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Siraj Uddina, Monia Fouad Naghia

aDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract. In this paper, we study warped products of contact skew-CR submanifolds, called contact
skew CR-warped products in Kenmotsu manifolds. We obtain a lower bound relationship between the
squared norm of the second fundamental form and the warping function. Furthermore, the equality case
is investigated and some applications of derived inequality are given.

1. Introduction

As a generalized class of holomorphic, totally real, CR, slant and semi-slant submanifolds G. S. Ronsse
[25] introduced skew CR-submanifolds of almost Hermitian manifolds. Later on, in contact geometry, M.M.
Tripathi [28] extended this idea for almost semi-invariant submanifolds of contact metric manifolds.

Recently, B. Sahin [27] studied the warped product skew CR-submanifolds of Kaehler manifolds as a
generalization of CR-warped products introduced by B.-Y. Chen in his seminal work [10–13] and of warped
product hemi-slant submanifolds, studied by B. Sahin in [26]. The contact version of skew CR-warped
products of cosymplectic manifolds appeared in [20] and skew CR-warped products of Sasakian manifolds
in [39]. For up-to-date survey on warped product manifolds and warped product submanifolds we refer
to B.-Y. Chen’s books [14, 16] and his survey article [15].

In the series of warped product submanifolds of Kenmotsu manifolds, we studied contact skew CR-
warped product in [23]. In this paper, we study the contact skew CR-warped product submanifolds by
considering the base manifold of warped product as a Riemannian product of anti-invariant and proper
slant submanifolds and the fiber is an invariant submanifold.

The paper is organized as follows: In Section 2, we provide some preliminaries formulas and definitions
for almost contact metric manifolds and their submanifolds. In Section 3, we study warped product skew
CR-submanifolds of contact metric manifolds. In this, section, first we find some useful lemmas and then
we derive a relation for the squared norm of the second fundamental form in terms of components of the
gradient of warping function. The equality case is also considered. In Section 4, we give some applications
of Theorem 4 as special cases.

2010 Mathematics Subject Classification. 53C15; 53C40; 53C42; 53B25
Keywords. warped products; slant; semi-slant submanifolds; pseudo-slant submanifolds; contact skew CR-submanifolds; Ken-

motsu manifolds
Received: 10 April 2019; Accepted: 07 June 2019
Communicated by Mića Stanković
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2. Preliminaries

A (2m + 1)-dimensional differentiable manifold M̃ is called an almost contact metric manifold if there is an
almost contact metric structure (ϕ, ξ, η, 1) consisting of a (1, 1) tensor field ϕ, a vector field ξ, a 1-form η and
the compatible metric 1 satisfying [3]

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0; (1)

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y) (2)

for any X,Y ∈ Γ(TM̃), where the Γ(TM̃) is the Lie algebra of vector fields on M̃ and I : TM̃→ TM̃ is the identity
mapping. As an immediate consequence of (2), one has η(X) = 1(X, ξ), η(ξ) = 1 and 1(ϕX,Y) = −1(X, ϕY).
An almost contact metric manifold is Kenmotsu if and only if [19]

(∇̃Xϕ)Y = 1(ϕX,Y)ξ − η(Y)ϕX, ∇̃Xξ = X − η(X)ξ (3)

for any X,Y ∈ Γ(TM̃), where ∇̃ is the Levi-Civita connection of 1.
Let M be a Riemannian manifold isometrically immersed in an another Riemannian manifold M̃. Then

formulas of Gauss and Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y), (4)

∇̃XN = −ANX + ∇⊥XN, (5)

for any vector field X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where∇⊥ is the normal connection in the normal bundle,
h is the second fundamental form and A is the shape operator of the submanifold. The second fundamental
form and the shape operator are related by

1(h(X,Y),N) = 1(ANX,Y) (6)

We 1 denotes the inner product of M as well as M̃.
A submanifold M is said to be totally geodesic if h = 0 and totally umbilical if h(X,Y) = 1(X,Y)H, ∀X, Y ∈

Γ(TM), where H = 1
n
∑n

i=1h(ei, ei) is the mean curvature vector of M. For any x ∈M and {e1, · · · , en, · · · , e2m+1}

is an orthonormal frame of the tangent space TxM̃ such that e1, · · · , en are tangent to M at x. Then, we set

hr
i j = 1(h(ei, e j), er), i, j ∈ {1, · · · ,n}, r ∈ {n + 1, · · · , 2m + 1}, (7)

‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)). (8)

B.-Y. Chen [8, 9] introduced a generalized class of holomorphic (invariant ) and totally real (anti-
invariant) submanifolds known as slant submanifolds in complex geometry. Later, A. Lotta [22] has
extended Chen’s idea for contact metric manifolds.

