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Abstract. Let A1(G) and ¢1(G) be the spectral radius and the signless Laplacian spectral radius of a k-
uniform hypergraph G, respectively. In this paper, we give the lower bounds of d — A;(H) and 2d — q,(H),
where H is a proper subgraph of a f(-edge)-connected d-regular (linear) k-uniform hypergraph. Meanwhile,
we also give the lower bounds of 2A — 4;(G) and A — A,(G), where G is a nonregular f(-edge)-connected
(linear) k-uniform hypergraph with maximum degree A.

1. Introduction

A hypergraph G = (V,E) is a pair consisting of a vertex set V = {1,2,...,n}, and an edge set E =
le1,ex, ..., e}, wheree; (1 <i < m)isasubset of V. A hypergraph is called k-uniform if every edge contains
precisely k vertices. We will use the term k-graphs in place of k-uniform hypergraphs. A hypergraph G
is called linear provided that each pair of the edges of G has at most one common vertex [1]. Given two
k-graphs G = (V,E)and H = (V’,E’),if V' C V and E’ C E, then H is said to be a subgraph (sub-hypergraph)
of G. If H is a subgraph of a k-graph G, and H # G, then H is called a proper subgraph of G [11]. A tensor
A with order k and dimension 7 over the complex field C is a multidimensional array

A= (ailiz‘,,ik), 1<i,ip,...,0 <n.

The tensor A is called symmetric if its entries are invariant under any permutation of their indices. For a
vector x = (X1, X2,...,%,)" € C", Ax*1 is a vector in C" whose i-th component is the following

n

(ﬂxk_l)i = Z Aity...ixXiy * " Xigs Vie[n].

ip, k=1
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Let X1 = (=1 k=1 )T e € If Axk! = AxlFU has a solution x € €\ {0}, then A is called an
eigenvalue of A and x is an eigenvector associated with A. And the spectral radius of A is defined as
A1(A) = max{|A| | A is an eigenvalue of A}. Also, a tensor A of order k and dimension n uniquely determines

a k-th degree homogeneous polynomial function Ax*, which is

n

T/ g k-1y _
x(Ax) = Z Ay i Xig Xiy * * " Ko

i1,i2,, ik =1

The adjacency tensor [6] of a k-graph G with n vertices, denoted by A(G), is an order k dimension n
symmetric tensor with entries a;;,. ; such that

- wo if livia,..., i) € EG),
1120k 0, otherwise.

Let A be an eigenvalue of a k-graph G with eigenvector x. Since A(G)x*"! = Ax/*"11, we know that cx is
n
also an eigenvector of A for any nonzero constant c. So we can choose x such that }, x¥ = 1. In this case, we

i=1
have [6, 9]
A= xT(AG) ) =k Z X,
ecE(G)
where x° = x;,x;, -+ - %, e = {i1, 12, ..., ik}

For a k-graph G, we denote N¢(v) as the set of neighbours of v in G, and Eg(v) as the set of edges
containing v in G. The degree of a vertex v in G, denoted by d, = d;(v), is |[Eg(v)|. Let 6 = 6(G) and A = A(G)
denote the minimum degree and the maximum degree of G, respectively. If all vertices of G have the
same degree, then G is called regular. Let D = 9(G) be a k-th order n-dimensional diagonal tensor with
its diagonal element d;; ; being d;, the degree of vertex i of G, for all i € [n]. Then Q(G) = D(G) + A(G)
is the signless Laplacian tensor of the hypergraph G [16]. The signless Laplacian eigenvalues refer to the
eigenvalues of the signless Laplacian tensor. Let 41(G) be the signless Laplacian spectral radius of G.

In a k-graph G, a path of length [ is defined to be an alternating sequence of vertices and edges
Uy, e, Uy, ..., U, e, U4, where uy, ..., uq are distinct vertices of G, ey, ..., ¢ are distinct edges of G and
uj, uipq €efori=1,...,1 For any two vertices u and v of G, if there exists a path connecting u and v, then G
is called connected. A hypergraph G is called f-edge-connected if G — U is connected for any edge subset
U € E(G) satisfying | U |< f. A hypergraph G is called f-connected if there exist f paths connecting u and
v in G, where no pair of them have any other elements in common except u and v, for any u,v € V(G) [27].

