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Abstract. Let . be an analytic semigroup on L%(IR") with Gaussian kernel bound, and let . -5 be the
fractional operator associated to . for 0 < @ < n. In this paper, we prove some boundedness properties

for the commutator [b, & ’%] on Mixed Morrey spaces L%+ (0, T, L4 (]R”)), when b belongs to BMO(IR") or to
suitable homogeneous Lipschitz spaces.

1. Introduction

Let us consider the infinitesimal generator .# of an analytic semigroup {e7¢}150 on L2(R"), with a kernel
pi(x, y) satisfying a Gaussian upper bound. That is, there exist two positive constants A and C such that

C =y
lpe(x, y)I < e e AT foreveryx,y € R", t > 0. (1)

a2

In this paper we are concerned with the study of the fractional integral operator .Z~%/# associated to .

defined forany 0 < a < n as

1
T(a/2)

gfa/Zf(x, t) = foo 6753 (f(x, t)) SMZ?1 ds. (2)
0

This property is satisfied by a large class of differential operators. As a first example, let us consider
a real vector potential a = (41,42, ...,4,) and an electric potential V. We assume that a; € leoc(]R") for any

k=1,2,...,nand V20,V €L (R"). We say that
A=—-(V-i)+V

is the magnetic Schridinger operator. In the paper [20] by Simon was proved a diamagnetic inequality, which
implies the following pointwise estimate

|e—tAf| < e—tAlfl
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forany t > 0 and f € L? (R"). This estimates ensures that the semigroup e™** has a kernel with Gaussian
upper bound of the type (1).
As a further example, let us consider the following divergence form operator

L = —div(AV),
that

n

Re Z aij ()& = AlEP

ij=1

forevery x € R", £ = (&1,..., &) € C". We remark that the operator .Z needs to be considered in the weak
sense. When the dimension of the space n = 1,2, the kernel of the semigroup e~'" has Gaussian upper
bound of the type (1). In the particular case of real entries, the Gaussian bound holds true for any n € N
(see [1]).

The aim of this paper is to obtain boundedness results for a class of fractional integral operators on
Mixed Morrey spaces. The idea behind the proof of these kind of mixed Morrey estimates is to begin with
classic Morrey estimates for the operator .Z. Thus, following the idea of Piccinini [14], we consider domains
of type A.

Dowmain oF TvpE A. Let T > 0 and Q) be a bounded open subset of R", such that there exists a constant A > 0
such that

|Q(x, p) N Q| = Ap" foreveryx € Q, 0 < p < diam (),

with Q(x, p) a cube centered in x having edges parallel to the coordinate axes and length 2p.

Moreover, we recall the definition of classic Morrey spaces, introduced by Morrey in 1938 in [12].

Definition 1.1. Let 1 < p < 400, 0 < A < n. We define the Morrey space LP*(Q), with Q C R", as the class of
functions f € LP(Q) such that the norm

1
If o= |sup = f P dy

p>0 QNB,(x)
is finite, with obvious modifications if (3 = R".

The exponent A can also take values not belonging to ]0, n[, but the unique cases of real interest are the ones
for which A €]0,n[. In literature, there exist various extensions of the concept of Morrey spaces. In this
paper we are concerned with some kind of anisotropic Morrey spaces, namely Morrey spaces with mixed
norm.

Definition 1.2 ([19]). Let 1 < p,g < 400, 0 < A < n, 0 < u < 1. We define the Mixed Morrey space
Lo#(0, T, LPM(QQ)) as the class of functions f such that

==

r

1 1
I f llawo,rirr @)= | sup — sup — f If(y, P dy| dt
toe0,1), P eQ,
p>0 0,T)N(to—p,to+p) \ 70 QNB,(x)

is finite, with obvious modifications if Q) = R".
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We remark that in the above definition the exponent u belongs to the interval ]0, 1[, because t € R and the
mixed norm is constructed by the iteration of the classic Morrey norm.

One of the advantages of Mixed Morrey spaces is that they allow us to treat separately time and
space. This property could be useful in the study of evolution operators such as Kolmogorov operator and
ultraparabolic equations treated in detail in [15-18].

