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Generalizations of Killing Vector Fields in Sol Space
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Abstract. We consider two generalizations of the Killing vector fields in the 3D Sol space. Conformal
Killing vector fields are the first generalization, 2-Killing vector fields are the second. We characterize
proper conformal Killing vector fields and determine some proper 2-Killing vector fields in Sol space.

1. Introduction

Killing vector field on Riemannian manifold (M, 1) is a vector field X which satisfies the Killing equation
LX1 = 0, where L denotes a Lie derivative. The Killing equation expresses that a metric of Riemannian
manifold is invariant under the vector field X. Killing vector field flows preserve shapes and sizes and they
are manifestations of symmetries in the context of general relativity. Also, conformal Killing vector fields
have been relevant in many problems in space time geometry and homothetic vector fields especially so.

This paper studies the generalizations of the Killing vector fields in the 3D Sol space. Conformal Killing
vector fields are the first generalization. They are defined by the conformal Killing equation LX1 = λ1,
where λ is a smooth function on M. 2-Killing vector fields defined by the 2-Killing equation LX(LX1) = 0
are the second generalization.

In this paper we characterize proper conformal Killing vector fields and determine some proper 2-Killing
vector fields in Sol space. It seems that there are no proper conformal Killing vector field in Sol space. We
suppose that this is related to the absence of rotational isometry in Sol space. On the other hand, we explore
the proper 2-Killing vector fields in Sol space and it seems that the approach used here can be starting point
for classification of 2-Killing vector fields in other 3D homogeneous Riemannian geometries. Our choice
of Sol as the ambient space is not arbitrary because among all eight 3D homogeneous geometries Sol has
lowest, three dimensional, isometry group. Hence only three basic Killing vector fields exist.

2. Preliminaries

2.1. Sol space
We recall some relevant facts on Sol3 space.
The model space Sol in the sense of W. Thurston [18] is the Cartesian space R3(x, y, z) equipped with a

homogeneous Riemannian metric (see [17])

1 = e2zdx2 + e−2zdy2 + dz2. (1)
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The Sol space is a Lie group G with respect to the multiplication law

(x, y, z) ∗ (a, b, c) = (x + e−za, y + ezb, z + c).

The left invariant orthonormal frame field, i.e. the basis of the Sol space, is given by

e1 = e−z ∂
∂x
, e2 = ez ∂

∂y
, e3 =

∂
∂z
. (2)

The Levi-Civita connection ∇ of Sol space is given by

∇e1 e1 = −e3, ∇e1 e2 = 0, ∇e1 e3 = e1,

∇e2 e1 = 0, ∇e2 e2 = e3, ∇e2 e3 = −e2, (3)
∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

The non-vanishing components of the Riemannian curvature tensor are

R1212 = 1, R1313 = −1, R2323 = −1. (4)

The Ricci tensor field is given by

R11 = R22 = 0, R33 = −2. (5)

The scalar curvature ρ is −2.
More details on curves, geodesics, minimal and constant angle surfaces in Sol space can be found in

[2, 6, 8, 9, 11–13].

2.2. Killing vector fields in Sol space

As mentioned in Introduction the Killing vector field is defined by the Killing equation

LX1 = 0. (6)

The Killing equation (6) is usually given in the coordinate form (for derivation see e.g. [15])

1(∇UX,V) + 1(∇VX,U) = 0, ∀ U,V ∈ X(M), (7)

where ∇ is Levi-Civita connection compatible with the metric 1.
The basic Killing vector fields in Sol3 space (see [19]) are

X1 = ∂x, X2 = ∂y, X3 = x∂x − y∂y − ∂z. (8)

These three vector fields form a basis of a Lie algebra of Killing vector fields. The X1 and X2 represent
conservation of linear momentum along x and y direction. X3 represents conservation of linear momentum
in the direction of fibre in line bundle over the Euclidean plane.

General properties of the Killing vector fields in Riemannian and pseudo-Riemannian spaces are re-
viewed in [10]. Applications of proper conformal Killing vector fields in Einstein spaces and generalized
Sasakian spaces are studied in [3] and [16], respectively.

Recently, Killing vector fields have been used in study of magnetic curves. Killing magnetic curves in
Euclidean space, Minkowski spacetime, Sol space, S2

×R space and Walker manifolds were studied in [4, 5],
[7], [14] and [1], respectively.
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3. Conformal Killing vector fields in Sol space

Definition 3.1. Let (M, 1) be a Riemannian manifold. A vector field X ∈ X(M) is called conformal Killing vector
field if

LX1 = λ1, λ ∈ C∞(M), (9)

where L denotes Lie derivative.

