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Abstract. In this paper, we introduce implicit composite three-step Mann iterations for finding a common
solution of a general system of variational inequalities, a fixed point problem of a countable family of pseu-
docontractive mappings and a zero problem of an accretive operator in Banach spaces. Strong convergence
of the suggested iterations are given.

1. Introduction

Let E be a smooth Banach space and C be a nonempty closed convex subset of E. Let B;,B, : C — E
be two nonlinear mappings. Recall that the general system of variational inequalities (GSVI) is to find
(x*, ") € Cx Csuch that

(pBiy" +x* =y, jlx —x)) =20, VxeC, 1)
(MBox* +y" —x*, j(x—y*)) 20, VxeC(,

where p and 7 are two positive constants.

The variational inequality was first discussed by Lions and Stampacchia [15] and now is well-known.
Variational inequality theory has emerged as an important tool in the study of a wide class of obstacle,
unilateral, free, moving, equilibrium problems arising in several branches of pure and applied sciences in
a unified and general framework. Some efficient methods have received great attention given by many
authors, see e.g., [4-7, 11, 12, 21-28] and the references therein.

On the other hand, a great deal of effort has gone into the existence of zeros of accretive mappings or
fixed points of pseudocontractive mappings (including nonexpansive mappings) and iterative construction
of zeros of accretive mappings, and of fixed points of pseudocontractive mappings (including nonexpansive
mappings); see, e.g., [1-5, 9-11, 17, 20].
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Motivated and inspired by the research going on in this area, the main purpose of the paper is to introduce
and analyze implicit composite three-step Mann iterations for finding a common solution of GSVI (1) and a
fixed point problem (FPP) of a countable family of uniformly Lipschitzian pseudocontractive self-mappings
on C and a zero problem (ZP) of an accretive operator in E. Under quite suitable assumptions, we derive
some strong convergence results, which improve, extend, supplement and develop the corresponding ones
announced in the earlier and very recent literature; see, e.g., [5].

2. Preliminaries

Let E be a real Banach space with the dual E*. Let C be a nonempty closed convex subset of E. A
mapping f : C — Cis said to be k-Lipschitz if k € [0, +c0) and ||f(x) — f(y)l| < kllx—yl| forallx,y € C. Ifk <1,
then f is called a k-contraction mapping. If k = 1, f is said to be nonexpansive. We use F(f) to denote the
set of fixed points of f.

Recall that a mapping T with domain D(T) and range R(T) in E is said to be

(i) ([13]) pseudocontractive if
Ix=yll<llx—y+r(({ -T)x—I-T)yll, Yx,y € D(T),Vr > 0.

(ii) A-strictly pseudocontractive if for each x, y € D(T) there exists j(x — y) € J(x — y) such that
(Tx = Ty, j(x — y)) < |lx = yI* = Al = T)x — (I - T)y|?, for some A € (0,1).

Recall that a mapping T : C — E is said to be
(i) accretive if, for each x, y € C, there exists j(x — y) € J(x — y) such that
(Tx =Ty, jlx-y) =0,
where | is the normalized duality mapping;
(ii) a-strongly accretive if, for each x, y € C, there exists j(x — y) € J(x — y) such that

(Tx =Ty, j(x —y)) = alx — yl?, forsomea € (0,1).

Let {T,};7, be a sequence of continuous pseudocontractive self-mappings on C. Then {T,}, is said to
be a countable family of {-uniformly Lipschitzian pseudocontractive self-mappings on C if there exists a
constant ¢ > 0 such that each T}, is £-Lipschitz continuous.

Let g be a real number with 1 < g < 2 and let E be a Banach space. Then E is g-uniformly smooth if and

only if there exists a constant ¢ > 0 such that
Il + 7+ llx = ylI? < 2/l + lleyll”),  Vx,y € E.

Proposition 2.1. [1] Let C be a nonempty closed convex subset of a Banach space E. Let Ty, T4, ... be a sequence of
mappings of C into itself. Suppose that ¥, sup{||T,x — Ty-1x|| : x € C} < co. Then for each y € C, {T,y} converges
strongly to some point of C. Moreover, let T be a mapping of C into itself defined by Ty = lim,,_, T,y forall y € C.
Then limy,_,e sup{||Tx — Tyx|| : x € C} = 0.

Proposition 2.2. [10] Let C be a nonempty closed convex subset of a Banach space E and T : C — C be a continuous
and strong pseudocontraction mapping. Then, T has a unique fixed point in C.

Let D be a subset of C and let 1 be a mapping of C into D. Then 1 is said to be sunny if
HII(x) + £x = TT(x))] = T1(x),

whenever [1(x) + t(x — [1(x)) € C for x € Cand t > 0. A mapping IT of C into itself is called a retraction if
IT> = I1. If a mapping IT of C into itself is a retraction, then I1(z) = z for each z € R(IT), where R(I]) is the
range of I1. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.
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Proposition 2.3. [2, 14] Let C be a nonempty closed convex subset of a smooth Banach space E, D be a nonempty
subset of C and I1 be a retraction of C onto D. Then the following are equivalent:

(i) Il is sunny and nonexpansive;
(ii) |II1(x) = HY)IP < (x =y, j01) = (), ¥x,y € C;
(iii) (x —I(x), j(y — I1(x))) <0,¥x e C,y € D.

If A is an accretive operator which satisfies the range condition, then we can define, for each r > 0 a
mapping J, : R(I + rA) = D(A) by J, = (I + rA)™}, which is called the resolvent of A. It is well known that J,
is nonexpansive and F(J,) = A™10 for all » > 0. If A=10 # 0, then the inclusion 0 € Ax is solvable.

