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Abstract. In the present paper, we study bi-f-harmonic maps which generalize not only f-harmonic
maps, but also biharmonic maps. We derive bi-f-harmonic equations for curves in the Euclidean space,
unit sphere, hyperbolic space, and for hypersurfaces of Riemannian manifolds.

1. Introduction

Harmonic maps between Riemannian manifolds, which can be viewed as a generalization of geodesics
when the domain is 1-dimensional, or of harmonic functions when the ranges are Euclidean spaces, have
an extensive study area and there exist many applications of such mappings in mathematics and physics.
Dealing with the non-linear partial differential equations makes challenge to prove the existence of harmonic
maps. A harmonic map may not always exist in a homotopy class, and if it exists, then it might not be
unique.

Generalizing harmonic maps, J. Eells and J. H. Sampson introduced in [6] biharmonic maps between
Riemannian manifolds. In [3], B. Y. Chen defined biharmonic submanifolds of the Euclidean space and
stated a well-known conjecture: Any biharmonic submanifold of the Euclidean space is harmonic, thus
minimal. If one use the definition of biharmonic maps to Riemannian immersions into Euclidean space, it
is easy to see that Chen’s definition of biharmonic submanifold coincides with the definition given by using
bienergy functional. In recent years, there has been an important literature on biharmonic submanifold
theory including many results on the non-existence of biharmonic submanifolds in manifolds with non-
positive sectional curvature. These non-existence consequences (see [8], [11]) as well as Generalized Chen’s
conjecture: Any biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature
is minimal, which was proposed by R. Caddeo, S. Montaldo and C. Oniciuc [2], led the studies to spheres
and other non-negatively curved spaces. But in recent years, the authors of [15] proved that the Generalized
Chen'’s conjecture is not true by constructing examples of proper biharmonic hypersurfaces in a 5-dimensional
space of non-constant negative sectional curvature. For some recent geometric studies of general biharmonic
maps and biharmonic submanifolds see ([14], [2], [12], [15], [16], [9], [18], [19]) and the references therein.
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f-harmonic maps between Riemannian manifolds were introduced and studied by A. Lichnerowicz in
1970 (see also [5]). They have also some physical meanings by considering them as solutions of continuous
spin systems and inhomogenous Heisenberg spin systems [1]. Moreover, there is a strong relationship
between f-harmonic maps and gradient Ricci solitons [20].

There are two ways to formalize such a link between biharmonic maps and f-harmonic maps. The first
formalization is that by simulating the theory for biharmonic maps, the authors of [21] extended bienergy
functional to bi-f-energy functional and obtained a new type of harmonic maps called bi-f-harmonic
maps. This idea has already been considered by S. Ouakkas, R. Nasri and M. Djaa [17]. They used the
term “ f-biharmonic maps” for the critical points of bi-f-energy functional. As parallel to “biharmonic
maps”, in [21], they considered that it is more appropriate to call them “bi- f-harmonic maps”. The second
formalization is that by following the definition of f-harmonic map, to extend the f-energy functional to
the f-bienergy functional and obtain another type of harmonic maps called f-biharmonic maps as critical
points of f-bienergy functional.

The notion of f-biharmonic maps has been introduced by W.-J. Lu [10] as a generalization of biharmonic
maps. A differentiable map between Riemannian manifolds is called f-biharmonic if it is a critical point
of the f-bienergy functional defined by integral of f times the square-norm of the tension field, where
f is a smooth positive function on the domain. If f = 1, then f-biharmonic maps are biharmonic. To
avoid the confusion with the types of maps called by the same name in [17] and defined as critical points
of the square-norm of the f-tension field, some authors (see [10], [13]) called the map defined in [17] as
bi- f-harmonic map, which we shall study in this paper.

The following inclusions illustrate the relations between these notions:

harmonic maps C biharmonic maps C f-biharmonic maps,

harmonic maps C f-harmonic maps C bi-f-harmonic maps.

