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Abstract. The aim of this article is to study the local stability of equilibria, investigation related to
the parametric conditions for transcritical bifurcation, period-doubling bifurcation and Neimark-Sacker
bifurcation of the following second-order difference equation

Xn+1 = Xy + ﬁxn—l eXp(—anfl)

where the initial conditions x_;, xy are the arbitrary positive real numbers and a, and o are positive
constants. Moreover, chaos control method is implemented for controlling chaotic behavior under the
influence of Neimark-Sacker bifurcation and period-doubling bifurcation. Numerical simulations are
provided to show effectiveness of theoretical discussion.

1. Introduction

Studying the dynamics of a difference equation means that we attempt to do the following actions:
determine equilibrium points, analyze their stability, asymptotic stability, boundedness and bifurcation.
The dynamic of any situation refers to how the situation changes over the course of time. In many scientific
fields researchers need to study difference or differential equations that contain parameters, so it is important
to study the behavior of these equations as the value of certain parameter varies. This study focuses on
the concept of bifurcation. Qualitative theory of difference equations which parallels the qualitative theory
of differential equations has been investigated by several authors. For more details of theory of difference
equations and their applications, we refer to the books [1-8]. Investigation of the global stability character,
boundedness and bifurcation of difference equations has been considered by many authors such that in [9]
Metwally et al. studied the boundedness, the asymptotic behavior, the periodic character and the stability
of solutions of the difference equation

Xpa1 = @ + Pxy_1 exp(—xy),
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where the parameters a and f are positive numbers and the initial conditions are arbitrary non-negative
real numbers.

Wenijie et al. in [10] studied the boundedness and the asymptotic behavior of the positive solutions for
difference equation

Xp+1 =4+ bxn eXp(_xn—l)/

where 2 and b are positive constants and the initial values x_;, xg are non-negative numbers.
In [11] the global behavior of the positive solutions for difference equation

Xpi1 = Xy + bx, 1 exp(=xy),

is investigated, where 4, b are positive constants and the initial values x_;, xj are positive numbers.
The authors in [12] studied the system of difference equations:

Xpal =AYy + bxp_1 €Xp(=Yn), Xnt1 = Xy + AYp—1 exXp(=xy),

where g, b, c and d are positive constants and the initial values x_1, xo, ¥-1, Yo are positive numbers.
Hui Feng et al. in [13] investigated the global stability and bounded nature of the positive solutions for
difference equation

Xpi1 = @+ bxy_1 + cxy1 exp(=xy),

where the parameters a € (0,0), b € (0,1), c € (0, ) and the initial conditions are arbitrary non-negative
numbers. For other papers related to the qualitative behavior of difference, we refer to [14-24]. Furthermore,
for bifurcation analysis and chaos control in discrete-time models, we refer to [25-33].

The main purpose of this paper is to investigate the local stability of equilibria, bifurcation analysis and
chaos control for the following second-order exponential difference equation:

Xns1 = QX + BXy-1 €Xp(—=0xy-1), 1 =0,1,---, (1.1)

where the parameters a,  and ¢ are positive numbers and the initial conditions x_; and xj are arbitrary
positive real numbers. Moreover, introducing ¥, = x,-1, we obtain the following planar discrete-time
system equivalent to (1.1):

axy + By exp(—=oyy), (1.2)
Yny1 = Xn.

Xn+1

This paper was organized as follows. In Section 2, we determine the equilibrium points and explore
the parametric conditions for the the local stability of the equilibria of system (1.2). In Section 3, we
investigate parametric conditions for transcritical bifurcation, period-doubling bifurcation and Neimark-
Sacker bifurcation at the fixed points of a two-dimensional map associated to system (1.2). Section 4 is
dedicated to chaos control for the system (1.2) under the influence of Neimark-Sacker bifurcation and
period-doubling bifurcation. Finally, in Section 5, some numerical examples are presented in order to
illustrate the theoretical discussions.

2. Local stability analysis of equilibria

In this section, we study local dynamical behavior for equilibria of system (1.2). First we see that
steady-states of (1.2) solve the following system:

x =ax + pyexp(-oy), y = x.