Proposition 2.4. [10, 16] For A, i > 0 and x € E,

Jix = Jubx+ 1= Do,

Proposition 2.5. [19] Given a number r > 0. A real Banach space E is uniformly convex if and only if there exists a
continuous strictly increasing function g : [0, c0) — [0, 00), g(0) = 0 such that

IAx + (1 = Ayl < Al + (1= Dyl = A0 = A)g(lx — yll)
forall A € [0,1] and x, y € E such that ||x|| < rand ||y|| < 7.

Proposition 2.6. [12] Let E be a smooth and uniformly convex Banach space, and let r > 0. Then there exists a
strictly increasing, continuous, and convex function g : [0,2r] = R, g(0) = 0 such that

g(llx = ) < 11> = 2(x, jy) + IvIP,  ¥x,y € B,,
where B, = {x € E : ||x|| < r}.

Lemma 2.7. [19] Let E be a real Banach space and | be the normalized duality mapping on E. Then for any given
x,y € E, the following inequality holds:

e+ Yl < IIxIP + 2Cy, jx + v)),  Yjlx+y) € J(x + y).

Lemma 2.8. [4] Let C be a nonempty closed convex subset of a smooth Banach space E and By, B, : C — E be two
nonlinear mappings. Let I1c be a sunny nonexpansive retraction from E onto C. For given x*,y* € C, (x*,y*) isa
solution of the GSVI (1) if and only if x* € GSVI(C, By, By) where GSVI(C, By, By) is the set of fixed points of the
mapping G = I1c(I — pB1)IIc(I = nBy) and y* = Ilc(I — nBy)x".

Lemma 2.9. [4] Let C be a nonempty closed convex subset of a smooth Banach space E, and let the mapping B; : C — E
be Ai-strictly pseudocontractive and C;-strongly accretive with A; + (; > 1 for i = 1,2. Then, for p,n € (0, 1] we have

T = pB)x = (I = pBYl < [ 52 + (1= p) (1 + Dl —yl, Vx,yeC,
I = nBo)x — (T = nBo)yll < [\ 52 + (A=A + L)k —yl, VxyeC

In particular, if 1 — 131 (1- %) <p<landl- 132 (1- %) <n<1,thenI— pBy and I — nB, are

nonexpansive mappings.

Lemma 2.10. [4] Let C be a nonempty closed convex subset of a smooth Banach space E. Let Ilc be a sunny
nonexpansive retraction from E onto C, and let the mapping B; : C — E be A;-strictly pseudocontractive and C;-
strongly accretive with A;+C; > 1fori =1,2. Let G : C — C be the mapping defined by G := I1c(I—pB1)I1c(I-1By).

If1- & (1—,/%)Sp§1and1— L(1- 1_—52)Sns1,thenG:C—>Cisnonexpansive,

1+A4 1+A; A
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Lemma 2.11. [2] Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let {T,}, be a
sequence of nonexpansive mappings on C. Suppose that (\,-o F(Ty) is nonempty. Let {A,} be a sequence of positive
numbers with Y ,-oA, = 1. Then a mapping S on C defined by Sx = Y., o AuTux for x € C is defined well,
nonexpansive and F(S) = (,~o F(Ty) holds.

Lemma 2.12. [20] Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of E, T : C — C
be a nonexpansive mapping with F(T) # 0, and f € Ec. Then the net {x;} defined by x; = ¢ f(x;)+(1—t)Tx, ¥t € (0,1),
converges strongly to a point in F(T). If we define a mapping Q : Ec — F(T) by Q(f) := s-limyox, Vf € Ec, then
Q(f) solves the VI:

((I=HQ), j(Q(f) —x)) <0, VxeF(T).

In particular, if f = u € C is a constant, then the map u — Q(u) is reduced to the sunny nonexpansive retraction of
Reich type from C onto F(T), i.e.,

(Q(u) —u, j(Qu) =x)) <0, Vx € KT).

Lemma 2.13. [8] Assume that E has a weakly continuous duality map j, with gauge .
(i) For all x, y € E, the following inequality holds:

O(|lx + yll) < (i) + Y, jo (x + y))-
(ii) Assume that a sequence {x,} in E is weakly convergent to a point x. Then the following identity holds:

lim sup @(||x, — yll) = limsup O(|x,, — xI|) + @(ly — xl[), Vy€E.

Lemma 2.14. [8] Let E be a reflexive Banach space and have a weakly continuous duality map j, with gauge ¢, let
C be a nonempty closed convex subset of E, let T : C — C be a nonexpansive mapping with F(T) # 0, and let f € Ec.
Then {x;} defined by x; = tf(x;) + (1 — t)Tx;, Yt € (0,1), converges strongly to a point in F(T) as t — 0*. Define
Q: Ec = F(T) by Q(f) := s-limy_o+ x;. Then Q(f) solves the VI:

(= HR jp(Q(f) =x)) <0, Vx € K(T).

In particular, if f = u € C is a constant, then the map u — Q(u) is reduced to the sunny nonexpansive retraction of
Reich type from C onto F(T), i.e., {Q(u) — u, jo(Qu) —x)) <0, Vx € K(T).

Lemma 2.15. [20] Let {a,};, be a sequence of nonnegative real numbers satisfying
a1 S (L= €n)an + €nén, V20,
where {e,}, , and (&1 ) are real sequences satisfying
(D) {ea)y € (0,1), Tilgen = o
(ii) either limsup,_, &, < 0o0r Yoo lenénl < oo.

Then lim, o a, = 0.