2. Bi-f-harmonic curves

In this section we derive the bi-f-harmonic equation for curves in Riemannian manifolds and discuss
the particular cases of the Euclidean space, unit sphere and hyperbolic space.

Recall that bi- f-harmonic maps ¢ : (N, g) — (N, ) between two Riemannian manifolds are critical points
of the bi- f-energy functional:

Eaw)=5 [ I @RS, (1)

where Q) C N is a compact domain, 7¢ (¢) = f () + dy(gradf) is the f-tension field of ¢, T(y) = traceVdiy
is the tension field of ¢ and V is the connection induced from the Levi-Civita connection V¥ of N and the
pull-back connection VY.

S. Ouakkas, R. Nasri and M. Djaa [17] gave the Euler-Lagrange equation of bi-f-harmonic maps,
precisely:

Proposition 2.1. [17] Let ¢ : (N, g) — (N, §) be a smooth map between Riemannian manifolds. Then, in terms of
Euler-Lagrange equation, v is a bi- f-harmonic map if and only if its bi- f-tension field 7 ¢ (y) vanishes, i.e.

trace (VY f (V¥ (1)) = f Vints () + FRY (17 (), dy)dy) =0, @
where f : 1 — (0, 00) is a smooth map defined on a real interval 1.

From (2), we can easily see that bi- f-harmonic map is a much wider generalization of harmonic map,
because it is not only a generalization of f-harmonic map (as f # 1 and 7¢(y) = 0), but also a generalization
of biharmonic map (as f = 1). Therefore, it would be interesting to know whether there is any non-trivial
or proper bi- f-harmonic map which is neither harmonic map nor f-harmonic map with f # constant.
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Definition 2.2. A submanifold in a Riemannian manifold is called a bi- f-harmonic submanifold if the isometric
immersion defining the submanifold is a bi- f-harmonic map.
Leta : I = (N, ) be a curve in a Riemannian manifold (N, §), defined on an open real interval I and
parametrized by its arclength, and &’ =: T. We have
7 () = VITV T
7 (@)= fVNT + f'T

and in order to obtain the bi-f-tension field of @, we compute:

trace (V£ (V1; @) = F V5t @) = ViF (ViTr@) £V 7@

= VIf(F(VIT+fT) _
= (ff"+ffNT+Bff"+2(fV)VAT
+AFf'VIVET + PVRVEVET 3)
and
trace (RN (Tf (a),da) da) = (Tf (a), da( )) da(;t)
= fRY(VYT,T)T. 4)

From (3) and (4) we obtain

Proposition 2.3. Let a : I — (N, §) be a curve in a Riemannian manifold (N, §), parametrized by its arclength, and
a’ = T. Then a is a bi- f-harmonic curve if and only if

0 = (ff"+ff)T+Gff" +2(f))ViT
+Aff' VAT + f2V3T + f2RY (VAT T)T, )

where f : 1 — (0, 0) is a smooth map, VAT =: VNVNT and V3T =: VNVNVNT.

Let {Eq, E, ..., E4} be the Frenet frame on the n-dimensional manifold N, defined along a, where E; =
oc'iz T is the unit tangent vector field of «, E, is the unit normal vector field of «, with the same direction as
VI}[ E; and the vector fields Ej, ..., E,, are the unit vector fields obtained from the Frenet equations for « :

) VZ‘,\YEl = k1E2,
VNEz = —klEl + szg,

VNE, = —k,1E, tkE, r=3,.n-1, ©)

vlj\!En = —ky1 En—ll

where ki = ”VI}’ Eq || and ky, ..., k,—1 are real valued non-negative maps.
From (6) we have

ViT = ViViT = -KEy + K Ex + kikoEs, ?
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V3T = VNVEVNT
= =3k Ey + (K =I5 — kik3) By + (2K, ky + kak} ) Es + kikokaEs, ®)
RY(VAT, T)T = kyRV(E, E1)E;. 9)

