
Filomat 33:16 (2019), 5051–5059
https://doi.org/10.2298/FIL1916051D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Multiplication Operators on Some Morrey Spaces
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Abstract. The paper aims to discuss some results characterizing various multiplication operators such as
compact, invertible and Fredhlom on Morrey and discrete Morrey spaces respectively. Some other relevant
results necessary to establish the main results have also been investigated in the sequel.

1. Introduction

Morrey spaces were first introduced by C.B. Morrey in relation to the study of the solution of certain
elliptic partial differential equations (see [1]). Many operators that are initially studied on Lebesgue spaces
Lp

(
Rd

)
have discrete analogues on `p

(
Zd

)
(for instance, see [6], [7], [9], [13], [14], [15], [16]). Some of

these operators have also been studied on continuous Morrey spacesMp
q

(
Rd

)
(for example, see [3], [4], [5],

[8], [10], [11], [12]). One can refer to [17] for various spaces related to Morrey spaces, and [18], [19] for
some relevant results on various multiplication operators. Discrete analogues of Morrey spaces and their
generalizations have been studied in [2].

Let m ∈ Z, N ∈ w =N∪{0}, and write Sm,N = {m−N, ...,m, ...,m+N}. Then |Sm,N | = 2N +1, the cardinality
of Sm,N. For 1 ≤ p ≤ q < ∞, the discrete Morrey space `p

q = `p
q(Z) is defined to be the set of all sequences

x = (xk)k∈Z taking values in R or C such that

‖x‖`p
q

= sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|xk|
p


1
p

< ∞.

The discrete Morrey space `p
q = `p

q(Z) is a Banach space under the above norm. We note that when p = q,
we have `p

p = `p, the space of p-summable sequences with integer indices.

A multiplication operator is an operator T f defined on some vector space of functions and whose value
at a function 1 is given by multiplication by a fixed function f . That is,
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T f1 (x) = f (x) 1 (x) ,

for all 1 in the domain of T f , and all x in the domain of 1.

Let u : X −→ C be a function such that u. f ∈ `p
q for every f ∈ `p

q . Then we can define a multiplication
transformation Mu : `p

q −→ `p
q by

Mu f = u. f ,∀ f ∈ `p
q .

If Mu is continuous, we call it a multiplication operator induced by u.

For 1 ≤ p ≤ q < ∞, the Morrey spaceMp
q =M

p
q

(
Rd

)
is the set of all p-locally integrable functions f on

Rd such that

‖ f ‖
M

p
q

= sup
a∈Rd,r>0

|B (a, r) |
1
q−

1
p


∫

B(a,r)

| f
(
y
)
|
pdy


1
p

< ∞.

Here, B (a, r) denotes the open ball inRd centered at a and radius r > 0, and |B (a, r) | denotes its Lebesgue
measure. The Morrey spaceMp

q

(
Rd

)
is a Banach space under the above norm. Note that when p = q, one

can recover the Lebesgue space Lp
(
Rd

)
as the special case of the Morrey spaceMp

q

(
Rd

)
.

Let θ : X −→ C be a function such that θ. f ∈ Mp
q for every f ∈ Mp

q . Then we can define a multiplication
transformation Mθ :Mp

q −→M
p
q by

Mθ f = θ. f ,∀ f ∈ Mp
q .

If Mθ is continuous, we call it a multiplication operator induced by θ.

A bounded linear operator T : A −→ A (where A is a Banach space) is called compact if T (B1) has
compact closure, where B1 denotes the closed unit ball of A.

A bounded linear operator T : A −→ A is called Fredhlom if A has closed range, dim(kerA) and co-
dim(ranA) are finite.

The sequence en is defined as en (k) = δnk , the Kronecker delta. By B (A), we denote the Banach algebra
of bounded linear operators from A into itself.

2. Main Results

Theorem 2.1. Let θ : Z −→ C be a mapping. Then Mθ : `p
q −→ `p

q is a bounded operator if and only if θ is a
bounded function.

Proof. Let θ be a bounded function. Then there exists M > 0 such that

|θn| 6M,∀n ∈ Z.

Let x = (xk)k∈Z ∈ `
p
q . Then,
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‖Mθx‖ = sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

| (θx)k |
p


1
p

= sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|θk|
p
|xk|

p


1
p

6 M (2N + 1)
1
p ‖x‖

= M/
‖x‖,

where M/ = M (2N + 1)
1
p .

Thus,
‖Mθx‖ 6M/

‖x‖,∀x ∈ `p
q .