Spectral graph theory has a long history behind its development [2, 7]. It is natural to generalize spectral
theory of graphs to hypergraphs. Recently, there are many work about the spectral theory of hypergraphs
[8, 12, 14, 16, 17, 21-23]. In [20], Stevanovi¢ proposed a question: How small A — A;(G) can be when G
is an irregular graph with maximum degree A and spectral radius 1;(G)? Cioaba et al. [5] gave a lower
bound on A — A1(G) for irregular graphs, which improved previous bounds of Stevanovi¢ [20] and of Zhang
[26]. Cioaba [4] obtained a lower bound on A — A(G) for an irregular graph G with maximum degree A
and diameter D. Nikiforov [13] presented a lower bound on A{(G) — A{(H) for a proper subgraph H of a
connected regular graph G. Shi [18] obtained a lower bound on A — A1(G) for a connected irregular graph
G in terms of its diameter and average degree. Ning et al. [15] gave a lower bound on 2A — ¢;(G) for a
connected irregular graph G in terms of the diameter. Shui et al. [19] gave a lower bound on 2A — 4;(G) and
2A—q1(H) for a k-connected irregular graph G and a proper spanning subgraph H of a A-regular k-connected
graph, respectively. Li et al. [10] obtianed the lower bounds on A — A;(G) for irregular connected k-graphs
in terms of vertex degrees, the diameter, and the number of vertices and edges. Yuan et al. [25] gave some
bounds on A:(G) and 41(G) for a k-graph G in terms of its degrees of vertices. Chen et al. [3] presented
several upper bounds on A;(G) and 4;(G) for a k-graph G in terms of degree sequences. We are inspired by
two articles of Shui et al. [19] and Li et al. [10]. In this paper, we give the bounds of (signless Laplacian)
spectral radius of subgraphs of f(-edge)-connected d-regular (linear) k-graphs. We also give the bounds of
(signless Laplacian) spectral radius of connected nonregular (linear) k-graphs.
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2. Preliminaries

In this section, we give some useful lemmas.
Let G be a connected k-graph. By Perron-Frobenius theorem of nonnegative tensors [24], A1(G) (resp.,
71(G)) is an eigenvalue of A(G) (resp., Q(G)), and there exists a unique positive eigenvector x = (x1, ..., x,)T

corresponding to A1(G) (resp., 41(G)) with Y x¥ =1, and x is called the principal eigenvector of A(G) (resp.,
i=1
Q(G)).
The following Lemma 2.1 is from the proof of Theorem 4.1 in [10].

Lemma 2.1. ([10]) Let G be a connected k-graph with n vertices and A1(G) be the spectral radius of G with the principal
eigenvector x = (x1,Xz, . .. ,x)T. Let x, = maX;ev(c)lxi} and x, = minjey(){xi}. Let P: u = ug,ei, uy,...,u, = v be
a path from u to v, where ¢; is an edge containing vertices u;_y and u;. Then

k k k & k
2 2
(e, = x0,)" = 5 (i — )™

w;,wj€ecE(P)

Lemma 2.2. ([8]) Let ay, ..., a, be nonnegative real numbers. Then

a+---+a, 1 1
L (e g ) >
n (- an) “nn-1)

Y, (Nai— \ap?,

1<i<j<n

equality holds if and only if a1 = a; = ... = ay,.
Lemma 2.3. ([18]) Let a, b, y1, y» be positive numbers. Then

ab
a(yr — y2)* + by > myi

equality holds if and only if y, = -2

a+b*
Two paths Py, P, are called edge-disjoint if the edges of P; have no common with the edges of P,.

Lemma 2.4. ([27]) A hypergraph G is f-edge-connected if and only if there are f mutual edge-disjoint paths between
each pair of vertices.

Lemma 2.5. ([27]) If a hypergraph G is f-connected, then there are f mutual vertex-disjoint paths between each pair
of vertices.

Lemma 2.6. ([10]) Let G be a connected k-graph with n vertices, minimum degree 6 and maximum degree A, and let
x = (x1,...,%,) be the principal eigenvector of A(G). Then Xyayx > ((%)ﬁ +n-— 1)‘%, where X,y = Maxq<i<n{X;}.

In fact, we can prove similarly that Lemma 2.6 also holds for the principal eigenvector of Q(G), where
G is a connected k-graph with n vertices.