Using (6), (7), (8) and (9) in (5), we have

Theorem 2.4. Let o : [ — (N, §) be a curve in a Riemannian manifold (N, §), parametrized by its arclength. Then
a is a bi-f-harmonic curve if and only if

0 = (-Bkkif2=4ff +ff" +ff')Es
+ (<K 2 = kB f2 + Ky f2+ A f 7+ Bk ff7+ 2i(f')?) Ea
+((2kikof + Kakyf + dkikaf”) f) Es
+ (kukaks f2) B + ko f2RY(Eo, E1)En. (10)

Remark 2.5. The property of a curve of being bi- f-harmonic in an n-dimensional space (with n > 3) does not depend
on all its curvatures, but only on ki, ky and ks.

It is well known that in a Riemannian manifold (N, §) of constant sectional curvature ¢, the curvature
tensor field RY is of the form

RN(X,V)Z = c(3(Y, 2)X - §(X, 2)Y),
forany X, Y, Z € T(TN) and we can state

Theorem 2.6. Let o : [ — (N(c), h) be a curve in a Riemannian space form (N(c), h), parametrized by its arclength.
Then « is a bi- f-harmonic curve if and only if

BkiK, 2 —4K2f F7 4 ff7 4+ f1F7 =0,
I3~ K22 K24 A fF 4 Bk ff 7 + 2k (f7)2 + ki f2 =0,
Zkisz + klkéf + 4k1k2f’ =0,
kikoks = 0.

(11)

Let a : I — [E" be a curve in the n-dimensional Euclidean space, defined on an open real interval I and
parametrized by its arclength. Since E" is a Riemannian space form with ¢ = 0, from the bi- f-harmonic
curve equation given by (11) we have

Theorem 2.7. Let oo : I — E" be a curve in the n-dimensional Euclidean space, parametrized by its arclength. Then
a is a bi- f-harmonic curve if and only if

3K, f2 = 4R2f 74 fF7 4 f1F7 =0,
IR 2 K f2 4 A FF Sk f 7+ 2Ky (f)2 =0,
2kik2f + k1k§f + 4k1k2f/ = O,
kikoks = 0.

(12)

CASE I If k; = 0, namely a is a geodesic curve, then from (12) we obtain that it is bi- f-harmonic if
and only if ff” = constant.
It is well known that geodesics are f-harmonic with f = constant and they are automatically bi-f-
harmonic. Remark that also for f(t) = at + b, a,b € R, any geodesic curve is bi- f-harmonic.
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Theorem 2.8. A geodesic curve is bi- f-harmonic if and only if f f"" = constant.

CASEII: If ky = constant # 0 and k, = 0, then (12) reduces to

{ AL+ ff 4 f =0, 13)
—k2f2+3ff" +2(f')* = 0.

From the second equation above we obtain

22— 2(f)2
ff" = %, (14)

which implies
f (58 +2f7) =0, (15)
via the first equation of (13) and we get

Theorem 2.9. Let o : I — E" be a curve in the n-dimensional Euclidean space, parametrized by its arclength, with
ki = constant # 0 and ky = 0. Then « is a bi- f-harmonic curve if and only if either f is a constant function or f is
given by

5 i 5
f(s) = c1cos [ \/;kls) + ¢ sm( \/;kls] ,
forselandci,c; €R.

CASEIII: If ky = constant # 0 and k, = constant # 0, then (12) reduces to
_4k%ffl +ff/// +f/f// — O,

K f— K e 2P =0, 16
k3 = 0,

which implies

+K=0,
f =0, (17)
k3:0,

and we deduce
Theorem 2.10. There is no bi- f-harmonic curve in the n-dimensional Euclidean space with ki = constant # 0 and
ko = constant # 0.
CASE1V: If ky = constant # 0 and k, # constant, then (12) reduces to
_4k%ffl +ff/// +f/f// — O,

LB+ 3+ 2P =0, -
K,f +4kof' =0,
koks = 0,

and we have
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Theorem 2.11. Let o : [ — E" be a curve in the n-dimensional Euclidean space, parametrized by its arclength, with

_1
ki = constant # 0 and ky # constant and nowhere zero. Then « is a bi- f-harmonic curve if and only if f = ck,*
(with ¢ a positive constant), k3 = 0 and the curvatures ki and k satisfy:

{ 32k2k2k) — 25(k})* + 32kokky — 8k2ky” =0, 19)

16k2K2 + 16k2 — 17(k)> + 12kokY/ = 0.