Lemma 2.16. [18] Let {x,} and {z,} be bounded sequences in a Banach space E, and let {8,} be a sequence of
nonnegative numbers in [0, 1] with 0 < liminf, . B, < limsup,_, . B, < 1. Suppose that x,11 = BuXy + (1 = P)zu
for all integers n > 0 and limsup, _,  (I1zp+1 — Znll = [IXp41 — x4ll) < 0. Then lim, e ||, — z4ll = 0.
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3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E which either is
uniformly smooth or has a weakly continuous duality map j, with gauge ¢. Let I1c be a sunny nonexpansive retraction

from E onto C. Let A C E X E be an accretive operator in E such that D(A) € C C (,»g R(I +rA). Let B;: C — E be
1- %)Spﬁland

Aji-strictly pseudocontractive and Ci-strongly accretive with A; + G; > 1(i = 1,2), 1 — 1+ A

1”2 1- %) <n <1 Let f:C — C bea k-contraction, and {T,},’  be a countable family of C-uniformly
Llpschztzzan pseudocontractive self-mappings on C. Suppose that Q := (;—o F(T,) N GSVI(C, By, B2) N A™10 # 0.
For an arbitrary xo € C, let the sequence {x,} be generated by

Zn = 0nXny + (1 = 04)T0zy,
Yn = QpXy + (1- an)]rnGznr (2)
Xn+l = ﬁnf(xn) +(1- ,Bn)]/n/ ¥n >0,

where {a,},{Bn} and {o,} are the sequences in [0,1] and {r,} is a sequence in (0, o). Suppose that the following
conditions hold:

(C1): 0< By <1 -k Vn = ng for some ng >0, and Y, fu = 00;

1 Bus B
(C2): Mmoo =iy — =y |

= 0and lim, e |0421 — 0u| = 0;
(C3): 0 <liminf, o ay < limsup, | a, <1;

(C4): 0 <liminf, o0, <limsup, | o, <1

(C5): limy—e0 [tne1 — 1l =0and r, > ¢ > 0,Yn > 0.

Assume that Y5 g sup,plITus1x — Tpxll < oo for any bounded subset D of C, and let T be a mapping of C
into itself defined by Tx = limy_ Tyx for all x € C, and suppose that F(T) = (\,—o F(T,). Then x, — x* €
Q & |IBu(f(xn) = xp)ll + [IGxy — x|l = 0. In this case, (x*, y*) is a solution of GSVI (1) with y* = I1c(I — nBy)x",
and we have

(i) if E is uniformly smooth, then x* € Q solves the VI: {(x* — f(x*), j(x* —x)) <0, Yx € (;

(i1) if E has a weakly continuous duality mapping j, with gauge ¢ then x* € (2 solves the VI: {(x*~ f(x"), jo(x"—x)) <
0, Vx € Q.

Proof. Without loss of generality, assume that {0,} C [c,d] € (0,1) for some c,d € (0,1). Note that the
1- 1;i)SpSlamd

mapping G : C — C is defined as G := IIc(I — pB1)IIc(I — nB;), where 1+A

1- % CZ) <1 < 1. So, by Lemma 2.10, we obtain that G is nonexpansive. It is easy to see that for

1+/\2
each n > 0 there exists a unique element z, € C such that

Zy = 0pXy + (1 — 0)Tyzy. 3)

As a matter of fact, consider the mapping F,x = 0,x, + (1 —0,)T,x, Yx € C.Since T, : C — C is a continuous
pseudocontractive mapping, we deduce thatall x,y € C,

(Fpx = Fuy, j(x — 1)) = (1 = 0, XTux = Tuy, j(x — 1)) < (1 = a)llx — ylP*

Also, from {o,} C [c,d] € (0,1) we get0 <1 -0, <1 forall n > 0. Thus, F, is a continuous and strong
pseudocontraction mapping of C into itself. By Proposition 2.3, we know that for each n > 0 there exists a
unique element z, € C, satisfying (3).
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Now, let us show that {x,}, {y,} and {z,} are bounded. Indeed, take an element p € Q = (;_, F(T,,) N
GSVI(C,By,B,)NA™10 arbitrarily. Thenwehave Gp =p, |, p=pand T,p =pforalln > 0. Since T,, : C — C
is a continuous pseudocontractive mapping, it follows that

llzn = pI* = (zu = p, j(za — P))
= 0p{Xy — p, j(Zn - P)) + (1= 0,)Thzy — p, j(zn - P)> 4)
< aullxn = pllllze = pll + (1 = 0y)llza — pIF,
which hence yields
Iz, —pll < llx, —pll, VYn>0. (5)
Since G, J;, : C — C are nonexpansive mappings, from (2) and (5) we have
lyn = pll = llawx, + (1 = an)]r, Gzn = pll
< ayllxy = pll + (1 — an)lGz, — pl|
< ayllxy = pll + (1 = an)llzy —pll (6)
< agllxy, — pll + (1 = a)llx, = pll
= |l — pll
and hence
Ixn+1 = pll < Bull f(xn) = pll + (1 = B)llyn — pll

< Bulllf () = FI+ 1 £ () — pID) + (1 = Bu)llx — plI
< Bulkllx, = pll + 11 f () —pll) + (1 = Bu)llxn = pll

If(p) - pl
= (1 (@RI —pll + (- bop, LD
Ilf () - pll
< maxfllx, —pll, ?}-
By induction, we have
If(p) — pl
IRt — pll < max{lizo - pll, f(f)fkp}, Vi > 0.