3. The (signless Laplacian) spectral radius of subgraphs of f(-edge)-connected d-regular k-graphs

In this section, we will give a bound of the spectral radius and the signless Laplacian spectral radius of
a subgraph of a f-edge-connected d-regular k-graph G, respectively. And we will give a bound on the the
spectral radius and the signless Laplacian spectral radius of a subgraph of a f-connected d-regular linear
k-graph G, respectively.
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Lemma 3.1. Let H be a maximal proper subgraph of a f(-edge)-connected d-reqular k-graph G such that f > 2, and
A1(H) be the spectral radius of H with the principal eigenvector x = (x1,%2, ..., x,)L. Then

d-MH) =Y @-dpd+ Y@ e, —ke),
i=1

e={wq,w,,...,wr}€E(H)
where d; is the degree of the vertex i of H.
Proof. Let V(H) = V(G) and H differs from G in a single edge {u1, u, ..., ux}. We know that H is connected

since f > 2. Let x,, = maxjev(m){xi} and x, = minjeym){x;}. We claim u # u; for any 1 <i < k. Indeed, if u = u;
for some 1 <i <k, then

k-1 k=1
Al(H)xui = Z Ay, .. Xws - - - Xy < (d - 1)xui ’

e={u;,wy,...,wx }€E(H)

and thus A;(H) < d — 1, contradicting the fact that A;(H) > @ =d- % > d — 1. We also find that

d—Al(H):dixf—k Z X
i=1

ecE(H)
n n n
— k k k
= dei —Zdixi +Zd,~xi -k Z x°
i=1 i=1 i=1 ecE(H)

n
(d — d)xt + Yk e, k).

w1

i=1 e={wy,wa,...,wr}€E(H)

O

Lemma 3.2. Let H be a maximal proper subgraph of a f(-edge)-connected d-regqular k-graph G such that f > 2 and
q1(H) be the signless Laplacian spectral radius of H with the principal eigenvector x = (x1,%, . ..,%,)". Then

2d-q(H)=2) (@d-d)d+ Y ke k),
i=1 e={wq,ws,...,wr}€E(H)
where d; is the degree of the vertex i of H.
Proof. Similarly, let V(H) = V(G) and H differs from G in a single edge {u1, u, ..., ux}. We know that H is

connected since f > 2. Let x, = maX;eym){xi} and x, = minjeye{x;}). We claim u # u; forany 1 <i < k.
Indeed, if u = u; for some 1 < i < k, then

k-1 k-1 k-1
q(H)xy, " =dyx,  + Z Aysavy..a0Xawy - + - X, < 2(d = D)x

e={uj,wy,...,wr}€E(H)

and thus g1(H) < 2d — 2, contradicting the fact that q;(H) > 2A;(H) > 2]@ =2d- Zn—k > 2d — 2. We also find

that
2d — q1(H) :2dix§.‘—id,-x;‘—k Z x°
i=1 i=1

ecE(H)

= Zi(d—di)xf + Zn“dixf —k Z X
i=1 i=1

ecE(H)

=2) (d-dxt+ Y,k e, k).
i=1

e={w1,w,...,wx}€E(H)
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Theorem 3.3. Let G be a f-edge-connected d-regular k-graph with n vertices and m(= %) edges, and H' be a proper
subgraph of G. If f,k > 2, then

K(f —1)?
[2(k = 1)(m — 1) + (f = D251 T +n—1)

d—Ay(H) >

Proof. Let H be a maximal proper subgraph of G, i.e.,, V(H) = V(G) and H differs from G in a single edge
{ur, ua, ..., ug}). Let A1(H) be the spectral radius of H with the principal eigenvector x = (x1,x2,...,x,). Let
X, = maxleV(H){x,} and x, = min;ey(m){x;}. By Lemmas 2.2 and 3.1, we have

k k

d—/\l(H)>x +x ,+e +xk+% Z (xzf),_xzzu,')z

u Uy k
w;,wj€ecE(H)
« 1 k k (31)
2 2\2
2hd ey ), G )
w;,w;€eeE(H)

Since G is a f-edge-connected d-regular k-graph, there are at least f — 1 edge disjoint paths Py, ..., Ps;

connectinguand vin H. Let P;: u = vg,e1,v1,...,v,, = vbeapath from u to v. Then we have Z{;ll r <m-1.
In addition, by Lemma 2.1, we have