The conformal Killing vector fields are vector fields whose flow preserves the conformal structures of
the manifold. The set of conformal Killing vector fields is a Lie algebra using the well known property
L[U,V] = LU ◦ LV − LV ◦ LU and those of homothetic and Killing vector fields are its subalgebras.

The goal of this section is to find a conformal Killing vector field X in Sol space. Let’s assume that the
conformal Killing vector field X is given by

X = a(x, y, z) e1 + b(x, y, z) e2 + c(x, y, z) e3.

Then, taking U = ei,V = e j, for i, j ∈ {1, 2, 3}, the equation (9) implies the following nonlinear system of
PDE’s:

(i) 2c + 2e−zax = λ,

(ii) ezay + e−zbx = 0,
(iii) −a + az + e−zcx = 0, (10)
(iv) −2c + 2ezby = λ,

(v) b + bz + ezcy = 0,
(vi) 2cz = λ.

For clarity, we show how the second equation is obtained.
From (9), using (7), for U = e1,V = e2, it follows

1(∇e1 (a e1 + b e2 + c e3), e2) + 1(∇e2 (a e1 + b e2 + c e3), e1) = λ1(e1, e2).

By direct computation, using (3) and (2), we get e1(b) + e2(b) = 0 and hence the equation e−z∂xb + ez∂ya = 0.

Let us assume that λ = 0. Then system (10) determines Killing vector fields in Sol space. We shortly
present how to obtain the Killing vector fields (8).

From the last equation of the system (10) we have c = c(x, y). Then, the equations (i) and (iv) of the
system (10) imply a = f (x, y)ez and b = 1(x, y)e−z, respectively. Substituting obtained functions in (ii), it
follows a = f (x)ez and b = 1(y)e−z. Further, from (iii) and (v), it follows cx = 0 and cy = 0, and hence c = const.
Now, we consider two cases: c = 0 and c = const , 0.

If c = 0, then (i) and (iv) imply a = ez and b = e−z, respectively. Hence, we obtain the Killing vector fields
X1 = eze1 = ∂x and X2 = e−ze2 = ∂y, respectively.

If c = const , 0, then (i) and (iv) imply fx = −c and 1y = c, respectively. Particularly for c = −1, we obtain
the Killing vector field X3 = x∂x − y∂y − ∂z.

3.1. Homothetic Killing vector fields in Sol space
The homothetic Killing vector field is a special case of the conformal Killing vector field.

Definition 3.2. Let (M, 1) be a Riemannian manifold. A vector field X ∈ X(M) is called homothetic Killing vector
field if

LX1 = λ1, λ ∈ R. (11)

where L denotes Lie derivative.
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Definition 3.3. Proper homothetic Killing vector field is Killing vector field such that the homothetic factor λ , 0.

We solve the system (10) for λ ∈ R. From the last equation of the system (10) we get c = 1
2λz + h(x, y).

Substituting this in (i), it follows

a =
λ
2

ez(1 − z)x − ez
∫

h(x, y)dx (12)

Analogously, from (iv) follows

b =
λ
2

e−z(1 + z)y + e−z
∫

h(x, y)dy. (13)

Substituting the equations (12) and (13) in (ii), it follows hx = hy = 0 i.e. h = const. Further, from (iii) it
follows h = λ

4 and from (v) finally λ = 0. The further consideration coincides with the already given for
λ = 0.

We prove the following proposition.

Proposition 3.4. There is no proper homothetic Killing vector field in Sol space.

3.2. Proper conformal Killing vector fields in Sol space

In this subsection we try to solve the system (10) for an arbitrary conformal function λ = λ(x, y, z) which
may not be constant.

Definition 3.5. Proper conformal Killing vector field is Killing vector field such that the conformal function λ is non
constant.

In general case when conformal function λ = λ(x, y, z), we faced with complicated system of differential
equations and it seems that the solution doesn’t exist. However, in the following theorem we give a
characterization of the proper conformal Killing vector fields in Sol space.

Proposition 3.6. The vector field X = a e1 + b e2 + c e3 given by

a =
ez

2

∫
λdx −

ez

2

"
λdzdx − ez

∫
hdx, (14)

b =
e−z

2

∫
λdy +

e−z

2

"
λdzdy + e−z

∫
hdy, (15)

c =
1
2

∫
λdz + h(x, y), (16)

is a conformal Killing vector field in Sol space if the smooth conformal function λ = λ(x, y, z) exists and satisfies the
following integrability conditions

ez
∫

(λz − λ) dx + e−z
∫
λxdz + 2e−zhx = 0, (17)

e−z
∫

(λz + λ) dy + ez
∫
λydz + 2ezhy = 0, (18)

e2z
∫ (

λy −

∫
λydz

)
dx − 2ez

∫
hydx + (19)

+ e−2z
∫ (

λx −

∫
λxdz

)
dy + 2e−z

∫
hxdy = 0,

where h = h(x, y) is an arbitrary smooth function.
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Proof. We already explained how the definition (9) implies the system (10). Next, from the last equation of
the system (10) we get (16). Substituting (16) in (i) and (iv), it follows (14) and (15), respectively. Further,
substituting the equations (14), (15) and (16) in (iii), (v) and (ii), we obtain (17), (18) and (19), respectively.