1ln i) two equilibria for system

Solving aforementioned system yields Eg = (0,0) and E; = (% In -
n

(1.2). Moreover, assume that 0 < @ < 1and a +f > 1, then (l 1

SIng=, ) is unique positive equilibrium

1-a
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point for system (1.2). Assume that J(x, y) denotes Jacobian matrix of system (1.2) evaluated at (x, y), then

it follows that:
_[a B

and , 1 p
e R CE )
Moreover, characteristic polynomial for J(0, 0) is computed as follows:
P(A\) =A% —al g, (2.1)

and characteristic polynomial computed for ](% In %, % In %) is given by:

P(/\)=A2—aA—1+a+ln(1i)—aln(%). (2.2)

Keeping in view the relation between roots and coefficients for a quadratic equation, the following Lemma
gives local dynamical behavior of system (1.2) at its trivial steady-state (0, 0).

Lemma 2.1. The following statements hold true related to equilibrium (0, 0) of (1.2):
(I) (0, 0) lies inside the open unit disk if and only if 0 < @ < 1and 0 < f <1 —a.

(II) (0,0) is a saddle point for the system (1.2) if and only if 0 < a < land1-a < B <1+a, or a > 1 and
0<p<l+a.

(III) (0, 0) is a source (repeller) for the system (1.2) if and only if B > 1 + av.

(IV) (0,0) is a non-hyperbolic point if and only if 1 + a = B, ora + f = 1.

Saddle

Source

Figure 1: Sink (green), saddle (yellow) and source (red) regions for system (1.2) at (0, 0).

Similarly, for positive equilibrium point, we have the following Lemma:
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Lemma 2.2. Assume that 0 < a < 1, then for positive equilibrium of the system (1.2) the following statements hold
true:

1)) (% In £, 11n %) lies inside the unit open disk if and only if
@-a?
l-a<pf<ema(l-a).
(10 (% In£, lin %) is a saddle point if and only if
a+p<1, ﬁ>e_127aa(l—a).
(IIT) (% In £, 1in %) is a repeller (source) if and only if
0<p<eme(l-a).
(V) (% In £, 11in %) is a non-hyperbolic if and only if

p=1-aqa,

or

B= (1—a)exp(— 22 ),

1-«a
or

B= (1—a)exp(i:—Z).

Figure 2: Sink (green), saddle (yellow) and source (red) regions for system (1.2) at positive equilibrium.
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3. Bifurcation analysis
In this section, we investigate the parametric conditions for existence of transcritical bifurcation, period-

doubling bifurcation and Neimark-Sacker bifurcation for the system (1.2) at its fixed points.

3.1. Transcritical bifurcation at E

Assume that = 1 — @, then J(0,0) has two eigenvalues v; = @ — 1 and v, = 1. In this case, we discuss a
transcritical bifurcation. The first equation of the system (1.2) takes the form

Xn+1

0, + By exp(=0Yy)
2.2

0" Y
2

ax, + ﬁyn - ﬁ‘jyi + O(| ]/n |3)

axy + Byull — oy, + +]

Lemma 3.1. If  =1—a, a # 0, the system (1.2) undergoes a transcritical bifurcation at the fixed point (0, 0).
Proof. Let u, = — (1 — a), the system (1.2) becomes

Xnr1 = axp + (1= @)y, + pnyn —o(1 - a)]/i - Oﬂny%/
tns1 = G.1)
Yn+s1 = X,
Let
a-1 0 1 ﬁ 0 ﬁ
T=| 0 1 0/, T'=l0 1 0
1 01 = 0 4

We use the transformation

Xn Uy,
tn|=T|0a].
Yn Un

Then, the map (3.1) can be rewritten in the following form:

Upi1 a=1 0 0\(un) (fi(ttn,On,0n)
Suirl=| 0 1 ofls,|+ 0 (3.2)
Un+1 0 0 1)\v, fZ(unz On,s Un)
where
1
Fi(itn, 5, 0) — [Buttn + 6,405 — (1 = )2 = 0(1 - @)0? = 20(1 - @)y,

—aénuﬁ — ac‘invﬁ - 206nunvn] ,

fa(ttn, On, Un) [(Snun + 0,0, —o(1 — a)ui -o(1- oz)vﬁ - 20(1 - a)u,v,

a—2
—aénuﬁ - aénz}% - Zaénunvn] .