On the other hand, the study of the boundedness of integral operators in suitable function spaces has
an intrinsic interest in Harmonic Analysis. So, in this context, boundedness problems in Morrey-type
spaces are actual and the Morrey spaces with mixed norm could be useful in the study of the boundedness
of fractional integral operators with rough kernel and Schrédinger operators, extensively studied in the
context of several generalized Morrey-type spaces in [5-7].

In [19] the author obtains regularity results for linear parabolic Partial Differential Equations (PDEs for
short) with discontinuous coefficients by means of preliminary estimates of the following operator

'3 f f(y,t)
20 T(g) Jre = Y1

I f(x,t) = dy, a.e.in R,

for which the author establishes the following theorem.
Theorem 1.3 ([19). Let 0 <a <m 1<p<n/a,0<A<n-ap, ; =7~ ;24,1<q<+00,0<y <land

=T e
F e LT (0, T, [PMQ)). Then
| I f llowo,rin@)< C Il f lianoriei)) -

Remark 1.4. We remark that, if & = —A is the Laplacian on R", then the operator £~/ is the classical fractional
integral operator 1, (see, for instance, [21, 22]). For this reason, every result presented in this paper is an extension
of the boundedness results contained in [19].

Moreover, let b € Llloc(]R” x (0, T)) we define the commutator between b and .#~*/? as follows

[b, £71(f)(x, 1) = )L™ (F)x, 1) = L0, b), )

where for the sake of simplicity we assume that for b the time £ is fixed.
In order to state some classical results and our main ones we need of the definition of the class of
functions with bounded mean oscillation and the definition of homogeneous Lipschitz space.

Definition 1.5 (John, Nirenberg [8]). Let b be a locally integrable function defined on IR". The function b is in the
space BMO(IR") if the BMO norm

BcIR"

1
I b |l:= sup ﬁ flb(x) — bg|dx
B

is finite, where B runs over the class of all balls in R" and bp = ﬁ fB b(y) dy.

For this class of functions, we recall the following result (see [8]), which is going to play a role in the
proof of one of the main results of this paper (see Theorem 1.9).

Theorem 1.6. Assume that b € BMO(IR"). Then, for any 1 < p < oo, we have that

1

1
sup ﬁf|b(x)—b,3|ﬁdx <Cllbl..
B

BcR"*
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Useful in the sequel is the function space BMOy, that is a BMO—type space associated to an operator L.
Let us assume that the kernel p;(x, y) of {¢7'L};- satisfies an upper bound of this type:

Ip:(x, y)l < t‘gg(u),
Vi

forall x, y € R” and all t > 0. Here we assume that g is a positive, bounded, decreasing function satisfying

,hj?o r"*¢g(r)=0, forsome ¢ > 0. 4)

Let ¢ be the constant in (4) and 0 < § < €. A function f € LfOC(IR”) is said to be of type (p, p) if it satisfies

fer '

1+ )P < ¢ < oo, (5)
]RYl

We denote by M, g the set of all functions of type (p, f). If f € M, ), then we define the norm of f in M,
as
IflIm,, = inffc > 0: (5) holds}.

We would like to point out that M, ) is a Banach space under the norm || f|| ,,,. We set

M, = U Mepp)-

B0<B<e

For any f € LP(R"), 1 < p < o0, in [10] the author defined a kind of sharp maximal function MﬁL f associated
with the semigroup {e™''};-0 by

ME F(x) =su§|%| f ) = e F)ldy,
Xe B

where tg = % and rp is the radius of the ball B.
Let f € M,, with 1 <p < co. We say that f € BMOy if Mﬁf € L*(R") and we define

Ifllsamo, = IM? fllp.

For further details about BMO;, spaces we refer the reader to [4].
Moreover, we recall the following definition of homogeneous Lipschitz space.

Definition 1.7. Let 0 < B < 1. The homogeneous Lipschitz space Ag(IR") is the space of all locally integrable
functions b such that

. b + ) = b()
M neRips0 Inlf
is finite.

Estimates for the commutator (3) in the framework of Lebesgue spaces can be found in [2], where
Auscher and Martell prove the following result.

Theorem18. Let 0 < a <n, 1 <p <nf/aand 1/qg = 1/p —a/nand w € Ay, If b € BMO(R"), then the
commutator [b, £~%/?] is bounded from L (wP) to LI(a).
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Now, we state our main results regarding the boundedness of the commutator [b, & ~@/2] in the frame-
work of mixed Morrey space , when b € BMO(IR" X (0, T)) or b € Ag(R" X (0, T)).