Let M be a submanifold of an almost contact metric manifold M̃. Let D be a differentiable distribution
on M. For any non-zero vector X ∈ Dx, the angle θD(X) betweenϕX andDx is a slant angle of X with respect
to the distribution D. If the slant angle θD(X) is constant, i.e., it is independent of the choice x ∈ M and
X ∈ Dx, thenD is called a θ-slant distribution and θD(X) = θD is called the slant angle of the distributionD.
A submanifold M tangent to ξ is said to be slant if for any x ∈M and any X ∈ TxM, linearly independent to
ξ, the angle between ϕX and TxM is a constant θ ∈ [0, π/2], called the slant angle of M in M̃. Invariant and
anti-invariant submanifolds are θ-slant submanifolds with slant angle θ = 0 and θ = π/2, respectively. A
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slant submanifold which is neither invariant nor anti-invariant is called proper slant. For more details, we
refer to [5, 9].

For any vector field X ∈ Γ(TM), we have

ϕX = TX + FX, (9)

where TX and FX are the tangential and normal components of ϕX, respectively. For a slant submanifold
of almost contact metric manifolds we have the following useful result.

Theorem 2.1. [5] Let M be a submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM). Then M is
slant if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ(−I + η ⊗ ξ). (10)

Furthermore, if θ is slant angle, then λ = cos2 θ.

Following relations are straightforward consequence of (10)

1(TX,TY) = cos2 θ[1(X,Y) − η(X)η(Y)] (11)

1(FX,FY) = sin2 θ[1(X,Y) − η(X)η(Y)] (12)

for any X,Y ∈ Γ(TM).
In [28], M.M. Tripathi introduced the concept of contact skew CR-submanifolds under the name almost

semi-invariant submanifolds by exploiting the behavior of a natural bounded symmetric linear operator
T2 on the submanifold. From (2) and (9), it is easy to see that 1(TX,Y) = −1(X,TY), for any X,Y ∈ Γ(TM),
which implies that 1(T2X,Y) = 1(X,T2Y), i.e., T2 is a symmetric operator, therefore its eigenvalues are real
and diagonalizable. Moreover, its eigenvalues are bounded by −1 and 0.

Since ξ ∈ Γ(TM), then we have TM = 〈ξ〉 ⊕ 〈ξ〉⊥ where 〈ξ〉 is the distribution spanned by ξ and 〈ξ〉⊥ is
the orthogonal complementary distribution of 〈ξ〉 in M. For any x ∈M, we may write

Dλx = ker
(
T2 + λ2(x)I

)
x
,

where I is the identity transformation and λ(x) ∈ [0, 1] such that −λ2(x) is an eigenvalue of T2(x). We note
that D1

x = kerF and D0
x = kerT. D1

x is the maximal ϕ-invariant subspace of TxM and D0
x is the maximal

ϕ-anti-invariant subspace of TxM.
From now on, we denote the distributions D1 and D0 by D ⊕ 〈ξ〉 and D⊥, respectively. Since T2 is

symmetric and diagonalizable, for some integer k if −λ2
1(x), · · · ,−λ2

k(x) are the eigenvalues of T2 at x ∈ M,
then 〈ξ〉⊥x can be decomposed as direct sum of mutually orthogonal eigenspaces, i.e.

〈ξ〉⊥x = Dλ1
x ⊕D

λ2
x · · · ⊕D

λk
x .