CASE V: Concerning the case k; # constant and k, = 0, we can state

Theorem 2.12. Let a: I — E" be a curve in the n-dimensional Euclidean space, parametrized by its arclength, with
k1 # constant and k, = 0. Then « is a bi- f-harmonic curve if and only if the curvatures ki and k; satisfy:

_3k1kif2 _ 4k%ff, + ff/// +f/f// — 0/ 0
P K P2 AR 3R fF + 2k (f)P = 0. (20)

CASE VI: If ky # constant and k, = constant # 0, then (12) reduces to

3k f2 — 4R2FF + fF 4+ f1F7 =0,
32— kik2F2 4 K F2 4 4K 3k fF + 2Kk (f)2 = 0,
K f+2k f =0,
kiks = 0,

(21)

and we have

Theorem 2.13. Let o : I — E" be a curve in the n-dimensional Euclidean space, parametrized by its arclength, with
1

ki # constant and nowhere zero and k, = constant # 0. Then a is a bi- f-harmonic curve if and only if f = ck, * (with
c a positive constant), ks = 0 and the curvatures ki and k; satisfy:

{ 9(K))® + 4k4K, — 10k, K/ k!’ + 2K2K!” = 0, 22

B(k))2 — 4k4 — 413K — 2k, k! = 0.

CASE VII: Concerning the case ki # constant and k, # constant, we can state

Theorem 2.14. Let o : I — [E" be a curve in the n-dimensional Euclidean space, parametrized by its arclength,
with ky # constant and k, # constant and kq, ky are nowhere zero. Then a is a bi-f-harmonic curve if and only if

_1 1
f =ck, *k,* (with c a positive constant), ks = 0 and the curvatures ky and ky satisfy:

Sk, f2 — R f + F 4 fF =0, s
SR kiR f2 4 k2 4 AR Bk f £+ 2 (P = 0. @3

Similar results hold for bi- f-harmonic curves in the n-dimensional sphere S"(1) and in the n-dimensional
hyperbolic space H"(-1).

Theorem 2.15. Let « : I — S"(1) be a curve parametrized by its arclength. Then « is a bi- f-harmonic curve if and
only if

_3k1kif2 _ 4k%ff, + ff/u + fzf// — 0/
~BF2 — kK2 f2 + K f2 + ki f2 + 4K ff + 3k f £+ 2k (f))? = 0,
Zkika + klk,zf + 4k1k2f/ =0,
kikoks = 0.

(24)
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Theorem 2.16. Let « : I — H"(—1) be a curve parametrized by its arclength. Then « is a bi- f-harmonic curve if
and only if

_3k]k;f2 _ 4k%ff’ + ffm + f/f// — 0,
I3 F2 — kiR f2 + K f2 — ki f2 + 4K ff 4 3k ff7 + 2k (f)2 = 0,
2K ko f +kiky f + dkika f' = 0,
k1k2k3 =0.

(25)

Concerning the CASES IV-VII, we obtain similar conditions like in the Euclidean space and in the CASES
I-1II, we get the following characterizations of bi- f-harmonic curves in §”(1) and H"(-1), respectively.

Theorem 2.17. Let o : I — N be a curve in N, parametrized by its arclength.

1. For N := §"(1):

(@) ifki =0, then a is a bi- f-harmonic curve if and only if f f" = constant;

(b) if ki = constant # 0 and k, = 0, then « is a bi-f-harmonic curve if and only if either f is a constant
function or f is given by

5k3 +1 5k3 +1
f(s) = c1 cos > s|+ cpsin 5 s|,

forselandci,c; € R;

(c) if ky = constant # 0 and ky = constant # 0, then a is a bi- f-harmonic curve if and only if f is a constant
function, k2 + k3 = 1and k3 = 0.

