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Abstract. We establish several numerical radius inequalities related to 2×2 positive semidefinite block

matrices. It is shown that if A,B,C ∈Mn(C) are such that
[

A B∗

B C

]
≥ 0, then

wr(B) ≤
1
2
‖Ar + Cr

‖ , for r ≥ 1.

Related numerical radius inequalities for sums and products of matrices are also given.

1. Introduction

LetMn(C) denote the space of n×n complex matrices. A matrix A ∈Mn(C) is called positive semidefinite
if 〈Ax, x〉 ≥ 0 for all x ∈ Cn. We write A ≥ 0 to mean A is positive semidefinite.

Let w(A), ‖A‖ and r(A) denote the numerical radius, the usual operator norm and the spectral radius of
A, respectively. Recall that

w(A) = max {|〈Ax, x〉| : x ∈ Cn, ‖x‖ = 1} ,

‖A‖ = max {‖Ax‖ : x ∈ Cn, ‖x‖ = 1} ,

and

r(A) = max
{
|λ| : λ is an eigenvalue of A

}
.

An alternative way to obtain the numerical radius of matrices can be found in [12] asserts that for every
A ∈Mn(C),

w(A) = max
θ∈R

∥∥∥Re(eiθA)
∥∥∥ .

The power inequality is a main inequality for numerical radius, which says that for A ∈Mn(C),

w(Ak) ≤ wk(A) (1)
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for k = 1, 2, ...(see, e.g.,[6, p.118]).
It is known that the numerical radius w(.) defines a norm onMn(C), which is equivalent to the usual

operator norm ‖.‖. In fact, for any A ∈Mn(C),

1
2
‖A‖ ≤ w(A) ≤ ‖A‖ . (2)

However, this norm is not unitarily invariant norm, but weakly unitarily invariant. This means that
w(UAU∗) = w(A) for any unitary matrix U.

A refinement of the second inequality in (2) has been given earlier in [8], that if A ∈Mn(C), then

w(A) ≤
1
2
‖|A| + |A∗|‖ . (3)

Other numerical radius inequalities improving and generalizing the inequality (2) have been given in
[1],[10] and [13].

Generalizations of inequality (3) was given in [3]. It has been shown that if A, B ∈Mn(C), then

wr(A) ≤
1
2

∥∥∥|A|2αr + |A∗|2(1−α)r
∥∥∥ (4)

and

wr(A + B) ≤ 2r−2
∥∥∥|A|2αr + |B|2αr + |A∗|2(1−α)r + |B∗|2(1−α)r

∥∥∥ (5)

for 0 < α < 1 and r ≥ 1.
An extension of the above inequalities has been proved in [9], it has been shown that if A,B,C,D,X,Y ∈

Mn(C), then

w(AXB + CYD) ≤
1
2

∥∥∥A |X∗|2(1−α) A∗ + B∗ |X|2α B + C |Y∗|2(1−α) C∗ + D∗ |Y|2α D
∥∥∥ (6)

for 0 < α < 1. In particular,

w(AB ± BA) ≤
1
2
‖A∗A + AA∗ + B∗B + BB∗‖ . (7)

Several interesting inequalities for sums and products of matrices have been introduced by mathemati-
cians. It has been shown that for r ≥ 1, if A,B ∈Mn(C) are positive semidefinite, then

‖Ar + Br
‖ ≤

∥∥∥(A + B)r
∥∥∥ ≤ 2r−1

‖Ar + Br
‖ , (8)

and for any A,B ∈Mn(C),

wr(AB∗) ≤
1
2

∥∥∥(AA∗)r + (BB∗)r
∥∥∥ (9)

and

‖AB ± BA‖r ≤ 2r−1
‖(AA∗)r + (BB∗)r + (A∗A)r + (B∗B)r

‖), (10)

(see, e.g., [11]).

For a positive semidefinite block matrix
[

A B∗

B C

]
, where A,B,C ∈Mn(C), it is well known that

∥∥∥∥∥ A B∗

B C

∥∥∥∥∥ ≤ ‖A‖ + ‖C‖ . (11)
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However, if the off-diagonal block B is Hermitian, then Hiroshima [5] established a stronger inequality than
(11) , ∥∥∥∥∥∥

[
A B
B C

]∥∥∥∥∥∥ ≤ ‖A + C‖ . (12)

On the other hand, Burqan and Al-Saafin [2] gave an estimate for the numerical radius of the off-diagonal

block of positive semidefinite matrix
[

A B∗

B C

]
,

w(B) ≤
1
2
‖A + C‖ . (13)

In this paper, we are interested in finding a generalization of inequality (13) which yields new numerical
radius inequalities. More numerical radius inequalities involving sums and products of matrices will be
considered.