Each Dλi
x , 1 ≤ i ≤ k, is a T-invariant subspace of TxM. Moreover if λi , 0, then Dλi

x is even dimensional. We
say that a submanifold M of an almost contact metric manifold M̃ is a generic submanifold if there exists
an integer k and functions λi, 1 ≤ i ≤ k defined on M with values in (0, 1) such that

(1) Each −λ2
i (x), 1 ≤ i ≤ k is a distinct eigenvalue of T2 with

TxM = Dx ⊕D
⊥

x ⊕D
λ1
x ⊕ · · · ⊕D

λk
x ⊕ 〈ξ〉x

for any x ∈M.
(2) The dimensions of Dx, D⊥x and Dλi ,1 ≤ i ≤ k are independent on x ∈M.
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Moreover, if each λi is constant on M, then M is called a skew CR-submanifold. Thus, we observe that
CR-submanifolds are a particular class of skew CR-submanifolds with k = 0, D , {0} and D⊥ , {0}. And
slant submanifolds are also a particular class of skew CR-submanifolds with k = 1, D = {0}, D⊥ = {0} and
λ1 is constant. Moreover, if D⊥ = {0}, D , 0 and k = 1, then M is a semi-slant submanifold. Furthermore, if
D = {0}, D⊥ , {0} and k = 1, then M is a pseudo-slant (or hemi-slant) submanifold.

A submanifold M of an almost contact metric manifold M̃ is said to be a Contact skew CR-submanifold
of order 1 if M is a skew CR-submanifold with k = 1 and λ1 is constant. In this case, the tangent bundle of
M is decomposed as

TM = D ⊕D⊥ ⊕Dθ ⊕ 〈ξ〉. (13)

The normal bundle T⊥M of a contact skew CR-submanifold M is decomposed as

T⊥M = ϕD⊥ ⊕ FDθ ⊕ ν, (14)

where ν is a ϕ-invariant normal subbundle of T⊥M.
Now, we provide a non-trivial example of skew CR-submanifolds of an almost contact metric manifold.

Example 2.2. Consider the Euclidean space R9 with coordinates (x1, · · · , x4, y1, · · · , y4, z). Let R9 has the
almost contact structure given by

ϕ

(
∂
∂xi

)
= −

∂
∂yi

, ϕ

(
∂
∂y j

)
=

∂
∂x j

, ϕ

(
∂
∂z

)
= 0, 1 ≤ i, j ≤ 4.

It is easy to see that R9 is an almost contact metric manifold with respect to the Euclidean metric tensor
of R9 and the assumed almost contact structure. Let M be a submanifold defined by the immersion ψ as
follows

ψ(u, v,w, θ, φ, z) =(
1
2

(
u2 + v2

)
, 0, θ cosφ, φ cosθ,

1
2

(
u2
− v2

)
, w, θ sinφ,

− φ sinθ, z)

with u , ±v and z , 0. Then the tangent space TM of M at any point is spanned by the following vectors

U1 = u
∂
∂x1

+ u
∂
∂y1

, U2 = v
∂
∂x1
− v

∂
∂y1

, U3 =
∂
∂y2

, U4 = cosφ
∂
∂x3
− φ sinθ

∂
∂x4

+ sinφ
∂
∂y3
− φ cosθ

∂
∂y4

,

U5 = −θ sinφ
∂
∂x3

+ cosθ
∂
∂x4

+ θ cosφ
∂
∂y3
− sinθ

∂
∂y4

, U6 =
∂
∂z
.

Clearly, we have

ϕU1 = −u
∂
∂y1

+ u
∂
∂x1

, ϕU2 = −v
∂
∂y1
− v

∂
∂x1

, ϕU3 =
∂
∂x2

,

ϕU4 = − cosφ
∂
∂y3

+ φ sinθ
∂
∂y4

+ sinφ
∂
∂x3
− φ cosθ

∂
∂x4

,

ϕU5 = θ sinφ
∂
∂y3
− cosθ

∂
∂y4

+ θ cosφ
∂
∂x3
− sinθ

∂
∂x4

, ϕU6 = 0.

Then, we find that ϕU3 is orthogonal to TM and M is a submanifold tangent to the structure vector field
ξ = ∂

∂z with invariant, anti-invariant and proper slant distributions D = Span{U1,U2}, D⊥ = Span{U3},

and Dθ = Span{U4,U5}, respectively with slant angle Θ = cos−1

(
θ+φ

√
(1+θ2)(1+φ2)

)
. Hence, M is a skew CR-

submanifold of R9.
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3. Skew CR-warped product submanifolds in Kenmotsu manifolds

Let
(
B, 1B

)
and

(
F, 1F

)
be two Riemannian manifolds and f be a positive smooth function on B. The

warped product of B and F is the Riemannian manifold

B × f F =
(
M = B × F, 1

)
equipped with the warped metric 1 = 1B + f 21F. The function f is called the warping function and a warped
product manifold M is said to be trivial or simply a Riemannian product of B and F if f is constant (see, for
instance, [2]).