From the center manifold theory of discrete system, we can express a center manifold of the map (3.2) as
follows

WE(0,0) = {(x, v, 1) € R® | u = h(0,8), h(0,0) = Dh(0,0) =0, v |< &, |51|< 7).
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Assume that i(y, ) has the following form
U1 = (0, 62) = @105 + A2y0n + 305 +0((| 0 | +1 64 1)),
which must satisfy
h(vn, 60) = (@ = Dh(vy, ) + f1(1(0n, Ou), On, Vn).

Then, we can find that

a = ?0(61_—_2?2), a = (a:lz)z andaz; =0,
therefore, we have u,, = h(v,,5,) = C(Tf—_z?z) 2 - o 2 —L-6,v,, and
g1 = Onr1 = U+ fotin, O, 0n),
= O +f2(0(1 (;2) vy~ @ _12)2 OnVn, On, V),
hence
J1 = Uppl =0y — % W0 + @ _12)36%vn - aizé”v” + @-2p

ol-a), , 20°(1-a) 5 ofl —a)vz 20%(1 - a)? 4

@—2p 1 T Taap T a2 T T a2y

n

(l-a) ,

n

5008

20l-a), , o1-aP_ , 0 4. 20%(1-a), :
i Sl P BN Gl B 0 i L)
@=27 " =2 T @ 2p T T -2p
o , 20%(1-a)_ 4 200 4,
+a — Zénvn + @—27 Onv, — @-2p 0,7,
Since ';gzl = 20 4, ;jgg” =--L#0and 35:33,1 325%1 %2(%1 > 0, if @ < 2. then the map (1.2) undergoes a

transcritical bifurcation at the fixed point (0,0). O

3.2. Period-doubling bifurcation at Eg

Suppose that § = 1 + «, then J(0,0) has two eigenvalues v; = @ + 1 and v, = —1. In this case we will

investigate a flip (period-doubling) bifurcation.

Lemma 3.2. If f =1+ a, a # 0, the map (1.2) undergoes a flip bifurcation at the fixed point (0, 0).

Proof. Let u, = p — (1 + ), the map (1.2) becomes

X1 = Xy + (14 Q)Y + tinYn — 01+ Q)Y = OlinYs,
Hns1 = Has
Yny1 = Xp,
Let
a+l 0 -1 L 0 =
T=[ 0 1 0|, T!'=[0 1 0
1 0 1 =L 0 &

(3.3)
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We use the transformation

Xp Uy,
tn|=T|04].
Yn Un

which transforms the map (3.3) into the following standard form

Uil a+1 0 0)(uy, (Pl(unr On, Un)
Ons1|=] O 1 0|6, + 0 (3.4)
Upt1 0 0 —1)\v,) \pa(un,64,vn)
where
1
P1(tn, On, Un) T3 [(Snun + 0,0, —o(1 + ac)ui -o(1+ oc)v% —20(1 + a)u,v,

—aénuf, - aénvi - ZGénunvn]

-1
a+2
—oénuﬁ - oé,,vf, - Zoénunvn] .

O2(U, O, V) [6nun + 0,0, —o(1 + a)uﬁ —o(l+ a)v% - 20(1 + a)u,v,

From the center manifold theory of discrete dynamical systems, we can express a center manifold of the
map (3.4) as follows

WE(0,0) = {(x,y, 1) € R® | u = h(v,0), h(0,0) = Dh(0,0) =0,|v|< e, |5]<n)
Assume that h(y, 1) has the following form

U1 = (0, 8) = b0}, + bayuby + b35, + 0((| v | + 18, 1)°),
which must satisfy

h(n, 6n) = (@ + Dh(0n, 6n) + P1(h(0n, 61), 0n, Vn)-
Then, we can find that

_o(l+a) -1 B
bl— ) , b2—a+2 andb3—0.

