalities for twice differantiable mappings.
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Lemma4.1. Let f : 1 € R — R be an absolutely continuous mapping on I such that f € L([a.b]),where a,b € I
with a < b. Then the following equality for generalized fractional integrals holds:

szt s 12

1

_ (b-a)? L1+t  1—t L(1—t 1+t
= 350 f Ao (e gre) s s (Fpras o)) a (12)
0
where
1 b
Alt) = f D(s)ds, D)= [ £ j“ (13)
Proof. Firstly, we take
1 1
fA(t)f”(1+t 1;tb)dt+fA(t)f”( ! +ub)dt I + D, (14)
0 0

Calculating I; and I, by integrating by parts twice, we have

1

fA(t)f”(l i %b)dt

0

I

1+¢ 1-t¢
- —A(t)b_f( o+ — b

(a+b)
2 2 1 1 ro(52) 1 1
it —t (%) 14t 1-t
——b_al—qn(t)b_ f( - f 0+ — b)dt‘
0

a+b 4 a+b a+b
T b-a ()f( ) b —ay [_(D(O)f(T)“* q"J((T)]

and similarly

1
2 1+t 1-t
O—b—fcb(t)f e+ — b)dt
0

1
I f A(t)f” _ %b)dt
0

2 (O)f (a+b) ﬁ[ O)f(a+b) . q;f(lH-b)

Substituting I; and I, in (14) and multiplying the result by %, we get the desired result. [J

Remark 4.2. If we choose (t) = t in Lemma 4.1, then we have the following equality
b

L R e A e

a 0
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which is given by Noor and Awan in [27].
Corollary 4.3. If we choose ¢(t) = r( 5 in Lemma 4.1, then we have the following equality

Za(;r_(o;)+1)[laf(a+b) +f(a+b)] f(u;rb)

B | I LR e I (ECR S A
0

8(a+1)

Theorem 4.4. Let f : I C R — R be twice differentiable function on I° such that f” € L([a, b]),where a,b € I" with
a < b. If the function [a, b, then we have the following inequality for generalized fractional integral

operators
b b b
o oo (5 e (5] ()
1
(b —a)? ][f%mk*f%mq
OZan ) [ Ay ae || 220 2
23(0) ! 2
|, we have
b b b
o o5 et (5| (5
1 1
(b —a)? L(1+t 11—t L(1—t 1+t
< 500 jﬂumf(jfﬂ+7rﬂpmlfm@yf(2 ——@P]
0 0
— )2 y
< i®£;{jluﬂﬂl+tﬁxﬂ rofas oS ol f%wﬂw}
0
2
< w(g{fvmfmw m+f%mfmw L

fWLﬁMt

b—ap |

—a
%@[fmmwy

0

ﬁ%mﬁMm )}

£())-

f,,(a)‘ +

This completes the proof. [J
Remark 4.5. If we choose @(t) = t in Theorem 4.4, then we have the following inequality

a+b\| _ G-a?[|f@]+|f )
ffMt ( )s o [ .

which was proved by Sarikaya et al. in [32].
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Corollary 4.6. If we choose ¢(t) = ﬁ in Theorem 4.4, then we have the following inequality

27+ 1) [, (a+b) , .[a+D a+b
S [ (3 )

f”(b)l]

G-a2 (1 1 \[|f"@|+
= 4 (E_a+2) 2

Theorem 4.7. Let f : I C R — R be twice differentiable function on I° such that f' € L([a, b]),where a,b € I with
a < b. If the function |f” T g > 1 is convex on [a, b],then we have the following inequality for generalized fractional
integral operators

1 b b
ol ol

)

1 T q a\: q a\:
(b—a)2 3f”(ﬂ)| + f”(b)' q f”(ﬂ)' +3 f”(b)’ q
< ?@@Tzfmmwm ( ; + -
1 % [| £7 "
o 5 fugpa] [0
210(0) |+ i 2

1,1
where + + = =1.
P q

" on [4,b] and Holder’s inequality in Lemma 4.1, we obtain

()

Proof. Using the convexity of

fll

b b
‘2¢i0)[”j@f(zéi')+”+ @f(gfg")

1 1
b-a (Lt 1o (1t 1r
< 550 J}Aanf (2 i+ — ﬂhﬁ+JwAaﬂf (2 a+— @P1
1 b1 i
< %é%? pruﬂwm [Jﬂf(1§1a+1§lgqm]

1
P

+

(e 5)

/

1
q

q

dt]

L1+t 1t
f( 2 T zb)

1 1
Oflwdt [ f

1
(b—a)? [
IAE)P dt
8D(0) bf

1
p

q,
dt| +

=
—_
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1 p
(b —a)?
S A@P dt
8D(0) bf
1 P

x jxlgff«@r+l:- ol el +| [ (5

0 0

Sk

1+t

f%nq

"(b)|‘7)dt

" 1 ” 1 % 4 q 77 q %
fA(t |pdt 31f (a)| 4+ f (b)| + f (‘1)| -;3 f (b)’
0

This completes the proof of first inequality in (15).
The proof of second inequality in (15) is obvious from the inequality (10). O

Corollary 4.8. If we choose @(t) = t in Theorem 4.7, then we have the following inequality

g%;jvvmr—ffgb)

(b—a? 3f%mV+f%mW%+ £ @[ +3
16(2p + 1)/ 4 4

G-a?( 4 VI[If@|+|f 0|
8 (2p+1) 2 '

Remark 4.9. In all Theorems in this paper, if we choose ¢ () = kl"kl(a) te, k>0, =tkx- H* ! and p(t) =

f”(b)|q %

IA

Lexp (—%"t) ,a € (0,1), then we obtain trapezoid and midpoint type inequalities involving k-Riemann-Liouville
fractional, conformable fractional integrals and fractional integral operators with exponential kernel, respectively.
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