Let X be a vector field on B and Z be an another vector field on F. Then, from Lemma 7.3 of [2], we have

∇XZ = ∇ZX = X(ln f )Z, (15)

where ∇ denotes the Levi-Civita connection on M. Now for a smooth function f on an n-dimensional
manifold M, we have

‖~∇ f ‖2 =

m∑
i=1

(
ei( f )

)2 (16)

for the given orthonormal frame field {e1, e2, · · · , en} on M, where ~∇ f is the gradient of f defined by
1(~∇ f ,X) = X( f ).

Remark 3.1. It is also important to note that for a warped product M = B × f F; B is totally geodesic and F is totally
umbilical in M [2, 10].

The purpose of this section is to study contact skew CR-warped products of Kenmotsu manifolds
which we define as: A warped product submanifold M = B × f MT is called a contact skew CR-warped
product submanifold if B = M⊥ ×Mθ is the product of an anti-invariant submanifold M⊥ and a proper slant
submanifold Mθ of a Kenmotsu manifold M̃, where MT is invariant submanifold of M̃. Throughout this
paper, we assume the structure vector field ξ tangent to the submanifold. In case of ξ ∈ Γ(TM), we have
two cases, either ξ is tangent to MT or ξ is tangent to B. When ξ ∈ Γ(TMT), then from (3) we have ∇̃Uξ = U,
for any U ∈ Γ(TB). Using (4) and (15), we find U(ln f )ξ = U and taking the inner product with ξ, we get
U(ln f ) = 0, which means that f is constant.

From now, for the simplicity we denote the tangent spaces of MT, M⊥ and Mθ by the same symbols
D, D⊥ and Dθ, respectively.

Now, if we consider ξ ∈ Γ(TB), then there are two possibilities that either ξ is tangent to MT or tangent
to Mθ. For this, we have the following useful results.

Lemma 3.2. Let M = B× f MT be a contact skew CR-warped product submanifold of order 1 of a Kenmotsu manifold
M̃ such that ξ is tangent to B and B = M⊥ ×Mθ, where MT, M⊥ and Mθ are invariant, anti-invariant and proper
slant submanifolds of M̃, respectively. Then, we have

(i) ξ(ln f ) = 1,
(ii) 1(h(X,Y), ϕZ) =

(
Z(ln f ) − η(Z)

)
1(X, ϕY),

(iii) 1(h(X,Z), ϕW) = 0,

for any X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥ ⊕ 〈ξ〉).

Proof. For any X ∈ Γ(D), by using (3) we have ∇̃Xξ = X. Then using (4) and (15), we find that ξ(ln f ) = 1,
which is first part of the lemma. For the second part, we have

1(h(X,Y), ϕZ) = 1(∇̃XY, ϕZ) = −1(∇̃XϕY,Z) + 1((∇̃Xϕ)Y,Z).
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for any X,Y ∈ Γ(D) and Z ∈ Γ(D⊥ ⊕ 〈ξ〉). Using (3) and the orthogonality of vector fields, we derive

1(h(X,Y), ϕZ) = 1(∇̃XZ, ϕY) + η(Z)1(ϕX,Y) = 1(∇XZ, ϕY) − η(Z)1(X, ϕY).

Then, second part follows from above relation by using (3). On the other hand, for any X ∈ Γ(D) and
Z,W ∈ Γ(D⊥ ⊕ 〈ξ〉), we have

1(h(X,Z), ϕW) = 1(∇̃ZX, ϕW) = −1(∇̃ZϕX,W) + 1((∇̃Zϕ)X,W).

Again, from (3), (9), (15) and the orthogonality of vector fields, we obtain

1(h(X,Z), ϕW) = −Z(ln f ) 1(ϕX,W) = 0,

which is (iii). Hence, the proof is complete.