o(l+a) 2 1
a2 n a+26”U”’ and

Therefore, we have u,, = h(v,,0,) =

g2 = Upy1 = —0Up + (PZ(un/ On, vn)r
ol+a) , 1
= —Uy+ QZ)Z( ) 0, — I 26717]71/ 671/ Un)~

Hence, we obtain
ol+a),_ , ) 1 adl+a)P ,
- + 820 — —— Bt +
@22 T @22 T a2 T Ty O
ol+a), , 20°(1+a)P 5 o(l+a) , 20°(1+a) 2
(@+2)3 """ (@+2)3 " g2 " (@+2)2 "

g2 = Upy1 = — Uy

20(l+a), , o(1+a)?_  , 0 5, 20%(1+a), ,
el Sl e g PR el e AN S el S
@x2)2 T T2 O T a2 T Ta2p OnOn
o , 20%(1+a), 4 200 5,

+ - .
a1 200 T Ty O T (g 22
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Since we have

_(92%9 L9 ) 2
"7\, 92 T “90,90, ) 0

1 82_1]2 g 1 8392 202(1 + 0()2
|2 (Z82) 4 228202 22T L,
P2 [ > ( 72 ) 02 l(0.0)

Then system (1.2) undergoes a subcritical flip bifurcation at (0,0). O

3.3. Transcritical bifurcation at E1

For p = (1 — ), hence ]( In = 1 =, (1j In 15 a) two eigenvalues becomes v = @ — 1 and v, = 1. The following
Lemma shows that the fixed point ( In = 1 =5 lin £ 1-5) is a transcritical bifurcation point.

Lemma 3.3. If (1 - a)(l —In 15 a) >0,8 =1-aand a # 0, the system (1.2) undergoes a transcritical bifurcation
at the fixed point ( In £ =, 1In; a) and the equation (1.2) has only one fixed point.

Proof. The proof is similar to the proof of Lemma 3.1. O

3.4. Period-doubling bifurcation at E;

For g = (1 — a) exp(:5 2a 7), hence | ( ln Lin i) two eigenvalues becomes vi = a + 1 and v, = —1. We

will show that the fixed point (U In — 1_a, % In 1i) is a flip bifurcation point by the following Lemma:

Lemma 3.4. If(l - oz)(l —In ;- a) >0,p=01-a) exp( 1), the system (1.2) undergoes a flip bifurcation at the
fixed point (1 In 1= 1 = ln st a)

Proof. LetC, = x, — My = Yn — %, Un = \/E N )] exp(%), then the system (1.2) becomes

2a
ala-1)"

_ 1) exp(—2 - 22
Cov1 =aly+Ba-1) exp(a 1 )T]n +o(l-a) eXP((X 1 )T]n

26a -1 20
200D \/ (1-a) eXp( )T]mun = l)yﬁ +0((1 1 |+ 1t )°) (3.5)
Mn+1 = Ca-
Let
a+1 0 1
T=| 0 1 0],
1 0 -1
and

[

1 a+l
a+2 a+2

1 1
e B Ul
T'=|0 0

By the following transformation

Cn iy a+1 0 1)(u,
w|=Tlo.|=| 0 1 0|6,
M On 1 0 -1 Oy
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Uns1 a+1 0 0)\(up\ (61(un,0n,0n)
= -1 0 ||6,|+ 0 ,
0 0 -1)\v, 02 (un, On, vn)

o(1- a) 20 Yo

where
o(l—-a) 20
P @+ *PGT

62(“7[/ 67‘1/ UH) = ( + 2) exp(

_26(1 _ 0() X ( z_al)unvn + 2(526;(a 1)1 \/(1 - CY) exp( )6 Un

Gl(un/ 6}’!/ Uﬂ)

(a+2) o
_26Ga-1) \/ 2w
1- n
(a +2)(0¢ 1) (1-a) exp( )6 v (0( 1(a +2)
Let
Uy = W(v,, 8,) = d10* + dov,0, + d30% +0((| vy | + | 6, )%).
Which must satisfy that

102 + dov,0, + d30% = (@ + 1)w(v,, 6,) + O1(W (0, O), O, V).