Corollary 3.7. There is no proper conformal Killing vector field in Sol space such that the conformal function
λ = λ(z).

Proof. Substituting λ = λ(z) in (19), we have h = const. Then, from (17) and (18), it follows λ = 0.

Corollary 3.8. There is no proper conformal Killing vector field in Sol space such that the conformal function
λ = λ(x, y).

Proof. Substitutingλ = λ(x, y) in (14) and (15), it follows a = ez

2 (1−z)
∫
λdx−ez

∫
hdx and b = e−z

2 (1+z)
∫
λdy+

e−z
∫

hdy. Substituting the obtained expressions in (ii), we first obtain λy = hy = 0 and λx = hx = 0 and
finally λ = const.

Considered particular cases encourage our impression about non-existence of proper conformal Killing
vector field in Sol space.

4. 2-Killing vector fields in Sol space

Definition 4.1. Let (M, 1) be a Riemannian manifold. A vector field X ∈ X(M) is called 2-Killing if LXLX1 = 0,
where L denotes Lie derivative.

Obviously, every Killing vector field is 2-Killing vector field.

Definition 4.2. Proper 2-Killing vector field is a 2-Killing vector field which is not a Killing vector field.

T. Oprea in [15] proved the following characterization of the 2-Killing vector field in Riemannian
manifold.

Theorem 4.3 ([15], Theorem 2.1). A vector field X ∈ X(M) is 2-Killing if and only if

R(X,U,X,U) = 1(∇U∇XX,U) + 1(∇UX,∇UX), ∀ U ∈ X(M), (20)

where R is the curvature tensor of Riemannian manifold (M, 1).

Particularly, for X = X1(x, y, z) ∂x + X2(x, y, z) ∂y + X3(x, y, z) ∂z and U = e j, for j ∈ {1, 2, 3} we obtain the
following characterization of the 2-Killing vector fields in 3D Euclidean space.

Corollary 4.4. The vector field X = X1 ∂x + X2 ∂y + X3 ∂z is 2-Killing vector field in E3 if its components fulfill the
following system of PDE’s

(Xi
, j)

2 + Xi
, jX

j
,i + XiX j

,i j = 0 (21)

where j ∈ {1, 2, 3}, i is summation index and X j
,i = ∂X j

∂xi .

We use this formula later for comparing results in Sol and Euclidean space.
Further, we use the formula (20) to explore 2-Killing vector fields in Sol space.

Let assume that the 2-Killing vector field V is given by

V = a(x, y, z) e1 + b(x, y, z) e2 + c(x, y, z) e3.

After long but straightforward computation the equation (20) for U = ei, ∀ i ∈ {1, 2, 3}, using (2), (3) and (4)
implies the following system of PDE’s (further called 2-KVF):
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(2c2 + ccz + aybx + axyb) + e−z(azcx + 3axc + axzc) +

+ ezbcy + e−2z(2a2
x + aaxx + b2

x + c2
x) = 0, (22)

(2c2
− ccz + aybx + abxy) + ez(bzcy + 3byc − byzc) +

− e−zacx + e2z(a2
y + bbyy + 2b2

y + c2
y) = 0, (23)(

(a − az)2 + (b + bz)2 + 2c2
z + cczz

)
+ ez(bcy + bzcy + bcyz) +

+ e−z(−acx + azcx + acxz) = 0. (24)

Unfortunately, the 2-KVF is complicated nonlinear second order system of PDE’s. Although we can’t
find exact solutions, we can determine 2-Killing vector fields that are generalizations of the Killing vector
fields ∂x and ∂y.

Let assume that V = a(x, y, z) e1, i.e. b = c = 0. Then the 2-KVF system became

e−2z(2a2
x + aaxx) = 0, e2z(a2

y) = 0, (a − az)2 = 0. (25)

From the second and the third equation of (25) it follows a(x, z) = f (x)ez.
From the first equation of (25) we get the differential equation 2 f 2

x + f fxx = 0 whose solution is a function
f (x) = c1

3
√

3x − c2, c1, c2 ∈ R. Hence the 2-Killing vector field is given by

V1 = c1
3
√

3x − c2 · ez
· e1, c1, c2 ∈ R. (26)

Particulary for x = 0, c1 = 1 and c2 = −1 we get the Killing vector field

X1 = ez
· e1 = ∂x.

Thus V1 is a generalization of X1.