K K K
(xd, ~ 8 2 (e
w;,w;€e€E(Py) Tt
Thus, we have
k £, = k £,
(3, —x3)? > Y -
w;,wj€eeE(H) t=1 w;,w;eecE(P;)
f-1 .
> ¥V Kl oy
= 2r (3.2)
KE1P 4
f—l u v
Z‘t:l zrt
KEZIP s
T 2m-1)"" vre
By (3.1) and (3.2), we have
k(f — 1) £k
— k"N 77 a2 a2)2
d—A(H) > kx + 2(k—1)(m—1)(x” x2).

k
The right hand side of the above inequality is a quadratic function of x}. By Lemma 2.3, we have

k(f -1 K

A=) > S T D+ (oD
By Lemma 2.6, we have
12
d—MH) > K1)
[2(k = 1)(m = 1) + (f = D)= +1 - 1)
k(f - 1>2

[(k 1(m—1)+ (f — D2 )2<k1 +n - 1)
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Therefore, we have

K(F =17
20 = )m = 1)+ (f = 12(ED 7T +n-1)

d—MH) >

0
Theorem 3.4. Let G be a f-edge-connected d-regular k-graph with n vertices and m(= %) edges, and H’ be a proper
subgraph of G. If f,k > 2, then
2K(f — 1)
[4(k = 1)m = 1) + (f = DA(EH) T +n=1).

2d — q1(H') >

Proof. Let H be a maximal proper subgraph of G, i.e., V(H) = V(G) and H differs from G in a single edge
{uq,uy, ..., ui}. Let g1(H) is the signless Laplacian spectral radius of H with a principal eigenvector x. Let
Xy = maX;ey)ixi} and x, = minjey(m){x;}. By Lemmas 2.2 and 3.2, we have

1 k K
24 = qu(H) > 25, +5, + -+ X)) + 5 Y -x)?
w;,wj€ecE(H)
) . (33)
> 2kx]; + kT Z (.X'Z%]i - x;}j)z.

w;,wj€ecE(H)

Since G is a f-edge-connected d-regular k-graph, there are at least f — 1 edge disjoint paths connecting
u and v in H. By (3.2) and (3.3), then we have

k(f - 1)

m(ﬁ —x)

2d — g1 (H) > 2kxs +

k
The right hand side of the above inequality is a quadratic function of x2. By Lemma 2.3, we have

2k(f - 1)? \
Wk-Dm-D+(f-12 v

24 — q1(H) >

By Lemma 2.6, we have

2K(f - 1
2d - qy(H) > T
[4c = 1)m = 1) + (f = DPNER ™7 +n-1)
2K(f - 1

T Ak D — 1)+ (f — DAEED T 4 1)

Therefore, we have
2K(f — 1)?

[4(k = D)(m = 1) + (f = DA(EHTT +n 1)

2d — qu(H') >

O

Theorem 3.5. Let G be a f-connected d-regular linear k-graph with n vertices, and H' be a proper subgraph of G. If

f k=2, then
2k(f — 1)

Qn+d@—k=2)+4)(f-12+1’
where h = k(k — 1)(n —k —d + 2)((n + 2(f - 2))? = (f - 1)).

d—M(H) >
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Proof. Let H be a maximal proper subgraph of G, i.e.,, V(H) = V(G) and H differs from G in a single edge
{u1,uy, ..., u}. We know that H is connected since f > 2. Let A;(H) be the spectral radius of H with the
principal eigenvector x = (x1,x2,...,x,)". Letx, = maX;ey(m){xi} and x, = minjeymy{x;}. By the proof of
Lemma 3.1, we claim u # u; for 1 <i < k. By Lemmas 2.2 and 3.1, we have

d—Ay(H') > d — Ay (H)

1 3 3
>xﬁ]+xﬁz+--'+x’;k+m (xfui—xfuj)2

w;,wj€ecE(H) (34)

ko, 1 55y

> kxv + m Z (xwl - xw]) .

w;,wj€ecE(H)
Since G is a f-connected d-regular k-graph, by Lemma 2.5, there are at least f — 1 vertex disjoint paths
P1,Py,...,Psq connecting u and v in H. Thus, we have

f-1
Y V(P 1<+ 2(f - 2).