Interchanging X by ϕX, for any X ∈ Γ(D) in Lemma 3.2 (ii), we derive

1(h(ϕX,Y), ϕZ) =
(
Z(ln f ) − η(Z)

)
1(X,Y), (17)

Lemma 3.3. Let M = B× f MT be a contact skew CR-warped product submanifold of order 1 of a Kenmotsu manifold
M̃ such that ξ is tangent to B. Then

(i) 1(h(X,Y),FV) =
(
V(ln f ) − η(V)

)
1(X, ϕY) + TV(ln f )1(X,Y),

(ii) 1(h(X,Y),FTV) = TV(ln f )1(X, ϕY) − cos2 θ
(
V(ln f ) − η(V)

)
1(X,Y),

(iii) 1(h(X,U),FV) = 0,

for any X,Y ∈ Γ(D) and U,V ∈ Γ(Dθ ⊕ 〈ξ〉).

Proof. For any X,Y ∈ Γ(D) and V ∈ Γ(Dθ ⊕ 〈ξ〉), we have

1(h(X,Y),FV) = 1(∇̃XY, ϕV − TV)

= −1(∇̃XϕY,V) + 1((∇̃Xϕ)Y,V) + 1(∇̃XTV,Y)

= 1(∇̃XV, ϕY) + η(V)1(ϕX,Y) + TV(ln f )1(X,Y).

First part follows from above relation by using (15). Second part immediately follows from (i) by inter-
changing V by TV. For the third part of the lemma, we have

1(h(X,U),FV) = 1(∇̃UX, ϕV) − 1(∇̃UX,TV) = −1(∇̃UϕX,V) + 1((∇̃Uϕ)X,V) −U(ln f )1(X,TV)

for any X ∈ Γ(D) and U,V ∈ Γ(Dθ ⊕ 〈ξ〉). Using (3), (4), (15) and orthogonality of vector fields, we easily get
(iii) from above relation, which proves the lemma completely.

Lemma 3.4. Let M = B× f MT be a contact skew CR-warped product submanifold of order 1 of a Kenmotsu manifold
M̃ such that ξ is tangent to B. Then, we have

(i) 1(h(X,Z),FV) = 0,
(ii) 1(h(X,V), ϕZ) = 0,

for any X,Y ∈ Γ(D), Z ∈ Γ(D⊥ ⊕ 〈ξ〉), V ∈ Γ(Dθ ⊕ 〈ξ〉).

Proof. For any X ∈ Γ(D), Z ∈ Γ(D⊥) and V ∈ Γ(Dθ ⊕ 〈ξ〉), we have

1(h(X,Z),FV) = 1(∇̃ZX, ϕV) − 1(∇̃ZX,TV) = −1(∇̃ZϕX,V) + 1((∇̃Zϕ)X,V) − Z(ln f )1(X,TV).

Using (3), (4), (15) and the orthogonality of vector fields, we find (i). In a similar way, we can prove the
second part of the lemma.
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A warped product M = B × f F is said to be mixed totally geodesic if h(X,Z) = 0, for any X ∈ Γ(TB) and
Z ∈ Γ(TF).

Now, we construct the following frame fields for the contact skew CR-warped product submanifold
M of Kenmotsu manifold M̃. Let M = B × f MT be a n−dimensional contact skew CR-warped product
submanifold of a (2m + 1)-dimensional Kenmotsu manifold M̃ with B = M⊥ ×Mθ and ξ is tangent to B
where M⊥, Mθ and MT are anti-invariant, proper slant and invariant submanifolds of M̃ with their real
dimensions as dim(M⊥) = m1, dim(Mθ) = m2 and dim(MT) = m3, respectively. Then, clearly we have
n = m1 + m2 + m3. We denote the tangent bundle of MT, M⊥ and Mθ by D, D⊥ and Dθ, respectively.
Since, ξ ∈ Γ(TB), then we have two cases: either ξ ∈ Γ(D⊥) or ξ ∈ Γ(Dθ). If we consider ξ ∈ Γ(Dθ)
then we set the orthonormal frame fields of M as follows: D⊥ = Span{e1, · · · , em1 }, D