Theorem 1.9. Let 0 < o <n, 1 <p <nj/aand 1/qg =1/p—a/n, 0 < A/n <p/q, 0 < p < 1. Let us suppose
b € BMO(R" x (0, T)). Then

1o, 2=*1F10 (

<
Lot O,T,L“%(IR"))_ cl f ”LW(O'T'LP'A(]R”)) ’

Theorem 1.10. Let0 <f<n O<a+pf<nl<p<n/(a+p),1l/s=1/p—(a+p)/n0<pu<1l1<g<+oo.
Let us suppose b € A/;(IR” x(0,T))and 0 < A/n < p/s. Then

—a/2
Il [brog ]f HL’?'“(O,T,LS’%;(R"))S Cll f ”Lw(o,T,Lp,A/"(]Rn)) .

Theorem 1.11. Let 0 <f <1, 0<a+B<nl<p<n/(a+f),1/s=1/p—(a+pf)/n0<pu<11<qg<+co.
Let us suppose b € Ag(R" % (0, T)), then

1 a/2
f:i% o f Il [b, £~"1f(x, 1) ”BMO dt| < Clb Nl f HLW(OTU’ S (R7) ) :
>0 0,D)N(to—p,to+p)

Throughout the paper, B = B(xo, rg) denotes the ball with the center xy and radius rg. Given a ball B and
A > 0, AB denotes the ball with the same center as B whose radius is A times that of B. Moreover, we denote
the Lebesgue measure of B by |B|. Also, we will use C to denote a positive constant, which is independent
of the main parameters and not necessarily the same at each occurence. Furthermore, by A ~ B, we mean
that there exists a constant C > 1 such that

1 A

—<=x

C™ B~ ¢
and we denote the conjugate exponent of g > 1 by g’ = —qzl.

2. Proofs of the main results

Proof. [Proof of Theorem 1.9] Let us fix a ball B = B,,(x9) € R" and write f = f; + f,, where fi = fx2s.
We remark that y,p denotes the characteristic function of 2B. Since the commutator [b,L™%/?] is a linear
operator, we have that

~ ( f b, £7%] f(x, b)) dx)
Bl

| T (f| [b, 279 fi(x, t)wdx) +
B|w

l

( f b, £71] fa(x, )| dx

1Bl

We start by estimating the term ;. Thus, by applying Theorem 1.8 and considering that by definition
f1 = fxo we get the following inequality

bl (f I t)|ﬁdx)” <CHONNF s e - ®)
|B|n,,
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Now, we proceed by estimating the term I,. Let us denote by K,(x, ) the kernel of .#~%/2. Then, for any
x € B,te(0,T), we can write

|16, 271 fox, )| < Ib(x) — byl f(z B)C)Ka(x, Y| |f @ b|dy +

; f 1bGx) — bl [Ka )| [ £, D] dy
(2B)°
=1+ 1I.

Since the kernel of e~ is p;(x, y), then it follows from (2) that (see [11])

1 [ .
Ka(x,y) = e f pe(x, y) t2 7 dt. )
0

Thus, by consider the Gaussian upper bound (1) and the expression (7), we can deduce (see [3, 11])

00

K=y 4w C
Ka(x, )| < Cfe‘f‘ T < —— 8
| Ka(x, )| P (8)
0
Thus, we get
o1
I < |b(x) - bsl Z‘W flf(y,t)ldy-
k=1 ok+1B
By using Holder’s inequality, we get
1 1
p v
[ vwoiay<| | If(y,t)l”dy] | 1dy]
2k+1B k+1B k+1B
|2k+1B|1—%
<C A e, 9
iy e ©)
Hence, by applying Theorem 1.6, we get
I"dx < Clfll,a _— —flb(X)—bgl dx
B { Um0 £ ey | 1B )
1 NG
S Clf 101 (557
< CHF Dy g 101 (10)

where the last series is convergent since g(L — ip) > 0.