2. For N := H*(-1):

(@) if k1 =0, then « is a bi- f-harmonic curve if and only if f f"" = constant;
(b) if kv = constant # 0 and k, = 0, then « is a bi- f-harmonic curve if and only if either f is a constant
function or f is given by one of the following expressions

f(s)=ci1s+cp, for kg = i?,
or
5k2 -1 Sk% -1
f(s) = c1 cos s|+ cpsin > s|,
for ki € (—w,—g) U (?&0),
or

I—Sk% I—Sk%
fe)=cieV T Ttce V7, for ky € (—?, ﬁ),

forselandci,c; €R;
(c) if ki = constant # 0 and ky = constant # 0, then there is no bi- f-harmonic curve.
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3. Bi-f-harmonic hypersurfaces

In this section we derive the bi-f-harmonic equation for hypersurfaces in Riemannian manifolds. Let
N be an m-dimensional hypersurface of (N, §) with mean curvature vector n = HV, where V is the unit
normal vector field of N. Denoting by g the Riemannian metric induced on N, by V¥ and VN the Levi-Civita
connections on (N, g) and (N, 7) respectively, the Gauss and Weingarten formulas corresponding to N are
given by:

VY = VY + B(X, Y), (26)

VRV = —AX, (27)
for any X, Y € I'(TN), where B is the (symmetric) second fundamental tensor corresponding to V, A is
the shape operator with respect to the unit normal vector field V, and let b(X, Y) = (B(X, Y), V), for any X,
Y € T(TN).

The bi-f-tension field of the immersion i : N — N is given by [17]:
Tro(h) = — ftrace(V‘f’)sz (W) - ftmceRN (Tf W), d¢) dyp — ng 4 Tf (¥). (28)
For an orthonormal frame field {ey, ey, ..., e,,} C T(TN), we have
m
eV (V37 ()= £ Vs ) = F ) {ViVETs ()= Yy 17 )
+vjmdf’rf (llb) : (29)

As a first step, we compute

trace(V¥)*t (@)

1=

) Vet @) - Vi, v )

1l
—_

VEVE (F () + dulgrad) - Vi, (F(9) + dpgrad)

= 1

VN (fr@) -V VN dy(gradf)

VY (e + £V mp)) + VIV dy(gradf)
S| (Vi) (D) = FV5, 1) = Vi, dy(grad )

& [ eeD)w) + 2e(f) v‘P () + fvﬂfv*” T(¢)+v¢v¢d4}(gmdf)
> ~(Vie)( (Fre(w) - fVo, TW) - Vweidw(gmdf)

= (Af) (W) + 2V 4 T(W) = FAY (i) = AY (gradf). (30)

Since the tension field of i is 7(y)) = mHV, we have

(Af) () = mH (Af)V, (31)

Il
—_

i

m

{ VIV (f o)) + vwvw(gmdf) }

i=1

[]mdf () = gmdf (mHV) = mgrad f(H)V — mHA(gradf)

m{gradf, gradH) V — mHA(gradf), (32)
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M) = =) {VEVEnHY) -V, ot
i=1 '
—m Y {VE ()Y + HYEV) - (Ve) () V - HVS, V)

Ik

1l
—_

3
[

(oY + 20(HOVEY + HVIVIV = (Ve () V = HV, V)
i1 “
= —m(AH)V +2mA(gradH) + mHAY (V). -

By using (31), (32) and (33) in (30) we obtain

trace(VY)?1s () = mH(Af)V +2m{gradf, gradH) V — 2mHA(grad )
+mf (AH)V — 2mfA(gradH) — mfHAY (V) — AY (gradf). (34)