Hence {x,} is bounded, and so are the sequences {v,}, {z.}, {Gz,}, {];, Gz} and {f(x,,)} (due to (5), (6) and the
nonexpansivity of J,,, G and f). In addition, since limsup,_, 0, < 1, we have liminf, ,.(1-0,) > 0, which
implies that there exist € > 0 and 71 > 1 such that 1 — g, > € for all n > 7. So it follows that for all n > 7,

ETuzull < (1 = o)lTnzull = llzn — onXnll < l1zall + x4l

This means that {T,z,} is bounded.
Suppose that x, — x* € Q asn — co. Then x* = Gx*, x* = [, x* and x* = T,,x" for all n > 0. From (2) it
follows that

lyn = XNl < anlln = X1 + (1 = a)llGzy — X7l
< agllxn = X7 + (1 = a)llzn = 27l

<y =x =0 (n— ),
thatis, y, — x*. Again from (2) we obtain
”,Bn(f(xn) = x|l < |[xpe1 = xall + (1 = ﬁn)”yn = Xpll < X1 = 2l + ”yn =Xyl = 0.

In the meantime, from the nonexpansivity of G, it is easy to see that

IGxy, = xull < N1Gxty — X7+ llx" = 2l < e = 27]| + [1x7 = Xl = 2l — x7[| — 0.
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Consequently, we get
1B (f (xn) = x)ll + 1Gxy = x| = 0 (1 — 00).

4775

Conversely, suppose that [|8,,(f (xn) — xn)ll + [IGxy — x4l = 0 (n — o0). Put y,, = (1 — Bn)a, for each n > 0.

Then it follows from conditions (C1) and (C3) that
an 2 vp=0-Ba,>1-1-k)a, =ka,, Yn>ny,
and hence

0 <liminfy, <limsupy, < 1.

n—oo n—co
Define 2, by

Xn+1 = VYnXp + (1 - )/n)zn, Yn > 0.

Observe that
N N ﬁn+1 ,B
Zp+l —Zp = (1 - )(f(xn+1) ]r,,ﬂ Gzn+1) + (f(xn+1) f(xn))
= Vn+1 1-
1 n n
+ B Grn = G
It follows that
e = 2l < F 2 = PG50 = Gl + T2 50) = 51
# 2B G = 1,Gal
ﬁn+1 ,Bn

k
Sl T Wl + s, Gzual) + ﬁyn”xm_xn”

1 n n
+ P G = .G

On the other hand, if r, < 7,41, using the resolvent identity in Proposition 2.6,

Jri GZni1 = ]r,,( GZn+1 +(1- nl Vi GZnt1),
+

we get

T T
Wi Gznet = Jr, Gznll < G211 = Gzall + (1 — r_n)||]rn+1GZGZn+1 - Gzl
1

n+1 n+

r +1 — r
< ||Zn+1 - Zn” + u||]r,,+1GZn+1 - Gzn”
T+l

1
< lzns1 = zall + er”“ = TnlllJrs GZna1 — GzZall.

If 7441 < ¥n, we derive in the similar way

1
W5 GZna1 = 1, Gzall < Mz = Znaall + 2|7’n = 1], Gz — Gzl

Thus, combining the above cases, we obtain

”]r,H.lGZrH—l - ]r,,GZn” < lzn = zns1ll + Molrn = 144l

(10)
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where supnzo{%(ll Jrwis GZnr1 — Gzull + 1]+, Gz — Gzp11ll} £ My for some My > 0. Substituting (10) into (9), we
have

N A ﬁn+1 ﬁn kﬁn
2041 — Znll < | - I(lf Cense DI+ 17y GZiaall) + (141 = xall
- Vn+ 1-vyy, 1-v,
ﬁ (11)
- Vn n
+ 1— (“Zn Zn+1|| + MOlrn - rn+1|)-
Note that
Znt1 = Zn = Ol (Xna1 — Xn) + (1 = 0441)(Tn1Zn41 — Tuzu) + (041 — 00) (X — Tizy),
which hence yields
1z — Zn”2 = Ops1{Xns1 — xnrj(zn+l =2zp)) + (1 = 0 ) [{Tns1zns1 — Tuzus, j(Zn+1 )
+ (Tnzn+1 - Tnzn/ j(zn+1 - Zn))] + (on+1 - Un)<xn - Tnznl j(zn+1 - Zn))
< Opstllxner = xullllzisr = zall + (1 = 0 ) Ts12041 — Tuzns1llllzner — zall + 121 — anlz]
+ |oyns1 = oulllen = Tuzallllzne1 — zall-
It follows that
1Zn+1 = Zull < Opsllxnsr = Xull + (1 = 0ns) T w1201 — TuzZnerll + 11zns1 = Zalll + 10021 = Oulllxn — Tnzall
1-0u11 Il = Tzl
< ||xn+1 - xn” + —n||Tn+12n+1 - T‘rzzn+1” + |0n+1 - Onlu (12)
Op+1 On+1
Iy, = Tuzall

1
< ||xn+1 - xn” + E||Tn+1zn+1 - Tnzn+1|| + |0n+1 - 0n|
Putting D = {z, : n > 0}, we know that D is a bounded subset of C. Then by the assumption we have
Yo sup,.p ITyr1x — Tyx|| < 0o, which hence implies ||T;+1zn41 — Tnzps1ll £ sup,p ITix = Toxll = 0 (n —
00). That is,

1}1_1:1‘;10 ”Tn+1zn+1 - TnZn+1” =0. (13)