q n



F. Anceschi et al. / Filomat 33:16 (2019), 5219-5230 5225
On the other hand
I < Z f |b(y) — 5| [Kalx, )|| £, D] dy
2k+1B\2kB
<Y, f |b(y) = baeos| [Kax, || £y, D] dy +
k:12k+13\2k3
+ Z f |byers — byl |[Kalx, y)|| £ (v, £)| dy = 1T + IV.
2k+1B\2kB
In order to estimate terms III and IV, we observe that
ly — x| ~ |y — xol forx € B, y € (2B)“.
Hence, from (8) it follows that
- 1
I <cC Z m f |b(y) - b2k+13 )f(y, i’)|dy
k=1 2k+1B\2kB
By Holder’s inequality it follows that
1 1
, 4 r
f |b(y) = byras| | f (v, D] dy < f |b(y) = byeas| dy] f lf, v dy]
2k+1B k+1B k+1B
N Y
S || f ||LP’%(R") 2k+1B " f|b(y) - b2k+1B 4 dy
k+1B
From Theorem 1.6 we obtain
, i |2k+1B'%+,%
[ o= bl ay| < cn01. : ay
S |2k+1B) q
Note that % + r% =1- 2. Hence, considering (11) we have
i 14
1 f |B|’1(r@)
Hrtdx| < CIbILI £ ; —
|B|W [ ] f g n (R™) Z |2k+1B|q(q np
< CHBI Nyt g - (12)

Since b € BMO(IR"), a simple calculation gives
|byrsig — bl < CK | D]l .
Thus, by (8) and (9), we get

bl ZWBP - [ lrwnlay

2k+1B

C || b ” || f ”U 7 (R") Z

v

IN

IA

2k+1B|q( q np
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Therefore
1_A
1 f |B|‘7(5*,,7,)
ns dx < CIloILIAI ’ — T
|B|% Y f L n (R") Z |2k+1B|q(q np
< CHBINFlly g (13)
Summating (12) and (13), we thus obtain
1 q q
I Idx] < Clbll.lf IIU,/%(]R,Z) . (14)
|B|r1p B

By combining inequalities (6) and (10) with the above inequality (14) and taking the supremum over all balls
B € R"*, we complete the proof of the classical Morrey estimate obtaining the following classical Morrey
estimate

1 1
q P

. 1
2lfy,p|'dy| <C| sup —Aflf(y,t)lpdy

xeR",p>0
Bp(x) B,(x)

sup
XG]Rn,p>O p th

Now we deal with the mixed norm estimate. Let us elevate to g4 and integrate over (0, T) N (t, — p, fo + p)
the previous inequality, it follows that

q

1
q

sup f b, 2721 f(y, 0| dy| | dt
P

xe]R”,p>O np
0,T)N(to—p,to+p)

q

p

1
<C f sup Ef(f(y,t)(pdy dt.
Bp(x)

xeR",p>0
0,1)N(to—p,to+p)

Multiplying the above inequality, elevating to % and finally taking the suprema of both sides, we obtain

149 \§
q
sup L f sup — f b, 2721y, 0| dy| | dt| <

u
toe(0,T),p>0| P xeRY,p>0
0,D)N(to—p.to+p) p(x

a
v

1 1
C sup |— f sup p_)\f)f(y’t)lpdy dt

L
toc(0,T),p>0 | P xeR",p>0
0,T)N(to—p,to+p) By(x)

Thus, the proof is complete. [

Proof. [Proof of Theorem 1.10] From (8) we have the following pointwise inequality

L2 ()@ B < CLfh( 1) foreveryx € R", t € (0,T).
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Furthermore, by the definition of b € Aﬁ (R") and (8), we deduce that

“2)(f), )| < f o) - by)| [Katx, )| | £, )] dy (15)
py
< Cllb f il ;_)1_
R |x_y|
< Clb g, Lasp(fD(x)-

Hence we obtain the desired result applying the results contained in [9]. [

In order to prove Theorem 1.11, we need the following technical Lemma (see, for instance, [3]).

Lemma 2.1. For 0 < a < n, the difference operator (I — e~'L).~%/2 has an associated kernel Ea,g,(y, z) which satisfies
the following estimate

C t

[Kas(y2)| < ly =zl |y -zl (16)

Proof. [Proof of Theorem 1.11]
For any given x € R", let us fix a ball B = B,,(xp) € R" containing x. We write f = f1 + f,, where fi = fx28
and we set tz = 3. Then

m !
B

Bl
B

2] f(y, 1) - e L b, L f(y, 1| dy <

“PLA@ Oy + 5 f e 16, 2] fi(y, B dy +

2] fo(y, 1) — e b, 2P f(y, O dy = T+ 2 + .