2. Lemmas

To establish and prove our results, we need the following lemmas. The first lemma is an application of
Jensen’s inequality, can be found in [4]. The second lemma follows from the spectral theorem for positive
matrices and Jensen’s inequality (see, e.g., [7]). The third lemma is a Cauchy-Schwarz inequality involving
block positive semidefinite matrices (see [14, p. 203]). The fourth lemma has been proved in [7]. The fifth
lemma introduces useful estimates for the spectral radius of 2 × 2 block matrices, can be found in [6].

Lemma 2.1. Let a, b ≥ 0 and 0 ≤ α ≤ 1. Then

aαb1−α
≤ αa + (1 − α)b ≤ (αar + (1 − α)br)

1
r , f or r ≥ 1.

Lemma 2.2. Let A ∈Mn(C) be positive semidefinite, and let x ∈ Cn be a unit vector. Then

〈Ax, x〉r ≤ 〈Arx, x〉 , f or r ≥ 1.

Lemma 2.3. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then

∣∣∣〈Bx, y
〉∣∣∣2 ≤ 〈Ax, x〉

〈
Cy, y

〉
, f or x, y ∈ Cn.

Lemma 2.4. Let A ∈Mn(C) and 0 < α < 1. Then[
|A∗|2α A∗

A |A|2(1−α)

]
≥ 0.

Lemma 2.5. Let A,B,C,D ∈Mn(C). Then

r
([

A B
C D

])
≤ r

([
‖A‖ ‖B‖
‖C‖ ‖D‖

])
.

3. Main Results

In the beginning of this section, we introduce a generalization of inequality (13), which yields interesting
new numerical radius inequalities.



A. Burqan, A. Abu-Rahma / Filomat 33:15 (2019), 4981–4987 4984

Theorem 3.1. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then

wr(B) ≤
1
2
‖Ar + Cr

‖ f or r ≥ 1. (14)

Proof. Since
[

A B∗

B C

]
≥ 0, for every unit vector x ∈ Cn, we have

|〈Bx, x〉| ≤ 〈Ax, x〉
1
2 〈Cx, x〉

1
2 (by Lemma 2.3)

≤
1
2

(〈Ax, x〉 + 〈Cx, x〉)

≤

(
〈Ax, x〉r + 〈Cx, x〉r

2

) 1
r

(by Lemma 2.1)

≤

(
〈Arx, x〉 + 〈Crx, x〉

2

) 1
r

(by Lemma 2.2)

Thus,

|〈Bx, x〉|r ≤
1
2
〈(Ar + Cr)x, x〉

and so

wr(B) = max
{
|〈Bx, x〉|r : x ∈ Cn, ‖x‖ = 1

}
≤

1
2

max {〈(Ar + Cr)x, x〉 : x ∈ Cn, ‖x‖ = 1}

=
1
2
‖Ar + Cr

‖

as required.

Using the fact that if
[

A B∗

B C

]
≥ 0, then

[
X∗AX X∗B∗Y∗

YBX YCY∗

]
≥ 0 for any X,Y ∈ Mn(C), we have the

following corollary.

Corollary 3.2. Let A,B,C,X,Y ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0. Then

wr(YBX) ≤
1
2

∥∥∥(X∗AX)r + (YCY∗)r
∥∥∥ f or r ≥ 1. (15)

Our next inequality, is a refinement of inequality (11) .

Theorem 3.3. Let A,B,C ∈Mn(C) be such that
[

A B∗

B C

]
≥ 0 and let B = UDV∗ be a singular value decomposition

of B. Then∥∥∥∥∥∥
[

A B∗

B C

]∥∥∥∥∥∥ ≤ ‖U∗AU + V∗CV‖ . (16)

Proof. Since
[

A B∗

B C

]
≥ 0, it follows that[

U∗ 0
0 V∗

] [
A B∗

B C

] [
U 0
0 V

]
=

[
U∗AU D

D V∗CV

]
≥ 0.
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Using unitarily invariant property and inequality (12), we get∥∥∥∥∥∥
[

A B∗

B C

]∥∥∥∥∥∥ =

∥∥∥∥∥∥
[

U∗AU D
D V∗CV

]∥∥∥∥∥∥
≤ ‖U∗AU + V∗CV‖ .

This completes the proof.

4. Inequalities for Sums and Products of Matrices

In this section we introduce several interesting inequalities for sums and products of matrices. First
inequality is a generalization of inequality (4).