As a second step, we compute:

traceRY (17 (1), dp)d = Y RV(f(y) + dip(grad ), dip(e)di(e:)
i=1

= f Y RYx(),e)ei+ ) R¥(gradf,ee;, (35)
i=1 i=1
which implies
traceRY (Tf (W), dgb) dp =mfH Z RN(V, ee; + 2 RN(gmdf, e;)e;. (36)
i=1 i=1

Also

Vo T @) = Vo () + dy(gradf))
= Viaay (FT)) + Vi ypgradf
= gradf(f)e@) + fVN 45 7)) + V), gradf, (37)

which gives

ijdf’rf (¥) mH {(gradf,gradf)V + mf (gradf, gradH) V

—-mfHA(gradf) + %gmd(|gmdf|2) + B(gradf, gradf). (38)

By using (34), (36) and (38) in (28) we obtain the bi- f-tension field of ¢
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Tro(p) = —mfH(Af)V —3mf (gradf, gradH) V + 3mfHA(gradf)
—mf* (AH) V + 2mf*A(gradH) + mf2HAY (V)

+fAY(gradf) — mH {gradf, gradf) V — 1gmd()gmalfr) — B(gradf, gradf)

—msz Z RN V, ee; Z RN(gmdf e;e;. (39)

The tangential component of A¥(gradf) can be computed by

(Aw(gmdf))T = - Z <VNVNgmdf V gmdf ek> ek
ik=1
= - Z < P (Vg]gmdf + B(gradf, ei)), ek> ex
ik=1
_ Z < Q’Neigmdf - B(Vgei,gradf),ek> ey
k=1 §
= - Z <V NVNgradf + B(VY gradf,e;) + VQB(gmdf, ei), ek> ex
ik=1
_ Z < V@’yeigmdf — B(V}'e;, gradf), ek> ex
ik=1 '
= Z (VNN gradf + b(VYgradf,e)V + VY (b(gradf,e)V), ec) e
ik=1
_ Z < V%eigmdf - b(Ve;, gradf)V, ek> ek
ik=1 !
= - Z < I\,_’Vé\y_’gmdf - Vg’Ne_gmdf, ek> ek
=1 o
Z <b(VNgmdf e)V + VN (b(gradf,e;)V) — b(VNe;, gradf)V, ek>
ik=1
= - 2 < 2V gradf — Vi, gmdf +b(V gradf,e)V, ek> ek
ik=1
Z <e (b(gradf,e;)) V — b(gradf,e;)Ae; — b(Vye;, gradf)V, ek> ex
ik=1
= Agradf) + Z b(gradf,e:) (Aei, ex) e, (40)

ik=1

which implies

(A%(gradf))" = Agradf) + AX(gradf). (41)
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The normal component of AY(gradf) can be computed by

(A% (gradf))”

Ve gradf V gradf V>

A VNgmdf + B(gradf,e; )
gradf B(VNej, gradf) ' VIV
AN grad f + B(VYgradf, e;)
+VNB(gmdf ei) gmdf B(VNej, gradf) - WV

o ':'M

1l
—_

ViVigradf — VY v, grad f +b(VNgradf,e)V >
+VN (b(gmdf e,)V) b(VNe;, gradf)vV
VIV gradf - VN (gradf + b(VY gradf,e)V

D 124 2D

]
—_

DN
DX
2
< VNVNgmd f + b(VWgradf,e)V
2
<
>

b(VY gradf,e)V + e; (b(gradf,e;)) V — b(VNe;, gradf)

M§

Il
—_

Ms

{b(VNgmdf e)) + ¢; (b(gradf, e;)) — b(Vie;, grad )}V.