Then we obtain

ola—1) exp(a2_0z1),

YT @ +2)

_2(a-1) 2a
d2 = m (1 - 0() exp(m),

0 2
YT sl-a)a+2)
Hence 1y, = 53235 exp(2)0% + gyan /(1 = @) exp(2)0udn + s 0o
1-a) 2a0 | 5 1-a) 20,
eXp(a _ 1)“11 + ((X +2) exp(a _ 1)011’

g3 = Upt1 = —0Uy + @+2)

20(1 — a) 20 2(5a - 1) 2u
— Xp(Oé — 1)unvn + m \/(1 - a) exp(m)énun,

(o +2)
_2(a-1) \/ j 2 5
“@raa-pVIY eXp( ) Ot e T D@
Then, it follows that
o(l-a) 2, 2a , 20°(1-a)? 4
Pt D@ T a@r 2

o= "On ¥ (a+2)

2(5a - 1) 2a leaexp(Z%)
_(a +2)(a—1) 1-a exp(a - 1)6"Un - (a+2)%(a — 1)6” "
+4a(5a — 1) )\/(1 a) exp(

ala + 2)

)vé
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46— 1) (- @ exp(E)

A aparzr ot olunl+ 18D

Since

9 P 92 Ga-1)4/(1-a) exp(wz—j’1
plz( g3£+2 g3 )|(0‘0):—

oy 002 00,00, (a—1D)(a+2)

1
¢Of0ra¢1,§

_(1(2%g 2 1%, | _20%(1 - af(aexp(F) + 1)
2212052 ) T30 |00 a(a+ 27

Then system (1.2) undergoes a supercritical flip bifurcation at (£ In %, iln %). O

3.5. Neimark-Sacker bifurcation at Eq

In this section, we discuss the Neimark-Sacker bifurcation analysis of Eq.(1.2). For this, first we state
Neimark-Sacker bifurcation theorem, which is also known as Poincare-Andronov-Hopf bifurcation theorem
for maps, see[[24], [34], [35]].

Theorem 3.5. Let
F:RxR?>—>R% (A,x) = FA,x)
be a C* map depending on real parameter A satisfying the following conditions:
(i) F(A,0) =0 for A near some fixed Ay :
(ii) DF(A, 0) has two non-real eigenvalues 1(A) and ;t(/\)for A near Ag with | u(Ag) |=1;
Gii) & | p(A) |=d(Ag) # 0at A = Ag;
({v) pk(Ao) #1fork=1,2,3,4.
Then there is a smooth a—dependent change of coordinate bringing F into the form
F(A, x) = G(A, x) + O(|lxP).

Consider a general map F(A, x) that has a fixed point at the origin with complex eigenvalues u(A) = a(A)+iB(A)
and p(A) = a(A) — iB(A) satisfying a(A)? + B(A)? = 1 and B(A) # 0.

By putting the linear part of such a map into Jordan canonical form, we may assume F to have the
following form near the origin

a) =B\ () | (A x0,32)
FA,x) = (ﬁ(A) a(2) )(xi) + (glm, xi,x;)

Moreover, for all sufficiently small positive (negative) A F has an attracting (repelling) invariant circle if
a(Ag) < 0 (a(Ag) > 0) respectively; and a(Ag) is given by the following formula:

(1 - 20t i (Ao)

1 -
a(Ag) = Re + = 2+ % —Re(u(Ao)y21), 3.6
(Ao) 1= (o) )/11)/20] Sl +lyel (1(Ao)y21) (3.6)
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where
Yo = 2 (@ = @) + 202000 + i@~ @n, ~ 2]
Y= @0 + @)an +i1@an + @ox]

Yo2 = % {(gl)xml - (gl)xzxz - 2(92)x1x2 +1i [(gZ)xlxl - (gZ)xzxz + 2(91)9(19(2]}

1
V21 = g {(gl)xmlm + (gl)xpczxz + (gZ)xlxlxz + (92)xzxzxz

+i [(92)951:51)51 + (92)x1xzx2 - (gl)xlxlxz - (91)x2x2x2]}-

In order to apply Theorem 3.5 we make a change of variable y, = x, — x in (1.1). Then, transformed
equation is given by