Substituting (12) into (11), we get

Br+1 ,Bn k,B 1=yu—Bau
i — 2l < | = T Gl + W, Ganall) + = lhes = il + === (s =
1-yna 1- —~Vn 1=n
1 llxy = Tnz II
+ E“Tn+lzn+1 - Tnzn+1|| + |Un+1 - O—n|% + M0|rn - rn+1|)
,Bn+1 ,Bn 1
< | - |(||f(xn+1)” + ||]7’”+1 Gzn+1”) + ||xn+1 - xn” + _||Tn+1zn+1 - Tnzn+1||
1-yu1 1=y c
llxn — Tuzall
+ |an+1 - Gnlnfnn + MOlrn - rn+l|
ﬂn+1 ,Bn
< ||xn+1 - xn” + M(l - | + ||Tn+1zn+1 - TanH—l” + |0n+1 - Gn| + |rn+1 - rn|)/

1_7/n+1 1_)/11

where sup, . {llf ()l + (1], Gzall + % + w + My} £ M for some M > 0. Then it immediately follows that

~ A ﬁn+l ﬁn
12141 = Zull = [In41 = xall < M(| 1-y - 1-y | + I Tr1zn41 — Tuznstll + 1001 — oul + rns1 — 74l).
= [/n+l —/n

From (13) and conditions (C2), (C5), we deduce

lim Sup(”2n+1 - 271” - ||xn+1 - xn”) < 0.

n—oo
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Thus by Lemma 2.16 we have
lim ||2, — x,|| = 0.
n—o00

It follows from (7) and (8) that
lim (121 = | = im (1= Il = %l = 0.
From (2), we have x,41 — x, = Bu(f(xn) — x,) + (1 = Bn)(Yn — X,). This implies that
kllyn = xull < (L= Billyn = xull < llxns1 = xull + 1B (f (xn) = x0)Il-
Since xp11 — x, — 0 and B, (f(x,) — x,) — 0, we get
Tim [y, = ] = 0.
Observe that
Yn —Xn = (1= n)(J5, Gzn — Xn).
It follows from condition (C3), (15) and (16) that
lim [lv, - J;, Gzl = 0.

Also, according to (3) and Proposition 2.6, we have

. 1
20 =PI < (= p, jzn = p)) < Sl = pIF + llzw = pI? = gl = 2alD)-
This immediately implies that ||z, — pII2 <|lx, — p||2 = g(llxy, = z4l[) which together with (6), leads to
Iy = pIP < anllx, = pIP + (1 = a)llzn — pIP
< aullxy = plP? + (1= aw)llixn — pI* = gl — zull)]
= Iy = plP* = (1 = a)g(llxn = zall).
So it follows from (15) that

(1 = an)g(lixn = zull) < lxn = plP* = llyn = pIP
< (v = pll+ lyn = pID(ln = pIl = llyn = pl)
< (Ilxn = pll+ 1lyn = pllxa = yull > 0 (1 — o).

Again from condition (C3) we get
lim (|1, - z) = 0.

In terms of the properties of g, we have
lim [jx,, — z4l| = 0,
n—oo

which together with (3), implies that

o d
—na,,”x” =zl £ m”xn -zl >0 (n— o).

IThzn — zall = 1

That is,

lim || Tz, — zall = O.
n—oo

4777

(14)

(15)

(16)

(17)

(18)

(19)
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Further, since {T,,},"_, is {-uniformly Lipschitzian on C, we deduce from (18) and (19) that

1Tnxn = xull < W Tpxn — Tuzall + ITnzn = zull + 120 — x4l|
< Ll = zull + 1Tnzn = zall + |20 — x4l (20)
= (€ + Dllxy — zull + I Tpzyn — zall > 0 (1 — o).

Next, let us show that T : C — C is pseudocontractive and ¢-Lipschitzian such that lim,_,c ||Tx,; — x|l = 0
where Tx = lim,, .« Tyx, Vx € C. Observe that forall x, y € C, limy, e [|Tx=Tx|| = 0 and lim,, 0 [| Ty =Tyl =
0. Since each T}, is pseudocontractive, we get

(Tx = Ty, j(x = y)) = lim(Tox = Ty, jx = y)) < =yl
This means that T is pseudocontractive. Noting that {T,}” ; is -uniformly Lipschitzian on C, we have

ITx — Ty|| = lim ||T,x — Tyyll < €llx—yll, Vx,yeC

This means that T is {-Lipschitzian. Taking into account the boundedness of {x,} and putting D = conv{x, :
n > 0} (the closed convex hull of the set {x,, : n > 0}), by the assumption we have )", sup, .y I Thr1x = Tyx|| <
co. Hence, by Proposition 2.1 we get

lim sup ||T,x — Tx|| =0,

n—=% yeD

which immediately yields

lim [|T,px, = Txyl| = 0. (21)
Thus, combining (20) with (21) we have

lloen = Txull < llotw = Toxull + I Tuxn — Txull > 0 asn — oo. (22)

We claim that if we define T := (2I - T)™!, then T : C — C is nonexpansive, F(T) = F(T) = (o>, F(T,) and
limy, e [X; — Txul| = 0. Indeed, put T := (2 — T)~!, where [ is the identity mapping of E. Then it is known

that T is nonexpansive and the fixed point set F (T) = K(T) = Moo F(T) as a consequence of Theorem 6 of
[22]. From (22) it follows that

_ 1 _
Xy = Txull = ITT  x, — Txyl|

<IT %0 = xll (23)
=I2I = T)xp — xull = lIxy = Txull = 0 (1 — 00).
In addition, let us show that lim, e I|J;x; — x4l = O for any given r € (0,¢). As a matter of fact, since

G, J, : C = C are nonexpansive mappings, from (17), (18) and ||x, — Gx,|| — 0 we conclude that

e, xn = Xull < Wr, X0 = Jr, Gzall + ], Gzn — Xl
< lxp — Gzull + “]rnGZn = Xpl|
< len = Gxall + 1Gxn — Gzull + 1], Gzn — Xl
< lxn = Gxall + Ny — zull + 1], Gz — xull > 0 (n — ).