Theorem 4.1. Let A,B ∈Mn(C) and 0 < α < 1. Then

wr(A + B) ≤
1
2

∥∥∥(|A∗|2α + |B∗|2α)r + (|A|2(1−α) + |B|2(1−α))r
∥∥∥ , for r ≥ 1. (17)

Proof. Since the sum of positive semidefinite matrices is also positive semidefinite and by applying Lemma
2.4, we have[

|A∗|2α + |B∗|2α A∗ + B∗

A + B |A|2(1−α) + |B|2(1−α)

]
≥ 0.

By Theorem 3.1, we get

wr(A + B) ≤
1
2

∥∥∥(|A∗|2α + |B∗|2α)r + (|A|2(1−α) + |B|2(1−α))r
∥∥∥ .

This completes the proof.

It is clear that inequality (17) is a refinement of inequality (5).
For α = 1

2 in inequality (17), we get the following power numerical radius inequality for sum matrices.

wr(A + B) ≤
1
2
‖(|A∗| + |B∗|)r + (|A| + |B|)r

‖ , f or r ≥ 1. (18)

In the following, we establish a numerical radius inequality for matrices that produces an estimate for
the numerical radius of commutators.

Theorem 4.2. Let A,B,C,D,X,Y ∈Mn(C). Then

wr(Y(AC∗ + BD∗)X) ≤
1
2
‖(X∗(AA∗ + BB∗)X)r + (Y(CC∗ + DD∗)Y∗)r

‖ , for r ≥ 1 (19)

Proof. We know that[
AA∗ + BB∗ AC∗ + BD∗

CA∗ + DB∗ CC∗ + DD∗

]
=

[
A B
C D

] [
A B
C D

]∗
≥ 0,

for any A,B,C,D ∈Mn(C). So by Corollary 3.2, we have

wr(Y(AC∗ + BD∗)X) ≤
1
2
‖(X∗(AA∗ + BB∗)X)r + (Y(CC∗ + DD∗)Y∗)r

‖ ,

for any X,Y ∈Mn(C).
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By letting X = Y = I, C∗ = B and D∗ = ±A in inequality (19), we get the following numerical radius
inequality for commutators which a generalization of inequality (7).

wr(AB ± BA) ≤
1
2
‖(AA∗ + BB∗)r + (A∗A + B∗B)r

‖ , for r ≥ 1 (20)

Through inequality (8), we see that inequality (20) is a refinement of inequality (10).
The inequality (9) is produced by letting X = Y = I, C = B and D = B = 0 in inequality (19).
We conclude this paper by giving numerical radius inequality involving products of matrices.
It is clear that if AB = BA, then w(AB) ≤ ‖BA‖. But this is not true if the hypothesis of commutativity is

omitted. To see this, Let A =

[
0 0
1 0

]
, B =

[
1 0
0 0

]
. Then w(AB) = 1

2 > 0 = ‖BA‖ .

In the following theorem we introduce an upper bound of w(AB) based on ‖BA‖without the hypothesis
of commutativity.

Theorem 4.3. Let A,B ∈Mn(C). Then

w(AB) ≤
1
2

(‖BA‖ + ‖A‖ ‖B‖)

Proof. For θ ∈ R, we have∥∥∥Re(eiθAB)
∥∥∥ = r(Re(eiθAB)) =

1
2

r(eiθAB + e−iθB∗A∗)

=
1
2

r
([

eiθAB + e−iθB∗A∗ 0
0 0

])
=

1
2

r
([

eiθA B∗

0 0

] [
B 0

e−iθA∗ 0

])
.

Using a commutative property of the spectral radius and Lemma 2.5, we have∥∥∥Re(eiθAB)
∥∥∥ =

1
2

r
([

B 0
e−iθA∗ 0

] [
eiθA B∗

0 0

])
=

1
2

r
([

eiθBA BB∗

A∗A e−iθA∗B∗

])
≤

1
2

r
([
‖BA‖ ‖BB∗‖
‖A∗A‖ ‖A∗B∗‖

])
=

1
2

(
‖BA‖ +

√
‖A∗A‖ ‖BB∗‖

)
=

1
2

(‖BA‖ + ‖A‖ ‖B‖) .

Take maximum over θ ∈ R in two sides, we get

w(AB) ≤
1
2

(‖BA‖ + ‖A‖ ‖B‖) .

This completes the proof.

To show that w(AB) ≤ 1
2 (‖BA‖ + ‖A‖ ‖B‖) is sharp, consider A =

[
0 0
1 0

]
, B =

[
1 0
0 0

]
, then w(AB) =

1
2 , ‖BA‖ = 0 and ‖A‖ = ‖B‖ = 1.
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