t=

Since G is a linear k-graph, we have | V(P;) |=| E(P;) | +1. Hence, ZlE,((Pt)‘ < lV(P')l(lg(P')l_l). By Lemma 2.1, we
have

k k f_l k k
(xziw - xg),- 2> Z (XZJ‘ - XZ,])Z
w;,wj€eeE(H) t=1 w;,wjeecE(P;)
1 k k k
2 _ ,2)\2
2 ) 2Ty )
f-1
2 L Y
= Ly 1avey - )
—1)? k k
> — 2(f-1) & ady (3.5)
Y [VEP)I(A V(P -1)
Z(f — 1)2 x% _ x%)Z
Yaveyr-ny
—1)? k k
Z f—l 2(f 1) (xg - xg )2
i, V@)D= (f-1)
2(f -1y LY
22 -2r-(-n T
So by (3.4) and (3.5), we have
—1)2 k k
d—A(H') > kb + 26 -1 (x2 —x2)2. (3.6)

(k=1)((n+2(f-=2) = (f - 1))

Define

.- 2K(f ~ 1)
T nAdl@—k=-2)+ A (f-1)2+ N
where It = k(k — 1)(n — k — d + 2)((n + 2(f — 2))? — (f — 1)).
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k
Case 1. If ) x’;i > C, then from (3.4), we have
i=1

1 3 K
d=M(H) > (@, 4o, +oovx) + = ) (-’
w;,wj€eeE(H)
k k
>C+ m Z (Xgui — x;)j)z

w;,wj€eeE(H)

>C.

Case 2. Let x,,, = min<;<{x,,}. Since dy(u1) = d — 1, it is possible to choose at least 4 — 2 distinct vertices
{v1,v2,...,04-0} from Ny(uq) such that u ¢ {vy,0,...,v50}. If Zd 2 k @C, by (3.4) again and Lemma
2.3, then we have

d-2
/ 1 2
d-— /\1(H)> lt1 k— ; vt xul)
d-2
_ 1! 2 2
—m (d_z ul+(xvf_xul))
t=1
d2 k
> — Xy,
k=14 2 +1
1 2d(k-1)
k—1d 2
=C.

k
Case 3. Since G is a linear k-graph, we have vy # u;, for 1 <t <d-2,2<i <k If ), xlfli < Cand
i=1

P2k < M0, fhen

Ut

1- Z -, 1 d(k—1) 1 dk—d+2
k > i= 1 u t=1 s — _
Yz —d-2  Cn—k—d+20 ¢T3 97—l TR
and from (3.6) and Lemma 2.3, we obtain
2k 1)?
d—-AH) > -1 =C.

e+ 20— 2P~ (- D) 7 2~ T
O

Theorem 3.6. Let G be a f-connected d-regular linear k-graph with n vertices, and H' be a proper subgraph of G. If
f k=2, then
2K(f — 1)?
m+di2-k-1)+2)(f-1)2+h’
where h = k(k —1)(n —k —d + 2)((n + 2(f — 2))* = (f = 1)).

Proof. Let H be a maximal proper subgraph of G, i.e., V(H) = V(G) and H differs from G in a single edge
{u1,uy, ..., ur}. We know that H is connected since f > 2. Let q1(H) be the signless Laplacian spectral radius
of H with a principal eigenvector x = (x1,%2,...,x,)7. Letx, = maX;eymyixi} and x, = mineyeix;}. By
Lemmas 2.2 and 3.2, we have

2d — ql(H,) >

1 3 3
—1 Z (o, — xZZUf)Z' (3.7)

w;,wj€eeE(H)

2d — qu(H') > 2d — qi(H) > 2(xf, + 2, + -+ 25 ) +
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By (3.5) and (3.7), similarly, we have

2(f -1y

, k
2d - q1(H ) > 2kx;, + (k—1((n+ Z(f -2))? - (f -

LR AV
) (i —x3)" (3.8)

Define
~ 2k(f — 1)
S (n+de-k-1)+2)(f-1)2+h

where i = k(k — 1)(n —k —d + 2)((n + 2(f — 2))*> — (f — 1)).
k
Case 1. If ) x’{” > %, then from (3.7), we have
i=1

1 k ko
AR D G Tt )
w;,wj€eeE(H)