Therefore, Mθ is a bounded operator.

Conversely, we assume that Mθ is a bounded operator. We are required to proof that θ is a bounded
mapping. Suppose if possible θ is not a bounded mapping, then for every n ∈ Z, there exists some qn ∈ Z
such that |θqn | > n.

Now,

‖eqn‖ = sup
m=qn∈Z,N∈w

|Sm,N |
1
q−

1
p .

Let eqn
/

= eqn

‖eqn ‖
. Then ‖eqn

/
‖ = 1.

But

‖Mθeqn
/
‖ = ‖Mθeqn ‖

‖eqn ‖

=
sup

m=qn∈Z,N∈w
|Sm,N |

1
q −

1
p |θqn |

sup
m=qn∈Z,N∈w

|Sm,N |
1
q −

1
p

= |θqn | > n,
which contradicts the boundedness of Mθ.

Hence, θ must be a bounded function.

Example 2.2. Let us define θ : Z −→ C by

θ (n) = ein,∀n ∈ Z.

Then for every x ∈ `p
q , we have

‖Mθx‖ = sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|eik
|
p
|xk|

p


1
p

= sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|xk|
p


1
p
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= ‖x‖.

Therefore, Mθ is a bounded operator.

Theorem 2.3. Mθ is an isometry if and only if |θn| = 1, for all n ∈ Z.

Proof. For the necessary part we assume that Mθ is an isometry. Then for every x ∈ `p
q , we have

‖Mθx‖ = ‖x‖.

This implies that

sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|θk|
p
|xk|

p


1
p

= sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|xk|
p


1
p

.

Thus,

|θn| = 1, for all n ∈ Z.

The sufficient part is trivial.

Theorem 2.4. Let Mθ ∈ B
(
`p

q

)
. Then Mθ is a compact operator if and only if θn → 0 as n→∞.

Proof. Suppose that Mθ is a compact operator. We need to proof that θn → 0 as n → ∞. If not, then there
exists ε > 0 such that the set Nε = {k ∈ Z : |θk| > ε} is an infinite set. Let q1, q2, ... , qn, ... be in Nε.

Let eqn
/

= eqn

‖eqn ‖
. Then {eqn

/
: qn ∈ Nε} is an infinite bounded set in `p

q .

Now,

‖Mθeqn
/
−Mθeqm

/
‖ = ‖θeqn

/
− θeqm

/
‖

> ε‖eqn
/
− eqm

/
‖.

Thus, the set {Mθeqn
/

: qn ∈ Nε} cannot have a convergent subsequence. This contradicts the compactness
of Mθ. Hence, θn → 0 as n→∞.

Conversely, suppose that θn → 0 as n → ∞. Then for every ε > 0, Nε = {n ∈ Z : |θn| > ε} is a finite set.
Then `p

q (Nε) is a finite dimensional space for every ε > 0. So, Mθ|`
p
q (Nε) is a compact operator. For each

n ∈ Z, define θn : Z −→ C by

θn (m) =

θ (m) ,∀m ∈ N 1
n

0,∀m < N 1
n
.

Clearly, Mθn is a compact operator as the space `p
q

(
N 1

n

)
is a finite dimensional space for each n ∈ Z.

Now,

‖
(
Mθn −Mθ

)
x‖ = sup

m∈Z,N∈w
|Sm,N |

1
q−

1
p

 ∑
k∈Sm,N

|θn (k) xk − θ (k) xk|
p


1
p

= sup
m∈N 1

n
,N∈w
|Sm,N |

1
q−

1
p

 ∑
k∈Sm,N

|θn (k) xk − θ (k) xk|
p


1
p

+ sup
m∈Nc

1
n
,N∈w
|Sm,N |

1
q−

1
p

 ∑
k∈Sm,N

|θn (k) xk − θ (k) xk|
p


1
p
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= sup
m∈Nc

1
n
,N∈w
|Sm,N |

1
q−

1
p

 ∑
k∈Sm,N

|θ (k) xk|
p


1
p

< 1
n sup

m∈Nc
1
n
,N∈w
|Sm,N |

1
q−

1
p

 ∑
k∈Sm,N

|xk|
p


1
p

≤
1
n‖x‖.

This means that ‖
(
Mθn −Mθ

)
x‖ < 1

n‖x‖. Therefore, ‖Mθn − Mθ‖ < 1
n and Mθ is a limit of compact

operators and hence Mθ is a compact operator.