1l
—_

The tangential component of A¥(V) can be computed by

(Aw(v))T i <V§v§ V- v%eiv, ek> e

;_\

(VNAe; = A(VNep), ex)ex

e
]
_

Ms -

fei (Aei, ) — (Aei, Vier) = (A(VNer), e e

=
1l
-

- 5P

{eib(es, ex) — blei, Viex) — b(VNei, ex) e

=
I
—_

Ms

(Ve b)ew, €)lex

=
Il
—_

By Codazzi-Mainardi equation, we have

Z(( 80 e ) = (Vib)(ei ) = - Zm] (RN(es,e)ei, V) = Ric"(V, e0).

i=1

5177

v

+V (b(gradf, e;)V) - V v gradf - b(Vie;, gradf)V - V>V

,V
+e; (b(gradf,e)) V — b(gmdf ei)Ae; — b(V¥e;, grad f)V >

v,V)V

(42)

(43)

(44)
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Putting the last equation into (43) we get

(aW)" = Y (YD) ele
ik=1

= Y0 (Vo) e) + Ric¥(V, e0)hex

k=1 i=1

= mgradH + Z RicN(V, ex)ey.-
k=1

The normal component of A¥(V) can be computed by

(%)

Ms I:I'M§

<VNVNV vy v,v>v

(vaNv V> 1%

I
—_

i
m

(VY VIV V.
i=1

On the other hand

i vy, VNV

i=1

IM§

<V§Vr <V§Vr €f> €f>

=
1l
—_

vl

<VNV e]>

= T
A

1

) (4cier)

ij=1
2
= |AF,

which implies together with (46)
(AYw)) = 14R V.

The tangential and the normal components of the curvature terms are

(RN (V,eer ex)ex = ) Ric(V,ene = (Ric(V)T,
k=1

ol

]T
T

(R¥(V,ee, V)V = Ric"(V, V)Y,

M§ EMi

<RN (gradf, el)el,ek e = Z RicN (gradf,ec)e, = (chN (gradf))T,

k=1

=
ii
_

1=

<RN(gmdf eiei, > V = RicN(gradf, V)V.

1l
—_

5178

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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By collecting all the tangential and normal components of the bi- f-tension field separately, we have

[Tf,z(lp)]T 3mfHA(gradf) + 2mf*>A(gradH)

+m? f*HgradH + fA(gradf)
+fA2(gmdf) - %gmd(|gmdf|2)
~mfPHRIN (V)T - f (Ric¥(gradf)) (53)

and

{-mfH (Af)—3mf (gradf, gradH)

—mf? (AH) + mf*H|AP + f(AY (gradf))*

—-mH |gmdf|2 — b(gradf, gradf)

—mf*HRic(V, V) = fRicN(gradf, V)}V. (54)

[ 12|

Then we have

Theorem 3.1. Let (N, §) be an (m+ 1)-dimensional Riemannian manifold and ¢ : N — N be an isometric immersion
of codimension-one with mean curvature vector n = HV. Then 1 is a bi- f-harmonic map if and only if

0 = 3mfHA(gradf) + 2mf?A(gradH) + m? f*HgradH
+fAgradf) + fA*(gradf) - %Wd(lgmdf )
~mfPHRiN (V)T ~ f (Ric(grad f))" (55)
and
0 = —mfH(Af) - 3mf (gradf, gradH) - mf* (AH) + mf*H|AP + f (A¥(gradf))
~mH|gradf|” - b(gradf, gradf) - mf*HRic™ (V, V) - fRic" (gradf, V), (56)

where RicN denotes also the Ricci operator of the ambient space, A is the shape operator of the hypersurface with
respect to the unit normal vector field V, A and grad are the Laplace and the gradient operator of the hypersurface,
respectively, and AV is the rough Laplace operator on sections of "' TN.