θ = Span{em1+1 =
e∗1, · · · , em1+p = e∗p, em1+p+1 = e∗p+1 = secθTe∗1 · · · , em1+2p = e∗2p = secθTe∗p, em1+m2 = e∗2p+1 = ξ} and D =

Span{em1+m2+1 = ē1, · · · , em1+m2+q = ēq, em1+m2+q+1 = ϕe1, · · · , en = ϕeq}. Then, the normal subbundles
of T⊥M are spanned by ϕD⊥ = Span{en+1 = ẽ1 = ϕe1, · · · , en+m1 = ẽm1 = ϕem1 }, FDθ = Span{en+m1+1 =
ẽm1+1 = cscθFe∗1, · · · , en+m1+p = ẽm1+p = cscθFe∗p, en+m1+p+1 = ẽm1+p+1 = cscθ secθFTe∗1, · · · , en+m1+m2−1 =
ẽm1+m2−1 = cscθ secθFTe∗p} and µ = Span{en+m1+m2 = ẽm1+m2 , · · · , e2m+1 = ẽ2(m−m1−m2+1)−m3 }.

Now, using the above orthonormal frame field and some results of previous sections, we derive the
following main result of this paper.

Theorem 3.5. Let M = B × f MT be a contact skew CR-warped product submanifold of order 1 of a Kenmotsu
manifold M̃ such that ξ is tangent to B and B = M⊥ ×Mθ, where M⊥,Mθ and MT are anti-invariant, proper slant
and invariant submanifolds of M̃ with their real dimensions m1, m2 and m3, respectively. Then we have:

(i) If ξ is tangent to Mθ, then

‖h‖2 ≥ 2m3

(
‖~∇⊥(ln f )‖2

)
+ m3

(
1 + 2 cot2 θ

) (
‖∇

θ(ln f )‖2 − 1
)
.

(ii) If ξ is tangent to M⊥, then

‖h‖2 ≥ 2m3

(
‖~∇⊥(ln f )‖2 − 1

)
+ m3

(
1 + 2 cot2 θ

)
‖∇

θ(ln f )‖2.

where ~∇⊥(ln f ) and ∇θ(ln f ) are the gradient components along M⊥ and Mθ, respectively.
(iii) If the equality sign holds in above inequalities, then B is a totally geodesic submanifold of M̃ and MT is totally

umbilical in M̃. Moreover, M is a D-mixed totally geodesic submanifold of M̃.

Proof. From the definition, we have

‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)) =

2m+1∑
r=n+1

n∑
i, j=1

1(h(ei, e j), er).

According to the constructed frame filed, the above relation takes the from

‖h‖2 =

n+m1∑
r=n+1

m1+m2+m3∑
i, j=1

1(h(ei, e j), er)2 +

n+m1+m2−1∑
r=n+m1+1

m1+m2+m3∑
i, j=1

1(h(ei, e j), er)2

+

2m+1∑
r=n+m1+m2

m1+m2+m3∑
i, j=1

1(h(ei, e j), er)2. (18)

Leaving the last positive ν-components term in the right hand side of (18). Then, we derive

‖h‖2 ≥
m1∑
r=1

m1+m2+m3∑
i, j=1

1(h(ei, e j), ẽr)2 +

m1+m2−1∑
r=m1+1

m1+m2+m3∑
i, j=1

1(h(ei, e j), ẽr)2.
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Above relation decomposes for the assumed frame fields as follows.