Y1 = (Y + X) + B(Yu-1 + X) exp(=0(Yn-1 + X)), (3.7)
where .
x==In P .
c 1-«a

By using the substitution u, = y,-1, v, = y, we write Eq.(3.7) in the equivalent form:

{ Upt1 = Un (38)

Oys1 = (0, + X) + By + X) exp(—0 (i, + X))

Let F be the function defined by:

0
H””:@w+a+ﬂwdmm@dwiﬁ'

Then F has the unique fixed point (0, 0). The Jacobian matrix of F is given by

0 1
“”w:&a_aw@»amﬂw+b>a)

At (0,0) Je(u,v) has the form

0 1
h@mz&a—&mme&>a) 9

The eigenvalues of (3.9) are u.(B) where

o+ i\/4(1 —a)ox —1) —a?

1 (p) = . ,
Then we have that
u 0 1\ (u
f (0) B (ﬁ(l — ox) exp(—0x) zx) (v) (3.10)

fl(ﬁ/ u, U)
*@mmﬁ'
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and

fl(ﬁ/ u, Z))
f2(B,u,0)

0,

a(v +x) + Bu + x) exp(—o(u + x)) — (- ox) exp(—m_c)u —av—x.
Let
2
Bo=(1-0a) exp(ﬁ).
For g = By we obtain

- (2-a 0 1
X = m and ]F(O, 0) = (_1 (X) .

The eigenvalues of Jr(0,0) are u(8o) and u(8o) where

V4 — 2
w(Bo) = w-

The eigenvectors corresponding to (o) and u(By) are v(Bo) and v(y) where

-1 — 2
o) = (L5 ),

we have
a+ivd—a?
(o) =
One can prove that
lpBo)| = 1,
a? ia V4 — a?
1(Bo) = ?_1+T'
3 _a@?*-2) a(@®-4) .|a®Vi-a? ) 4—q?
w(Bo) = 1 + 1 +1 1 +(a°-2) 5 ,
2 2 2 2 2
4 _ @-2F a@d-a) ., 4—a
ey = — via(e? -

From which follows that u¥(8y) # 1 for k = 1,2,3,4. Substituting = fp and x into (3.10) we get
uy\ (0 1\(u hi(u,v)
= o)) i)

hi(u,v) = fi(Bo, u,v) =0

and

2- 2-a)

a) 2-a)
a(l—az))Jrﬁ(LHr o(l—-a)

o(1-a)

hZ(”r Z)) = fZ(ﬁOr u, U) = 0((7) + )exp(_c(” + ))

2-a)

+u—av—a(l_a)
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Hence, for § = By system (3.10) is equilvalent to

Une\ (0 1\ (un)  (h1(tin,04)
Un+l -1« On * hZ(unlvn) .

Let

1 0 1
P = 2 __a .
Vi-a? Va-a?
Then system (3.10) is equivalent to its normal form

. Vi
Entl _ 2 — T2 En &n
(nm)"(@ a ](nn)+c(ﬂn)’

where

Let

Then

91(1,0) = ha(Su +

2 — V4 — a2 2 —
=a(u+ o((l _02)) +[3(%u+ > a v+ (7((1 _aoz))exp(—o(%u+
a V4 — a? 2-a)
+—u+ -