Theorem 2.5. Let Mθ ∈ B
(
`p

q

)
. Then Mθ has closed range if and only if θ is bounded away from zero onZ\kerθ = S.

Proof. Let θ be bounded away from zero on S. Then there exists ε > 0, such that |θk| ≥ ε∀k ∈ S. We are
required to prove that range of Mθ is closed. Let y be a limit point of ranMθ. Then there exists a sequence
{y(n)
} in ranMθ such that y(n)

→ y, where y(n) = Mθx(n), for some x(n) = {x(n)
k } in `p

q . Clearly, the sequence
{Mθx(n)

} is a Cauchy sequence.

Now,

‖Mθx(n)
−Mθx(m)

‖ = sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|θkx(n)
k − θkx(m)

k |
p


1
p

= sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈S,k∈Sm,N

|θk|
p
|x(n)

k − x(m)
k |

p


1
p

≥ ε sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈S,k∈Sm,N

|x(n)
k − x(m)

k |
p


1
p

= ε sup
m∈Z,N∈w

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|x(n)∼

k − x(m)∼

k |
p


1
p

= ε‖x(n)∼
− x(m)∼

‖,
where

x(n)∼

k =

x(n)
k , if k ∈ S

0, if k < S.

Therefore, {x(n)∼
} is a Cauchy sequence in `p

q . But `p
q is a Banach space. So, there exists x ∈ `p

q such that
x(n)∼

→ x as n → ∞. In view of continuity of Mθ, Mθx(n)∼
→ Mθx. But Mθx(n) = Mθx(n)∼

→ y. Therefore,
Mθx = y. Hence, y ∈ ranMθ. This implies Mθ has closed range.

Conversely, suppose that Mθ has closed range. Then Mθ is bounded away from zero on (ker Mθ)⊥ =
`p

q (Z \ kerθ). That is, there exists ε > 0 such that

‖Mθx‖ ≥ ε‖x‖,∀x ∈ `p
q (Z \ kerθ) . (1)

Let B = {k ∈ Z \ kerθ : |θk| <
ε
2 }. If B , φ, then for r0 ∈ B, we have

‖Mθer0‖ = sup
m=r0∈Z,N∈w

|Sm,N |
1
q−

1
p |θr0 |

< ε
2 sup

m=r0∈Z,N∈w
|Sm,N |

1
q−

1
p
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< ε‖er0‖.

So,

‖Mθer0‖ < ε‖er0‖, which contradicts (1).

Thus, B = φ and this proves the theorem.

Theorem 2.6. Let θ : Z −→ C be a mapping. Then Mθ : `p
q −→ `p

q is invertible if and only if there exist k > 0 and
K > 0 such that k < θn < K, for all n ∈ Z.

Proof. We first assume that the condition i.e, there exist k > 0 and K > 0 such that k < θn < K, for all n ∈ Z
holds. Define α : Z −→ C by αn = 1

θn
. Then by Theorem 2.1, Mθ and Mα are both bounded linear operators.

Also, MθMα = MαMθ = I. Hence, Mα is the inverse of Mθ.

Next, we assume that Mθ is invertible. Then ranMθ = `p
q . So, ranMθ is closed. This implies there exists

ε > 0 such that |θn| ≥ ε, ∀n ∈ Z \ kerθ, by Theorem 2.5. Now, if θm0 = 0, for some m0 ∈ Z, then em0 ∈ kerMθ,
which contradicts the fact that Mθ is one-one. Thus, kerθ is the empty set. Hence, |θn| ≥ ε, ∀n ∈ Z. Since
Mθ is bounded, so there exists K > 0 such that |θn| ≤ K, ∀n ∈ Z, using Theorem 2.1. Hence, ε ≤ |θn| ≤ K,
∀n ∈ Z.

Theorem 2.7. Let Mθ : `p
q −→ `p

q be a bounded operator. Then Mθ is Fredholm operator if and only if

(a) kerθ is a finite subset of Z.

(b) |θn| ≥ ε,∀n ∈ Z \ kerθ.

Proof. Suppose Mθ is Fredholm operator. Then Mθ has closed range. Therefore, condition (b) is satisfied
from Theorem 2.5.

Next, if kerθ is an infinite subset of Z, then en
∈ ker Mθ, for all n ∈ kerθ. But en,s are linearly inde-

pendent. This means that ker Mθ is an infinite dimensional, which is absurd as Mθ is a Fredholm operator.
Hence kerθ must be a finite subset of Z.