‖h‖2 ≥
m1∑
r=1

m1∑
i, j=1

1(h(ei, e j), ϕer)2 +

m1∑
r=1

m2∑
i, j=1

1(h(e∗i , e
∗

j), ϕer)2 +

m1∑
r=1

m3∑
i, j=1

1(h(ēi, ē j), ϕer)2

+ csc2 θ

p∑
r=1

m1∑
i, j=1

1(h(ei, e j),Fe∗r)
2 + sec2 θ csc2 θ

p∑
r=1

m1∑
i, j=1

1(h(ei, e j),FTe∗r)
2

+ csc2 θ

p∑
r=1

m2∑
i, j=1

1(h(e∗i , e
∗

j),Fe∗r)
2 + sec2 θ csc2 θ

p∑
r=1

m2∑
i, j=1

1(h(e∗i , e
∗

j),FTe∗r)
2

+ csc2 θ

p∑
r=1

m3∑
i, j=1

1(h(ēi, ē j),Fe∗r)
2 + sec2 θ csc2 θ

p∑
r=1

m3∑
i, j=1

1(h(ēi, ē j),FTe∗r)
2

+ 2
m1∑
r=1

m1∑
i=1

m2∑
j=1

1(h(ei, e∗j), ϕer)2 + 2
m1∑
r=1

m1∑
i=1

m3∑
j=1

1(h(ei, ē j), ϕer)2 + 2
m1∑
r=1

m2∑
i=1

m3∑
j=1

1(h(e∗i , ē j), ϕer)2

+ 2 csc2 θ

p∑
r=1

m1∑
i=1

m2∑
j=1

1(h(ei, e∗j),Fe∗r)
2 + 2 sec2 θ csc2 θ

p∑
r=1

m1∑
i=1

m2∑
j=1

1(h(ei, e∗j),FTe∗r)
2

+ 2 csc2 θ

p∑
r=1

m2∑
i=1

m3∑
j=1

1(h(e∗i , ē j),Fe∗r)
2 + 2 sec2 θ csc2 θ

p∑
r=1

m2∑
i=1

m3∑
j=1

1(h(e∗i , ē j),FTe∗r)
2

+ 2 csc2 θ

p∑
r=1

m1∑
i=1

m3∑
j=1

1(h(ei, ē j),Fe∗r)
2 + 2 sec2 θ csc2 θ

p∑
r=1

m1∑
i=1

m3∑
j=1

1(h(ei, ē j),FTe∗r)
2. (19)

Leaving the first, second, fourth, fifth, sixth, seventh, tenth, thirteenth and fourteenth positive terms of (20)
and using Lemma 3.2, Lemma 3.3 and Lemma 3.4, we derive

‖h‖2 ≥ 2m3

m1∑
r=1

(
er(ln f )

)2 + 2 csc2 θ
(
1 + sec2 θ

) p∑
r=1

q∑
i, j=1

(
Te∗r(ln f )

)2
(
1(ēi, ē j)

)2

+ 2 csc2 θ
(
1 + cos2 θ

) p∑
r=1

q∑
i, j=1

(
e∗r(ln f ) − η(e∗r)

)2
(
1(ēi, ē j)

)2
. (20)

(i) When ξ is tangent to Mθ, then with the help of (16), the above inequality takes the from

‖h‖2 ≥ 2m3‖~∇
⊥(ln f )‖2 + 2q csc2 θ

(
1 + sec2 θ

) p∑
r=1

(
Te∗r(ln f )

)2 + 2q csc2 θ
(
1 + cos2 θ

) p∑
r=1

(
e∗r(ln f )

)2

= 2m3‖~∇
⊥(ln f )‖2 + m3 csc2 θ

(
1 + sec2 θ

) 2p+1∑
r=1

(
Te∗r(ln f )

)2
−m3 csc2 θ

(
1 + sec2 θ

) 2p∑
r=p+1

(
Te∗r(ln f )

)2

−m3 csc2 θ
(
1 + sec2 θ

) (
Te∗2p+1(ln f )

)2
+ m3 csc2 θ

(
1 + cos2 θ

) p∑
r=1

(
e∗r(ln f )

)2 . (21)

Since e∗2p+1 = ξ and Tξ = 0, then the second last term in the right hand side of (21) is identically zero. Hence,
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we derive

‖h‖2 ≥ 2m3‖~∇
⊥(ln f )‖2 + m3 csc2 θ

(
1 + cos2 θ

) (
‖∇

θ(ln f )‖2 − 1
)2

+ m3 csc2 θ
(
1 + cos2 θ

) p∑
r=1

(
e∗r(ln f )

)2

−m3 csc2 θ sec2 θ
(
1 + sec2 θ

) p∑
r=1

(
1
(
Te∗r,T ln f

))2 . (22)

Using (11) and (16), we get the inequality (i). If ξ is tangent to M⊥, then the inequality follows from (20)
and the orthonormal frame fields such as ξ ∈ Γ(D⊥). For the equality case, from the leaving term of (18),
we find

h(TM,TM) ⊥ ν. (23)

From the leaving first term of (19), we obtain

h(D⊥,D⊥),⊥ ϕD⊥. (24)