Theorem 3.2. Let N be a constant mean curvature hypersurface in an (m + 1)-dimensional Riemannian manifold
N. Then N is a bi- f-harmonic hypersurface if and only if

mfPH(RicN (V)T + f(RicN(gmdf))T = 3mfHA(gradf) + fA(gradf)

+fA2(gradf) - 3 gradgrad ) 7)
and
mfPHRIcN(V, V) + fRic¥(gradf, V) = -mfH(Af)+mfHIAP + f (A¥(gradf))”
-mH |gmdf|2 — b(gradf, gradf). (58)

Then we have

Corollary 3.3. Let N be a constant mean curvature hypersurface in an (m + 1)-dimensional Ricci flat Riemannian
manifold N. Then N is a bi- f-harmonic hypersurface if and only if

fAX(gradf) + 3mfHA(gradf) + fA(gradf) — % grad(|grad f|2) =0 (59)
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and
mfH(Af) +mH )gmdf)z — mf?H|AP + b(gradf, gradf) — f(AlP(gmdf))L =0. (60)

Corollary 3.4. Let N be a hypersurface in an (m + 1)-dimensional Einstein space N. Then N is a bi- f-harmonic
hypersurface if and only if

fm :_ 1 gradf = 3mfHA(gradf) + fA(gradf)
+fAX(gradf) - % grad(|gradf]’) 61)
and
mfH— : = = —mfHAS) +mfPHIAR + f (A (grad n)
-mH |gmdf|2 — b(gradf, gradf), (62)

where v is the scalar curvature of the ambient space.

Since an (m + 1)-dimensional space of constant sectional curvature c is an Einstein space with scalar
curvature r = m(m + 1)c, by using (61) and (62) we have

Corollary 3.5. Let N be a hypersurface in an (m + 1)-dimensional space N of constant sectional curvature c. Then
N is a bi- f-harmonic hypersurface if and only if

mcfgradf = 3mfHA(gradf) + fA(gradf) + fAz(gmdf) - %gmd()gmdﬂz) (63)
and

m?cf*H = —mfH (Af) + mf2H|AP + f(A‘P(gmdf))l - mH |gmdf|2 — b(gradf, gradf). (64)
References

[1] P.Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Math. Soc. Monogr. (N.S.) 29, Oxford Univ.
Press, 2003.
[2] R.Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of $3, Internat. J. Math. 12(8) (2001) 867-876.
[3] B.-Y.Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991) 169-188.
[4] N. Course, f-harmonic maps, New York J. Math. 13 (2007) 423-435.
[5] J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1-68.
[6] J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109-160.
[7] G.Y.]Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986) 130-144.
[8] G.Y.]Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986) 389—402.
[9] S. Keles, S. Yiiksel Perktas, E. Kilig, Biharmonic Curves in LP-Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. 33(2) (2010)
325-344.
[10] W.].Lu, On f-biharmonic maps and bi- f-harmonic maps between Riemannian manifolds, Sci. China Math. B 58 (2015) 1483-1498.
[11] S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47(2)
(2006) 1-22.
[12] Y. L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific ]. Math. 248(1) (2010) 217-232.
[13] Y.L.Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Math. 271(2) (2014) 461-477.
[14] Y. L. Ou, Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces, J. Geom. Phys. 62 (2012)
751-762.
[15] Y.L.Ou, L. Tang, On the generalized Chen’s conjecture on biharmonic submanifolds, Michigan Math. J. 61 (2012) 531-542.
[16] Y.L.Ou, Z. P. Wang, Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries, J. Geom.
Phys. 61 (2011) 1845-1853.
[17] S. Ouakkas, R. Nasri, M. Djaa, On the f-harmonic and f-biharmonic maps, J. Geom. Topol. 10(1) (2010) 11-27.
[18] S. Yiiksel Perktas, E. Kili¢, Biharmonic Maps between Doubly Warped Product Manifolds, Balkan J. Geom. and its Appl. 15(2)
(2010) 159-170.
[19] S. Yiiksel Perktas, E. Kili, S. Keles, Biharmonic Hypersurfaces of Lorentzian Para-Sasakian Manifolds, An. Stiint. Univ. Al L.
Cuza Iasi LVII (2011) 387-408.
[20] M. Rimoldi, G. Veronelli, f-harmonic maps and applications to gradient Ricci solitons, arXiv:1112.3637, 2011.
[21] C. L. Zhao, W. L. Lu, Bi-f-harmonic map equations on singly warped product manifolds, Appl. Math. J. Chinese Univ. 30(1)
(2015) 111-126.