2 2 T T LA

5015

(3.11)
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(1, 0) = ————=g1 (4, V)
Y e
Other calculation gives
82!]1 (0, 0) _ 0;“3
ou? T4
Pq(0,0)  cavVi-a?
902 - 4 ’
Pq(0,0)  ca’Vi-a?
ouv - 4 ¢
Pq0,00  o2a¥(1-2a)
ous a 8
*g1(0,0)  0a*(1-2a)(4 - a?)
ouov? )
710,00 02?1 -2a)Vi—a?
ouldv )
Pq0,0) 021 -2a)(4 - a?)}
a3 B 8
and
720(0,0) = —§[1+1 4—a2]
oa a
00 = 2 [1 _i ]
)4 1 T
oa a3 - az]]
OI 0 = = 0[2 -1 +i——
702(0,0) 3 [( ) N
2 4 _n.5 3 _ 2
721(0,0) _0? [ 4, ;208 —30% + 28a° — 160% + 32a + 16]}'
64 Viia
Now we have that
- 02(a4——a5+—14a3——8a2+—16a—k8)
Re (#(ﬁo)yn(ﬁo)) = 1 ,
_ 2
(1 = 2(Bo)) (o) (20° + a2 — 14 +8) - i(20° — 3a? — 6a + 6) VE—
1= p(Bo) - 42 - a) ’
- 2.2 3 2
re| (L= 2401 _aa(m-ux—Ma+®
I 1wy | 3202-p) '
_ 2 2
¥11(Bo)y11(Bo) 515?52555'
- o%a%(4 + 3a*
Y02(Bo)yo2(Bo) = ora”(d +3a7)

64(4 — a2)

5016

(3.12)

(3.13)

(3.14)

(3.15)
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Then by using (3.12), (3.13), (3.14) and (3.15) we get that
) 22 <2a3 +a? - lda + 8) N o2a2(12 + 3a%)
Po) = 322 — a) 64(4 — a?)
o? (a4 —a’® + 14a® — 8a2 + 16a + 8)
64

< 0

One can see that
| u) P= pBu@) = 1 - a)ox -1)
= (1-a)(n % -1,

from which we obtain
d 1 -a)?

- | nu(ﬁ) |ﬂ:ﬁoz
28/(1 - a)(in £ - 1)

dp |13=/50

1-«

Zoxp(Zs
From the above analysis, we have the following Lemma:

Lemma 3.6. If4 > a2, then system (1.2) undergoes a Neimark-Sacker bifurcation at its positive equilibrium Eq when

B = Po.

4. Chaos control

In this section, a feedback control methodology (that is, OGY method) is implemented to system (1.2)
for controlling chaos under the influence of Hopf and period-doubling bifurcation at positive steady-state
of system (1.2). Ott et al. [36] introduced a feedback control method for controlling chaos in discrete-time
systems and this method is known as OGY method.

For the application of OGY method, we write system (1.2) in the following form:

Xn+1 = AXy + BYn exp(—=oyn) = f(Xn, Yn, B),

4.1
Yn+1 = Xu = (X, Yn, B), (4.1)

where  denotes parameter for chaos control. Suppose that f8 lies in a small interval, thatis, € (B -n,B+ 17)

such thatn > 0 and B represents nominal value for § which belongs to some chaotic region. Suppose that
(", y) = (% ni— a, < ln ) denotes an unstable fixed point for (1.2) in chaotic region which is produced
under the influence of Hopf bifurcation or flip bifurcation. In this case, (4.1) is approximated in the

neighborhood of (x*, y*) = (Cl; In %, in 1ﬁ ) as follows:
Xpi1 — X o x| Xn—X A
* ~JXx,y, * + B - 7 42
[ym_y ] I yﬂ)[yn_y ] (8- 4] (42)
where

* * ) a
J&x, v, B) ag(x',y' p) 99(X y B)

ox

a (1- oz)( 1-In
1 0

[Bf(xyﬁ) 9fxyﬁ) ]
i
1
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and

Iy B) (1-a) ln( La )

B = aﬁ R = - 5.