Also, from the leaving second term in the right hand side of (19), we derive

h(Dθ,Dθ) ⊥ ϕD⊥. (25)

Similarly, from the leaving fourth and fifth terms in right hand side of (19), we find

h(D⊥,D⊥) ⊥ FDθ. (26)

And from the leaving sixth and seventh terms of (19), we obtain

h(Dθ,Dθ) ⊥ FDθ. (27)

From the leaving tenth term of (19), we get

h(D⊥,Dθ) ⊥ ϕD⊥. (28)

Also, from the leaving thirteenth and fourteenth terms of (19), we obtain

h(D⊥,Dθ) ⊥ FDθ. (29)

Then from (23), (24) and (26), we conclude that

h(D⊥,D⊥) = 0. (30)

Similarly, from (23), (25) and (27), we deduce that

h(Dθ,Dθ) = 0. (31)

From the leaving eleventh term of (19) with Lemma 3.2 (iii), we get

h(D,D⊥) ⊥ ϕD⊥. (32)

Similarly, from the leaving twelfth term of (19) with Lemma 3.4 (ii), we find

h(D,Dθ) ⊥ ϕD⊥. (33)

Also, from the leaving fifteenth and sixteenth terms of (19) with Lemma 3.3 (iii), we obtain

h(D,Dθ) ⊥ FDθ. (34)
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And leaving seventeenth and eighteenth terms of (19) with Lemma 3.4 (i), we deduce that

h(D,D⊥) ⊥ FDθ. (35)

Then, from (23), (32) and (35), we conclude that

h(D,D⊥) = 0. (36)

And from (23), (33) and (34), we find

h(D,Dθ) = 0. (37)

Also, from (23), (28) and (29), we obtain

h(D⊥,Dθ) = 0. (38)

Then, from (30), (31) and (38) with the Remark 3.1, we conclude that B is totally geodesic in M̃. Since B is
totally umbilical in M (Remark 3.1), then using this fact with (23)-(35) and (38), we get B is totally umbilical
in M̃. All conditions from (23)-(38) imply that M isD-mixed totally geodesic in M̃, which proves the theorem
completely.

4. Applications of Theorem 3.5

We have the following well known applications of Theorem 3.5.

1. If dim(Mθ) = 0 in a contact skew CR-warped product, then it reduces to contact CR-warped products of
the form M = M⊥× f MT studied in [32]. In this case, the statement of Theorem 3.5 will be: Let M = M⊥× f MT

be a contact CR-warped product submanifold of a Kenmotsu manifold M̃ such that ξ is tangent to M⊥, where MT
and M⊥ are invariant and anti-invariant submanifolds of M̃ with their real dimensions m1, m2, respectively. Then
we have:

(i) The squared norm of the second fundamental from h satisfies

‖h‖2 ≥ 2m1

(
‖~∇⊥(ln f )‖2 − 1

)
.

where ~∇⊥(ln f ) is the gradient of ln f along M⊥.
(ii) If the equality sign holds in above inequality, then M⊥ is totally geodesic and MT is a totally umbilical in M̃.

Moreover, M is D −D⊥ mixed totally geodesic submanifold of M̃.

Which is the main result of [32].

2. Similarly, if dim(M⊥) = 0 in a contact skew CR-warped product, then it will change into a warped
product semi-slant submanifold of the form M = Mθ × f MT studied in [36]. In this case,Theorem 4.2 of [36]
is a particular case of Theorem 3.5 as follows:

Corollary 4.1. ( Theorem 4.2 of [36]) Let M = Mθ× f MT be a warped product semi-slant submanifold of a Kenmotsu
manifold M̃ such that ξ is tangent to Mθ, where Mθ is a proper slant submanifold and MT is an m2-dimensional
invariant submanifold of M̃. Then we have:

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ m2

(
1 + 2 cot2 θ

) (
‖∇

θ(ln f )‖2 − 1
)

where ∇θ ln f is the gradient of ln f along Mθ.
(ii) If the equality sign in (i) holds identically, then Mθ is totally geodesic in M̃ and MT is a totally umbilical

submanifold of M̃. Moreover, M is D −Dθ mixed totally geodesic submanifold of M̃.
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