(24)

Also, taking into account the resolvent identity in Proposition 2.6, we have
r r
”]r,,xn = Jixull = (=20 + (1 = _)Ir,,xn) = Jrxall
n 'n

r
< (1 - _)H]r,,xn - xn”
'y

<l = Jr,xall,
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which together with (24) implies that

I, — ]rxn” <|lx, - ]r,lxn” + “]r,,xn - ]rxn”
<lxw = Jr,xull + 1xn = Jr, xall (25)
=2llxy = Jr,x0ll > 0 (n — o0).

In the following, we claim that {x,} converges strongly to x* € Q. Indeed, it is sufficient for us to discuss
two cases below.
(i) Firstly, suppose that E is uniformly smooth. Let us show that

limsup(x" — f(x"), j(x* —=x,)) <0, x"€Q, (26)

—

where z; is the fixed point of the mapping z — ¢f(z) + (1 - (01T + 62G + (1 — 61 — 62)],)z, x* = s-limy_o+ 24
and x* solves the VI: ((I — f)x*, j(x* —x)) <0, Vx € Q.

Indeed, we define a mapping Wx := 61Tx + 0,Gx + (1-61—-6,)],x¥x € C, where 01,0, € (0,1) are two
constants with 6; + 0, < 1. Then from Lemma 2.11 it is easy to see that W is nonexpansive and

F(W) = E(T) NE(G)NE(J,) = ﬂ E(T,)) N GSVI(C, By, B,) N A™10(=: Q) # 0.

n=1
Observe that
I = Watall = 102(Txn = ) + 02(Gtn = x) + (1= 01 = 02)(Jrxy = )l
< 01Ty = xall + 62lIGxy = xull + (1 = 61 = O)Il] s — Xl
From (23), (25) and ||Gx;, — x,,|| — 0, we obtain
lim [lx, — Waxyl| = 0. (27)

It is clear that the mapping z - tf(z) + (1 - )Wz is a contraction of C into itself for each t € (0,1). So, z
solves the fixed point equation z; = tf(z;) + (1 — )Wz;. Then we have

zi = Xy = (1= )(Wzr — x,) + H(f(z1) = x0). (28)
Thus, from Lemma 2.7 and (28), we obtain
llze = xul® < (1= W2zt — xl* + 26(f (21) = X, (2 — X))
< (1= 7[Wze = Watyll + Wy, — xll1* + 26(f (z0) — %0, (2 — X))
< (1= 7[llze = xall + Wy = xull* + 26 f(z1) = X, izt — X))
= (1= 1)[llze — xull® + 2llze — xulliWx = xll + Wty = 2l P] + 26 f(21) = X0, (2t = x0)),
that is,
llze = xal® < (1= 02llze — xull® + Wxy = xull[2llze — xull + Wt = xull] + 26(f (21) = 21, izt — X))
+ 2t]lz¢ — x|
= (1+ P)llze = xal* + [Wax, — xall[211z¢ = xall + Wt — xll] + 26 f(z0) — 22, (2 — X))
It follows that

, t 1 — _
(zt = f(z1), j(zt — x0)) < E”Zt — xqll* + ZIIWxn = xalll2llzs = xall + Wy = x4ll]- (29)
Letting n — oo in (3.27) and noticing IWx,, — x|l = 0 (n — o0), we have

lim sup(z; — f(z¢), j(zt — xn)) < éMl, (30)

n—o0
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where M, is a constant such that ||z; — x,,||> < M; foralln > 0and t € (0, 1). Utilizing Lemma 2.12 we deduce
that {z;} converges strongly to a fixed point x* € F(W) = F(T) N F(G)NF(J,) = Q, which solves the variational
inequality:

(= H)x', j(x"—x) <0, VYxeQ.

Since the duality mapping j(-) is norm-to-norm uniformly continuous on bounded subsets of E, by letting
t — 0% in (30), we know that (26) holds.
Now, let us show that x,, — x* as n — oo. Utilizing Lemma 2.7, we have
lIxp1 — x*”2 = ”ﬁn(f(xn) - f)+(1- ﬁn)(yn -x)+ ,Bn(f(x*) - x*)Hz
< Ba(f(xn) = F(X)) + (1 = Bu) (Y — X + 2Bu( () — X7, j(Xns1 — X7))
< ,Ban(xn) - f(X*)HZ +(1- ,Bn)”]/n - x*Hz + 2,871<f(x*) -, j(xn+1 -x%))
< Bukllcn = 1P + (1= Bl = X°I2 + 280 (f () = X, j(usr = X)) B1)
= (1= (1= k)Bu)llxy = X + 2B, f(x") = X7, j(xns1 — X))
. 2f (") = X7, j(xn1 — 7))

= (L (=Rl — xR + 1~ ko, LTS 2 X))

Therefore, applying Lemma 2.15 to (31), we conclude from (26) and condition (C1) that x, — x* as n — oo.