Quit analogously, assuming that V = b(x, y, z) e2, i.e. a = c = 0, the 2-KVF system became

e−2z(b2
x) = 0, e−2z(2b2

y + bbyy) = 0, (b + bz)2 = 0.

The solution of this system is a function b(y, z) = c3
3
√

3y − c4 · e−z and hence the 2-Killing vector field is

V2 = c3
3
√

3y − c4 · e−z
· e2, c3, c4 ∈ R. (27)

Particulary for y = 0, c3 = 1 and c4 = −1 we get the Killing vector field

X2 = e−z e2 = ∂y.

If we assume that V = c(x, y, z) e3, i.e. a = b = 0, then the 2-KVF system became

2c2 + ccz + e−2zc2
x = 0, 2c2

− ccz + e2zc2
y = 0, 2c2

z + cczz = 0.

The only solution of this system is c = 0. Therefore, there is no 2-Killing vector field of the form
V = c(x, y, z) e3.

Remark 4.5. The obtained results are according to the final remark in [15] which says that the proper 2-Killing vector
field onR of the form X = f d

dt is given by X = (at− b)
1
3 d

dt . Moreover, it seems that in all 3D homogeneous geometries
where the Killing vector field generate translation (i.e. X = ∂xi ), the corresponding 2-Killing vector field has the form
V = c1

3
√

3xi − c2 ∂xi .
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Next, we try to determine a 2-Killing vector field which is a generalization of the Killing vector filed
X3 = x∂x − y∂y − ∂z and such that its coordinate functions are

a = f (x)ez, b = 1(y)e−z, c = const = k.

Substituting these in (22) and (23) ((24) is identically zero) we have equations

2k2 + 4k fx + 2 f 2
x + f fxx = 0, 2k2

− 4k1y + 212
y + 11yy = 0.

The solutions of these equations are linear functions

f (x) = −kx + c5 and 1(y) = ky + c6.

Therefore we obtain 2-Killing vector field X = (−kx + c5)∂x + (ky + c6)∂y + k∂z. Although it seems
that we obtain a generalization of the Killing vector field X3 = x∂x − y∂y − ∂z, unfortunately this is not
true. The obtained vector field can be given as a linear combination of basic Killing vector fields, i.e.
X = −kX3 + c5X1 + c6X2 and hence it is not proper 2-Killing vector field.

In the sequelae we check some other potential generalizations of Killing vector field X3. As far as we
were able to check, it seems that there is no proper 2-Killing vector field which is generalization of X3.

Case 1
Let assume a = f (x)ez, b = 1(y)e−z, c = c(z) , const. Adding (22) and (23) we have

4c2 + 4c( fx + 1y) + 2 f 2
x + fxx f + 212

y + 1yy1 = 0. (28)

Further, from (24) it follows c(z) = k1
3√3z − k2. Substitution of this function c in (28) leads to the contradiction.

Case 2
Let assume a = f (x)ez, b = 1(y)e−z, c = c(x, y, z) , const. Adding (22) and (23) we have

4c2 + 4c( fx + 1y) + 2 f 2
x + fxx f + 212

y + 1yy1 + e−2zc2
x + e2zc2

y = 0. (29)

Further, (24) became

2c2
z + czzc + 1cyz + f cxz = 0. (30)

The equation (30) implies that function c = c(x, y, z) exponentially depends on variable z which in combi-
nation with (29) gives contradiction.

Case 3
Let assume a = f (x)ekz, b = 1(y)e−kz, c = c(x, y, z) , const and k ∈ R.
From (22) and (23) we have

2c2 + ccz + ke(k−1)zcx + e(1−k)zcy + e−2zc2
x = 0, (31)

2c2
− ccz − e(k−1)zcx − ke(1−k)zcy + e2zc2

y = 0.

Notice that the reasonable assumption is that function c = c(x, y, z) has the same functional dependence
regard to x and y. If this is the case, then the only solution of (31) is c = const which contradict to our
assumption.
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Proposition 4.6. The vector fields

V1 = c1
3
√

3x − c2 ∂x and V2 = c3
3
√

3y − c4 ∂y, c1, c2, c3, c4 ∈ R,

are proper 2-Killing vector fields in Sol space.
Furthermore, there is no proper 2-Killing vector field of the form

X = f (x)ekze1 + 1(y)e−kze2 + c(x, y, z)e3,

where f , 1, c ∈ C∞ and k ∈ R.

Remark 4.7. In Corollary 4.4 a characterization of 2-Killing vector fields in E3 is given. It seems that a proper
2-Killing vector field which generalizes the Killing vector field related to conservation of angular momentum in E3

does not exist. On the other hand, proper 2-Killing vector fields which generalize the Killing vector fields related to
conservation of linear momentum in E3 coincide with vector fields given in Proposition 4.6.
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