99(xy" ) po ’
B 0

Furthermore, the system (4.1) is controllable if the following matrix has rank 2

_(1—a)ln(1'?“) _a(l—a)ln(l‘T[‘)

— . — po po
C=[B:JB] = (i) | 4.3)
0 -

According to assumption for existence of positive equilibrium, we have (1 — &) In (%) > 0 and this implies

that rank of C is 2. Furthermore, we set [ — ﬁ] =-K [ ;” : ;C* ], where K = [ ki k ], then system (4.2) is
n
written as follows
X1 — X° X, —x*
. |=[J-BK - 44
[ oy 2T ] »

In this case, the corresponding control system of (1.2) is given as follows

Xn+l = Xy + (,é — ki (xn = x7) — ka(yn — y*)) Yn €Xp(=0Yn),

Yne1 = Xy

(4.5)

Moreover, the positive equilibrium point (x*, y*) of (4.5) is locally stable if and only if absolute values of
both eigenvalues of | — BK are less than one. Moreover, the matrix | — BK is given as follows:

a- (Iﬁ B (rﬁ

1 0

Bk ki (1-a) 1n(1%) (1—a)(oﬁ+(kz+aﬁ‘) 1n(1%)) ]

The characteristic equation for the matrix | — BK is given as follows

~ ~

I PN p _ 1. 2 P \_
P(A)=A (0( k(1 a)ln(l_a))/\ 1+a+ﬁa(1 a)(k2+ﬁa)ln(1_a)—0. (4.6)
Assume that A; and A, represent the roots of (4.6), then it follows that

a

M+Ar=a- k1(1 - 0() h’l(%), (47)

and

~

MAy=-1+a+ 3%(1 - a)(ky + po) ln(%). (4.8)

Moreover, we take A; = £1 and A1A> = 1. Then, the lines of marginal stability for (4.5) are computed as
follows:

Li:ki+k +po=0, 4.9)
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~

Ly :2afo + (1 — a)(ka — ki + fo) In (%) =0, (4.10)

and

~

Ly:a+ ﬁ%a —a)(ky +Bo)1n(%) =2. (4.11)
Then, stability region for (4.5) is triangular region bounded by L1, L, and L3 in kik>-plane.

5. Numerical simulations

In order to illustrate theoretical discussion, first we take & = 0.0005, ¢ = 5.8 and § € [2,20]. Then, system
(1.2) undergoes flip bifurcation and corresponding diagrams are depicted in Fig. 3 and Fig. 4.
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Figure 3: Bifurcation diagram for x;,.
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Figure 4: Bifurcation diagram for y,.

Next, we choose a = 0.3, 0 = 0.1 and g € [5,35] with initial conditions xy = 1y = 20, then system (1.2)
undergoes Neimark-Sacker bifurcation at § = 7.93987. Moreover, at (¢, 0, ) = (0.3,0.1,7.93987) the system
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(1.2) has unique positive fixed point (24.2857,24.2857), and characteristic equation for Jacobian matrix of
system (1.2) is computed as follows:

A2-03A1+1=0.

The roots of aforementioned characteristic equation are A; = 0.15—0.988686i and A, = 0.15 +0.988686i with
absolute values equal to one. Thus for these parametric values, system (1.2) undergoes Neimark-Sacker
bifurcation, and bifurcation diagrams are depicted in Fig. 5 and Fig. 6.
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Figure 5: Bifurcation diagram for x;,.
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Figure 6: Bifurcation diagram for y,.

In order to apply OGY control method to system (1.2), we take («,0,8) = (0.3,0.1,20). In this case
system (1.2) has a unique positive unstable equilibrium point (33.5241, 33.5241) located in chaotic region.
Moreover, implementation of OGY control strategy yields the following controlled system:

Xpe1 = 0.3, + (20 — ky (x, — 33.524) — ky(yy — 33.524)) v, exp(—0.1y,),

Yn+1 = Xp.

(5.1)
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The Jacobian matrix of (5.1) is computed as follows:

0.3 -1.17334k; -1.64669 — 1.17334k;
1 0

The characteristic equation for aforementioned Jacobian matrix is given as follows:
A% = (0.3 — 1.1733425261224528k ) A + 1.646685052244906 + 1.1733425261224528k; = 0.
Moreover, the lines of marginal stability are calculated as follows:
Ly :2.34669 + 1.17334k; + 1.17334k, =0,

Ly :2.94669 — 1.17334k; + 1.17334k, = 0,

and
L3 :0.646685 + 1.17334k, = 0.

The stability region bounded by L1, L, and L3 is depicted in Fig. 7.

Figure 7: Stability region for controlled system (5.1).
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