(i) Secondly, suppose that E has a weakly continuous duality mapping j, with gauge ¢. Let z; be the
unique fixed point of the contraction mapping T; given by

Tix = tf(x) + (1 - )Wx, Vte(0,1),

where W := 61T + 0,G + (1 - 01— 0y)], with 01,0, € (0,1) being two constants satisfying 01 + 8, < 1. By
Lemma 2.14, we can define x* := s-lim;_,o+ z;, and x* € F(W) = Q solves the VI:

= f(x), jo(x' —x)) <0, VxeQ. (32)
Let us show that
lim sup(f(x") — x*, jy(x, — x*)) < 0. (33)

We take a subsequence {x,,} of {x,} such that

lim sup(f(x) =, iyl = X)) = B (FG) = 2 o (o, = X)) (34)

n—oo

Since E is reflexive and {x,} is bounded, we may further assume that x,, — x for some ¥ € C. Since j, is
weakly continuous, utilizing Lemma 2.13, we have

lim sup O(|lx,, — x|) = lim sup O(||x,,, — %) + @(lIx — x||), Vx€E.

k—oo k—oc0

Put I'(x) = limsup,_, , O(l|x,, — xll), Yx € E. It follows that I'(x) = I'(X) + O(||x — X||), Yx € E. From (27), we
have
[(Wx) = lim sup®(||x,, — Wxl|)
k—oo

= lim sup®([|Wx,,, — W) (35)

k—o0

< limsup@(||x,, — X||) = I'(%).

k—o0

Furthermore, observe that

T(Wx) = I'(%) + (||Wx — ). (36)
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Combining (35) with (36), we obtain O(|[Wx — x||) < 0. Hence Wx = % and ¥ € F(W) = Q. Thus, from (32)
and (34), it is easy to see that

lim sup(f(x*) — x7, jo(x, — x7)) = hm(f(x) X', jo(X —x7)) <0.

n—o0

Therefore, we conclude that (33) holds.
Next, let us show that x, — x* as n — co. Utilizing Lemma 2.13, we obtain

O(|lxns1 = x7M) = C(UIBA(f (x0) = X7) + (1 = ) (yn = x*)ll)
= O(IIBa(f (xn) = () + (1= )Y = X7) + fu(f () = X))
< O(IIBn(f (xn) = f(x7)) + (1 = Bu)(yn — ¥ II) +Bu(f(X) =, jo(Xns1 — X7))
< OBullf () = FOON+ (1 = Bllyn = X7M) + Bulf(x7) = X7, jp(Xna1 = x7)) (37)
< OBukllxy — M + (1 = Bu)llxn — X7 + Bulf(x") = X7, jo (X1 — X))
< A=A =BBPllxn = x7I) + Bl f(x7) = 7, jp(Xns1 = x7))

< (1= (L= BBl — 1) + (1 - by, LD 2D

Applying Lemma 2.15 to (37), we conclude from (33) and condition (C1) that @(|x, — x*|) = 0 (n — o)
which implies that |[x, — x*|| = 0 (n — o), i.e., x, — x* (n — ©0). This completes the proof. 0O

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Assume, in
addition, that E either is uniformly smooth or has a weakly continuous duality map j, with gauge ¢. Let Ilc
be a sunny nonexpansive retraction from E onto C. Let B; : C — E be A;-strictly pseudocontractive and (;-
strongly accretive with A; + (; > 1 fori = 1,2. Let f : C — C be a fixed contraction mapping with coefficient
k € (0,1), and {Ty};", be a countable family of {-uniformly Lipschitzian pseudocontractive self-mappings on C
such that Q := (,_o F(T) N GSVI(C, B1,B2) # 0, where GSVI(C, By, By) is the fixed point set of the mapping

G:=Ic(I- 1-J5Y <p<landl- 2
xo € C, let {x,,} be generated by

(1- % CZ) < n < 1. For an arbitrary

1+/\1 1+A2

Zy = 0pXy + (1 — 0,)Tyzy,
Yn = QpXy + (1 - an)GZn/ (38)
Xn+l = ﬁnf(xn) +(1- ,Bn)]/n/ Yn >0,

where {avy}, 1B} and {0,} are the sequences in [0, 1] such that the following conditions hold:

(C1): 0< By <1—k,Yn=ng for someny >0, and Y, Bn = c0;

(C2): Ty = = Ty | = 0 and i [0 — 0l = 0

(C3): 0 <liminf, o ay < limsup, | a, <1;
(C4): 0 <liminf, o0, <limsup, | o, <1.

Assume that Y5 gsup,plITus1x — Tuxl| < oo for any bounded subset D of C, and let T be a mapping of C
into itself defined by Tx = lim,_, Tyx for all x € C, and suppose that F(T) = (\,_o F(Ty). Then x, — x* €
Q & Bu(f(xn) —x4) = 0. In this case, (x*, y*) is a solution of GSVI (1) with y* = I1c(I — nB2)x", and we have

(a) if E is uniformly smooth, then x* € Q solves the VI: (x* — f(x*), j(x* = x)) <0, Vx € (J;

(b) if E has a weakly continuous duality mapping j, with gauge ¢ then x* € Q solves the VI: {(x*=f(x"), j,(x'=x)) <
0, Vx € Q.
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Proof. In Theorem 3.1, we put Ax = 0 for all x € E. Then for any positive sequence {r,}, we have J,, = I the
identity mapping of E. Hence the iterative scheme (2) reduces to (38). Repeating the same arguments as
those of (17) and (18) we derive

lim |jx, — Gz,l| = lim ||x,, — Jr.Gzull = 0,
n—oo n—-oo

and
lim ||x, — z,|| = 0.
n—oo

Combining two limit equalities, we get
llen = Gxull < [l = Gzl + [1Gzn = Gxull < llxn = Gzall + ||z = xull = 0 (n — ).

That is,
lim ||x,, — Gx,|| = 0.
n—oo

So it follows that
”ﬁn(f(xn) - xn)” -0 & ”ﬁn(f(xn) - xn)” + [|x, — Gx,l| = 0.