2d - q1(H') > 2(x’;1 + x’ftz + -

ll k

C 1 k 3
>20+ 1 Z (3, —x3,)?

w;,wj€eeE(H)

>C

Case 2. Let x,, = min;<j{x,,}. Since dy(u1) = d—1, itis possible to choose at least d — 2 distance vertices
{v1,v2,...,04-2} from Ngy(up) such that u ¢ {vy,v,...,v4-0}. If Z‘f 12 ’;, > @C, by (3.7) again and Lemma
2.3, then we have

’ - _ 2
2d - lh(H) > k 1 ul k— Z(xv, xul)

_ 1 2 52

k_ 1 (d 2 +(x’l)t xul) )

=1

=
= — 42 x’;

k- 1;1+di

1 2dk-1)
> =
“k-1d 2 ¢
=C.

k
Case 3. Since G is a linear k-graph, we have vy # u;, for1 <t <d-2,2<i <k If Zx’f“ < % and
i=1
Yz k< @C, then
1= Yok - Nk 1 C dk-1) 1 dk—d+1
k> i=1"u; t=1 1-=— 1—
WE T T doy n—k—d+2 732 7 9T iTk—dsa 7 O
and from (3.8) and Lemma 2.3, we obtain
2k(f — 1)?
2d - qi(H') > V-1 k=

k=T +2(f =2~ (F - D)+ (f 1P "
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4. The signless Laplacian spectral radius of connected nonregular (linear) k-graphs

In this section, we mainly study the upper bounds of the (signless Laplacian) spectral radius of a
f(-edge)-connected nonregular k-graph G with maximum degree A, respectively.

Theorem 4.1. Let G be a nonregular f-edge-connected k-graph with n vertices, m edges, minimum degree o and
maximum degree A. Then

2k(nA — km) f

2A - q1(G) > K :
[4m(k — 1)(nA — km) + kf2]((2)7™0 +n—1)

Proof. Letq:1(G)be the signless Laplacian spectral radius of G with the principal eigenvector x = (x1,x2, ..., x,)".
Let x, = max;ev(g){xi} and x, = min;ey(c){x;}. We also find that

2A - q1(G) = ZAix’i‘ —idixi.‘ -k Z x¢
i=1 i=1

eE(G)

= Zzn:(A—di)xff +Zn:dl-xff —k Z x°
i=1 i=1

e€E(G)
n
=2 Z(A - dl-)xf + Z (x’fu1 +...+ x’fuk — kx°),
i=1 e={wyw;y...w}€E(G)
where d; is the degree of the vertex i. By Lemma 2.2, we have
1 K K
k 2
24 = 1(G) > 2(nA — km)xk + — Z (xg, = x3 . (4.1)

w;,wj€eeE(G)

Let P;: u=ugp,eq,u1,...,uU, =vbe a path from u to v. By Lemma 2.1, we have

k k k k
2 2 )2 2 2)2
(xwi _xwi) 2 27} (xu _xv) .
w;,w;€e€E(Py)

Since G is f-edge-connected, similar to (3.2), we have

f 2
w,‘,w/EZEE‘E(G)(xu]%i ) nguj)2 y ; zirt(xé - ng )2 = %(xg B xé )2' (4.2)
By (4.1) and (4.2), we have
2A = q1(G) > 2(nA — km)xk + L(xf _ Xy
2m(k — 1)

k
The right hand side of the above inequality is a quadratic function of x}. By Lemma 2.3, we have

2k(nA — km) f* .

2A=0(©) > T A — ) K

By Lemma 2.6, we have
2k(nA — km) f*
[4m(k — 1)(nA — km) + kf2(2)TT +n—1)

2A - q1(G) >
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Theorem 4.2. Let G be a nonregular f-connected linear k-graph with n vertices, m edges and maximum degree A.
Then
2(nA — km) f?

(11 20k — D) (A —km) + (k= 2)(f )2+ 1’
where h = (n — f)(k — 1)(nA — km)((n + 2f — 2)> - f).

Proof. Let 41(G) be the signless Laplacian spectral radius of G with the principal eigenvector x =
(x1,%2,...,x,)". Letx, = maX;ev(c){xi} and x, = minjey(c){x;}. Consider the following two cases:
Case 1. Suppose d,, < A — 1. Since Q"1 = g;x*"11, we have

2A — ql(G) >

ql(G)x’;—1 = dux’ff1 + Z Xy Xty « - X, < 2(A = 1)x’;_1.
e={u,uy,...,ur_1 }€E(G)

Thus, we have q1(G) < 2A - 2. Consequently,

2(nA — km) f?