Conversely, we assume that the conditions (a), (b) are fulfilled. Condition (a) states that dim(ker Mθ)
and co-dim(ran Mθ) are finite. Also, from condition (b), we have ranMθ is closed by using Theorem 2.5.
Hence, Mθ is a Fredholm operator.

Theorem 2.8. Let u : Rd
−→ C be a p-locally integrable function. Then Mu :Mp

q −→M
p
q is a bounded operator if

u is a bounded function.

Proof. Suppose u is a bounded p-locally integrable function. Then for every f ∈ Mp
q

(
Rd

)
, we have

‖Mu f ‖
M

p
q

= sup
a∈Rd,r>0

|B (a, r) |
1
q−

1
p

 ∫
B(a,r)
|
(
u f

) (
y
)
|
pdy


1
p

= sup
a∈Rd,r>0

|B (a, r) |
1
q−

1
p

 ∫
B(a,r)
|u

(
y
)

f
(
y
)
|
pdy


1
p

≤ ‖u‖∞ sup
a∈Rd,r>0

|B (a, r) |
1
q−

1
p

 ∫
B(a,r)
| f

(
y
)
|
pdy


1
p

= ‖u‖∞‖ f ‖
M

p
q
.
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Thus,

‖Mu f ‖
M

p
q
≤ ‖u‖∞‖ f ‖

M
p
q
,

which means that Mu is a bounded operator.

Theorem 2.9. Let Mu be a compact operator, for each ε > 0, define Aε (u) =
{
x ∈ Rd : |u (x) | ≥ ε

}
, andMp

q (Aε (u)) ={
fχAε(u) : f ∈ Mp

q

(
Rd

)}
. Then Mp

q (Aε (u)) is a closed invariant subspace of Mp
q

(
Rd

)
under Mu. Moreover,

Mu|M
p
q (Aε (u)) is a compact operator.

Proof. Let h, s ∈ Mp
q (Aε (u)) and α, β ∈ R. Then

h = fχAε(u) and s = 1χAε(u),

for some f , 1 ∈ Mp
q

(
Rd

)
.

Now,

αh + βs = α
(

fχAε(u)

)
+ β

(
1χAε(u)

)
=

(
α f + β1

)
χAε(u) ∈ M

p
q (Aε (u)).

So,

M
p
q (Aε (u)) is a subspace ofMp

q

(
Rd

)
.

Next, for all h ∈ Mp
q (Aε (u)), we have

Muh = uh = u
(

fχAε(u)

)
=

(
u f

)
χAε(u),

where u f ∈ Mp
q

(
Rd

)
.

Therefore, Muh ∈ Mp
q (Aε (u)).

Thus,Mp
q (Aε (u)) is an invariant subspace ofMp

q

(
Rd

)
under Mu.

Next, we claim thatMp
q (Aε (u)) is a closed set.

Let y be a function belonging to the closure ofMp
q (Aε (u)), then there exists a sequence {yn} inM

p
q (Aε (u))

such that yn → y inMp
q

(
Rd

)
. Note that

y = yχAε(u) + yχAc
ε(u).

Next, we want to show that yχAc
ε(u) = 0.

For a given ε1 > 0, there exists n0 ∈ Z such that

‖yχAc
ε(u)‖ = ‖

(
y − yn0 + yn0

)
χAc

ε(u)‖

= ‖
(
y − yn0

)
χAc

ε(u) + yn0χAc
ε(u)‖
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= ‖
(
y − yn0

)
χAc

ε(u)‖

≤ ‖y − yn0‖

< ε1,
as yn → y.

Thus, yχAc
ε(u) = 0, which means that y = yχAε(u) ∈ M

p
q (Aε (u)).

This completes the proof.

Proposition 2.10. Mu is one-one onMp
q
(
supp (u)

)
, where supp (u) = {x ∈ Rd : u (x) , 0}.

Proof. Let Y =M
p
q
(
supp (u)

)
=

{
fχsupp(u) : f ∈ Mp

q

(
Rd

)}
.

Assume that Mu
(

f∼
)

= 0, for some f∼ = fχsupp(u) ∈ Y.

Then,

Mu

(
fχsupp(u)

)
= 0

So,

u fχsupp(u) = 0(
u fχsupp(u)

)
(x) = 0,∀x ∈ supp (u)

f (x)χsupp(u) (x) = 0,∀x ∈ supp (u)(
fχsupp(u)

)
(x) = 0,∀x ∈ Rd

fχsupp(u) = 0.

Thus,

f∼ = 0.

Hence, Mu is injective.
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