Therefore, utilizing Theorem 3.1, we obtain the desired result. [

Corollary 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Assume, in
addition, that E either is uniformly smooth or has a weakly continuous duality map j, with gauge ¢. Let Ilc
be a sunny nonexpansive retraction from E onto C. Let A C E X E be an accretive operator in E such that

D(A) € C c NsoRU + rA), and let B : C — E be A-strictly pseudocontractive and C-strongly accretive with
A+C21. Let f : C— C bea fixed contraction mapping with coefficient k € (0,1), and {T,,}"_, be a countable family

of C-uniformly Lipschitzian pseudocontractive self-mappings on C such that Q := (\;_o F(T,) N F(G) N A710 # 0,

where F(G) is the fixed point set of the mapping G := Ic(I — pB)1c(I — nB) with 1 — 25 (1 - w/%) <p<land

1- 1j}A(1 - ‘/%) < n < 1. For an arbitrary xy € C, let {x,} be generated by

Zp = O0pXpy + (1 - Gn)TnZn/
Yn = QpXy + (1- an)]rnGzn/
Xn+l = ﬁnf(xn) +(1- ,Bn)yn/ Yn >0,

where {a,},{Bn} and {o,} are the sequences in [0,1] and {r,} is a sequence in (0, c0). Suppose that the following
conditions hold:

(C1): 0< By <1 =k Vn = ng for some ng >0, and Y, fu = ©0;

(C2): lim,_e0 |1_(1_%:1)an+1 - = (15'}3,1)%' = 0and lim,, e |0p11 — 04| = 0;

(C3): 0 <liminf, o ay < limsup, | a, <1;
(C4): 0 <liminf, .o 0, <limsup, , o, <1;
(C5): limy—eo |[tne1 —tul =0and r, > ¢ >0Vn > 0.

Assume that Y, sup, .y [IThr1x — Tyxl| < oo for any bounded subset D of C, and let T be a mapping of C
into itself defined by Tx = lim,_,e Tyx for all x € C, and suppose that F(T) = (,_o F(T,). Then x, — x* €
Q & IBa(f(xn) = x)Il + IGxy, — x4l = 0. In this case, (x*, y*) is a solution of SVI with y* = I1c(I — nB)x*, and we
have

(a) if E is uniformly smooth, then x* € Q solves the VI: (x* — f(x*), j(x* —x)) <0, Vx € ;

(b) if E has a weakly continuous duality mapping j, with gauge ¢ then x* €  solves the VI: (x*— f(x"), jo(x*—x)) <
0, Vx € Q.
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Corollary 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Assume, in
addition, that E either is uniformly smooth or has a weakly continuous duality map j, with gauge ¢. Let Ilc
be a sunny nonexpansive retraction from E onto C. Let A C E X E be an accretive operator in E such that

D(A) € C c NsoRU + rA), and let B : C — E be A-strictly pseudocontractive and C-strongly accretive with
A+C2>1. Let f : C— C bea fixed contraction mapping with coefficient k € (0,1), and {T,},"_, be a countable family
of C-uniformly Lipschitzian pseudocontractive self-mappings on C such that Q := (o F(T,) NVI(C,B)N A~10 # 0.
For an arbitrary xo € C, let {x,} be generated by

Zy = 0pXy + (1 —0,)Tyzy,
Yn = QpXy + (1- an)]rnGzn/
Xn+l = ﬁnf(xn) +(1- ,Bn)yn/ VYn >0,

where G := I1c(I — pB) with 1 - ﬁ(l - w/%) < p <1, {a}, {pn} and {0} are the sequences in [0, 1] and {r,} is a
sequence in (0, 00). Suppose that the following conditions hold:

(C1): 0 < By <1—k,Yn=ng for someny >0, and Y, Bn = c0;

(C2): lim;, 00 |1_(1—Iisﬂ,,++11)a,,+1 - 1—(1{i%n)a,,| = 0and lim,,_,e 0,41 — 04| = 0;

(C3): 0 <liminf, . ay <limsup, , a, <1;
(C4): 0 <liminf, .o 0, <limsup, , o, <1;
(C5): limy,oe0 [Tie1 —1al =0andr, > e >0V¥n > 0.

Assume that Y2 gsup.p ITps1x — Tuxl| < oo for any bounded subset D of C, and let T be a mapping of C
into itself defined by Tx = limy_ Tyx for all x € C, and suppose that F(T) = (oo F(Tn). Then x, — x* €
Q & |IBa(f(xn) — x)ll + [IGxy, — x|l = O. In this case, x* is a solution of VI with x* = I1c(I — pB)x*, and we have
(a) if E is uniformly smooth, then x* € Q solves the VI: (x* — f(x*), j(x* —x)) <0, Vx € Q;
(b) if E has a weakly continuous duality mapping j, with gauge ¢ then x* € 2 solves the VI: (x*— f(x"), jo(x*—x)) <
0, Vx € Q.

4. Conclusions

In this paper, we introduce and analyze implicit composite three-step Mann iterations for finding a
common solution of GSVI (1) and a fixed point problem (FPP) of a countable family of uniformly Lipschitzian
pseudocontractive self-mappings and a zero problem (ZP) of an accretive operator in a uniformly convex
Banach space E which either is uniformly smooth or has a weakly continuous duality mapping. Here,
implicit composite three-step Mann iterations are based on, the Mann iteration method, the viscosity
approximation method and the Korpelevich extragradient method. Under quite suitable assumptions, we
derive some strong convergence results. Noting that in our suggested iterative sequence (Equation (2)),
the involved operators A, B;(i = 1,2) and {T,,};" , require some additional assumptions. A natural question
arises, i.e., how to weaken these assumptions?
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