+ —
IB|
B

Our aim is to estimate each term J;, with i = 1,2, 3. It is known that I,z is bounded from LF(IR") to L°(IR")
(see [13]). Let us consider the first term [;. Applying Holder’s inequality and considering inequality (15),
we get

1 -/ s
i < E[Bfl[b,i” 1Ay, b dy][ 1dy]

1

C ||b||*|%|[f|f<y,t)l”dy] [fldy]
2B

B

IA

2B|»
CB I Wy e i ||

CBIN F Il g -

IA

IA
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As far as we are concerned with the term J,, since the kernel of e~/

2 < %fﬂpw(yﬂ))

B R*

is p1, (v, z), we can write

[b, 27 fi(z,p)| dzdy

1
S o |Pt3(]/, Z)) )[b,f_“/z] fi(z, t)( dzdy+
w) )

+ g%f f Ipe, (v, 2)]

B 2k+1 B\ZkB

[b, 27 fi(z,B)| dzdy = T, + ]7.

For any y € B and z € 2B, by (1) we have

lpe (v, 2)| < Cts) ™2

Thus

1 1
’ < C— -
J2 < |B|ff(t3w2
B 2B

By applying the same arguments as in the estimate of the term [;, we can also deduce

L
[2B|
2B

[b,. 2] fi(z,H)|dzdy < C

[b,.27*] fi(z, 1) dz.

Ty < CHBIIf Ny g -

As we have already done before, we remark that for any y € B, z € (2B)° we have that
Iz =yl ~ |z — zol.

Thus, by applying one more time (1) we get

(tg)"?
|y _ Z|2n :

lpis (v, 2)] < C

Hence

1 (tp)"?
r<CYy =
2 ,Z; IBIf f ly — 2>

B 2k+1 B\ZkB

[b, 2] fi(z,H)|dzdy

(o]

11
: C; 2k |2k+1p|

[b,. 2] fi(z,1)|dz.

2k+1B

Following the same lines as for the estimate of the term |, we can also show that

b, 271 fi(z, )| dz gc[ |f(z,t)|”dz][ 1dz]
f Juere] [ [

2k+1B 2k+1B
sk
[2B|*

k+1
) |2k+1B|§ 2" Bl.

< CHBIIF e g
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Consequently, we have that

1
44 |2B|s :
2 < CUbIF e g Z o ( g
1 |2B|
< CHB I F Z @W
< CHBIIF N2 g Z o
<

CHOUAFN 2 gy -

Hence, by considering both equation (16) and the definition of b € Aﬁ(]R”), we have

Js % f’(l - e—tsff)f—aﬂ([b(y) - b()1f2)(y, t)| dy
B

%ff‘Ea’é(y’z)”b(y)_b(z)"f(Z,t)|dz

B (2B)

Cllblly ~ ff L s Iz, )| dzd
A zZ, V4
Ag |B| |y _ Zln—a—ﬁ Iy _ le y

B (2B)

(o)

1
C“b”/\ﬂ szHW f|fZ t)|dz

2k+1B

IA

Moreover, we have that

[ ethae = €U 8l
2k+1B

Therefore,

- 1
Jo < CUDUANF s gy 253 < CHE UM Fllpe g -
k=1

Combining the above estimates we’ve obtained for the terms [, J,, /3 and taking the supremum over all
balls B C R" we finally obtain the following estimate:

1
4

b, 21 £ (x, Dllsmo, < C Il b I3, WAl ey = C IO A, st;gp flf(y,t)lpdy

>0 p(x)

Elevating to g, integrating on (0, T) N (ty — p, to + p), it follows that

b, £~*1f(x, f)||BMO t<
(0,7)N(to—p.to+p)
q

P

civty, [ | [word|
xeR", p

ODN(to-ptotp) \ 70 7 Byx)
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Multiplying the above inequality by #, taking the supremum of both sides and, finally, elevating to %, we

obtain

1 -
wp | [ 2l | <

th€e(0,T),

>0 0,DN(to—p,to+p)

1

z q

1 1 14
Cllblls, sup | = sup— | If(y, P dy| dt
ﬁIOE(O,T), t xR, s
00 0,DN(f—pto+p) \ 0 By (%)

and the proof is complete. [
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