2A - q1(G) 22 > QA —km)+n)f2+h’

where h = (n — f)(k — 1)(nA — km)((n + 2f —2)> - f).
Case 2. Suppose d,, = A. Since G is a f-connected k-graph, there are at least f vertex disjoint paths
P1,Py,...,Ps connecting u and v in G. By Lemma 2.5, we have

f
Z | V(Py) |< 1 +2(f - 1). (4.5)
t=1

Thus, we have

2A - q1(G) = ZAixf—Zn‘dixf—k Z X
i=1 i=1

€E(G)

= 2i(A—di)xf +Zn:dixi.‘ -k Z x°
i=1 i=1

eeE(G)

=2) (A-d)d+ ) e, - k),
i=1

e={wyw;,...wr}€E(G)

where d; is the degree of the vertex i. By Lemma 2.2, we have

1 k K
k 2
2A — q1(G) > 2(nA — km)x;, + o1 E (xg, — xzf,l,) . (4.6)

w;,wj€eeE(G)

Similar to the proof of (3.5), we have

RN S S SRNNN S ) 4.7)
w;,wj€e€E(G) 1 ] (n + 2f B 2)2 B f
By (4.6), (4.7) and Lemma 2.3, we have
2A - 1(G) > 2(nA — k) + 2/ (xF —x2)?
(k=1D((n+2f -2)* - f) (4.8)
2(nA — km) f* .

= h— Db k)1t 2f 22—t
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Define
B 2(nA — km) f?
- (n+2(k—=1D)(mA—km)+ (k=2)(f - 1))f2+h’

where i = (n — f)(k — 1)(nA — km)((n + 2f — 2)* — f).
Case 2.1. Suppose f =1, we have

2(nA — km) .
(k= 1)(nh — km)(2 = 1) + 1 *

2A - 1(G) > (4.9)

and
2(nA — km)

T mr2k—D(nA—km) +h’

where h = (n — 1)(k 1)(nA km)(n? - 1).
Case 2.1.1. If x then from (4.6) and (4.7), we obtain

4 2 Z(nA km)”

C 22

5 5y2
2(nA - kﬂ’l) (k—1D)((n+ 2f 2)2 — f) (; —x5)">C.

2A — q1(G) > 2(nA — km)

n
Case 2.1.2. If xf < m, then since l:Zl xif =1, we have
1—x* 1 C
k > 4 1-— .
Y= >n—1( 2(nA—km))
Thus, by (4.9), we have
2A - q1(G) > C.

Case 2.2. Suppose f > 2.
Case 2.2.1. If xk > m, then the result can be obtained using a similar argument of the case 2.1.1.

Case 2.2.2. Since G is a f-connected linear k-graph, we have d, > f. We can choose at least f — 1 vertices

from Ng(v), denoted by {vy,vy,...,v51}, such thatu ¢ {v1,v2,..., 051} If Zf ! xk >Ck-1)(1+ 2(nA km)) by

(4.6), we have

f-1
208~ 41(G) > 2nA ~ km)xh + Z —x2)?
t=1

2(nA km) k — g
=T k-1 = 12("“ %)

Similar to the proof of the case 2 of Theorem 3.6, we have

2A - 1(G) > C.
Case 2.2.3. If xf, < 53— and Z xk <Ck-1)(1+5 nA km)) by Z xf =1, then we have
f-1
1 1 20k - 1)(nA —km)+ (k-1)(f-1)+1
ks VI W -
X, > n—f(l X, L Xp,) > n—f(l 20 — km) Q).
Thus, by (4.8), we have
2A - q1(G) > C.
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Theorem 4.3. Let G be a nonregular f-connected linear k-graph with n vertices, m edges and maximum degree A.

Then
2(nA — km) f?

201 + (k= )(nA —km) + (k= 2)(f = ) 2+ I’
which hh = (n = f)(k = 1)(nA — km)((n + 2 — 2)% — f).

A - A](G) >

Proof. The result can be obtained by using a similar argument of Theorem 4.2. [
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