
Filomat 33:16 (2019), 5061–5075
https://doi.org/10.2298/FIL1916061C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Some Remarks on an Eigenvalue Problem for an Anisotropic Elliptic
Equation with Indefinite Weight
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aDepartment of Mathematics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

Abstract. In this paper, we consider an eigenvalue problem for an anisotropic elliptic equation with
indefinite weight, in which the differential operator involves partial derivatives with different variable
exponents. Under some suitable conditions on the growth rates of the anisotropic coefficients involved in
the problem, we prove some results on the existence and non-existence of a continuous family of eigenvalues
by using variational methods.

1. Introduction

In this paper, we are interested in the eigenvalue problem for the following anisotropic elliptic equation−
N∑

i=1
∂xi

(
|∂xi u|pi(x)−2∂xi u

)
= λV(x)|u|q(x)−2u

u = 0, x ∈ ∂Ω,
(1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, and pi, i = 1, 2, ...,N are continuous
functions on Ω such that 2 ≤ pi(x) < N, q(x) > 1 for all x ∈ Ω, V : Ω→ R is an indefinite weight function in
the sense that V can change sign in Ω, λ is a positive parameter.

In the particular case when pi(x) = p(x) for each i the differential operator involved in (1) becomes
N∑

i=1
∂xi

(
|∂xi u|p(x)−2∂xi u

)
and has similar properties with the p(x)-Laplace operator ∆p(x)u = div(|∇u|p(x)

∇u). We

know that the p(x)-Laplace operator helps us to model some materials involving nonhomogenities, such
as electrorheological fluids, see [18], but if we want to seek for the model of an inhomogeneous material
which has a different behavior on each direction we note it is not adequate. For this case, we need
to use the differential operator of anisotropic type as in (1) and we then call (1) an anisotropic partial
differential equation with variable exponent. Problems of this type were firstly studied by Mihailescu et al.
in the celebrated paper [13], in which the authors developed some previous results on anisotropic elliptic
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equations with constant exponents of Fragalà et al. [8] by considering eigenvalue problem (1) in the case
when the weight function V ≡ 1 and obtained some interesting results. After that, many authors studied
the existence of solutions for anisotropic partial differential equations by various methods, we refer the
readers to some papers [1–4, 6, 9, 17, 20].

In [10], Kefi studied the nonlinear eigenvalue problem for the p(x)-Laplace operator of the form−∆p(x) = λV(x)|u|q(x)−2u
u = 0, x ∈ ∂Ω,

(2)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, λ > 0 is a parameter, V : Ω→ R is
a indefinite weight function belonging to Ls(x)(Ω) in the sense that V may change sign in Ω and p, q, s ∈ C(Ω).
Using variational arguments based on the Ekeland variational principle [7], the author proved that any
λ > 0 sufficient small is an eigenvalue of problem (2) under the following sublinear condition at infinify

1 < q(x) < p(x) ≤ N < s(x), ∀x ∈ Ω.

In spired by the ideas introduced by Kefi [10] and some results on anisotropic elliptic equations men-
tioned above, in this paper we study a class of nonlinear eigenvalue problems for anisotropic elliptic
equations with indefinite weight of the form (1). Our goal is to complement and extend the previous ones
in [13] and [10] in the sense that Mihailescu et al. [13] considered problem (1) in the special case V ≡ 1 while
Kefi [10] considered p(x)-Laplacian problem (2) only in the sublinear case. We also find that our results are
better than those presented in [15, 16] since we consider the problem in the anisotropic case. By considering
two different situations concerning the growth rates involved in the problem, we prove the existence of a
continuous family of eigenvalues by using variational methods. It should be noticed that our situations
here are different from ones considered in [6, 14, 17].

The remainder of the paper is organized as follows. In Section 2, we will recall the definitions and some
properties of generalized Lebesgue-Sobolev spaces and anisotropic variable exponent Sobolev spaces. The
readers can consult the papers [5, 13] for details on this class of functional spaces. In Section 3 we will state
and prove the main results of the paper.

2. Preliminaries

We recall in what follows some definitions and basic properties of the generalized Lebesgue-Sobolev
spaces Lp(x) (Ω) and W1,p(x) (Ω) where Ω is an open subset ofRN. In that context, we refer to the books [5, 18],
the papers of Kováčik et al. [11] and Mihailescu et al. [13]. Set

C+(Ω) := {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define
h+ = sup

x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx < ∞
}
.

We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf
{
µ > 0;

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they are Banach
spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤ p+ < ∞ and continuous
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functions are dense if p+ < ∞. The inclusion between Lebesgue spaces also generalizes naturally: if
0 < |Ω| < ∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x) a.e. x ∈ Ω then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω). We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1

p(x) + 1
p′(x) = 1.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder inequality∣∣∣∣∣∫
Ω

uv dx
∣∣∣∣∣ ≤ (

1
p−

+
1

(p′)−

)
|u|p(x)|v|p′(x) (3)

holds true. Moreover, if p1, p2, p3 ∈ C+(Ω) and 1
p1(x) + 1

p2(x) + 1
p3(x) = 1, then for any u ∈ Lp1(x)(Ω), v ∈ Lp2(x)(Ω)

and w ∈ Lp3(x)(Ω) we have∣∣∣∣∣∫
Ω

uvw dx
∣∣∣∣∣ ≤ (

1
p−1

+
1

p−2
+

1
p−3

)
|u|p1(x)|v|p2(x)|w|p3(x). (4)

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular
of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω)→ R defined by

ρp(x)(u) =

∫
Ω

|u|p(x) dx.

If u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (5)

provided |u|p(x) > 1 while

|u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (6)

provided |u|p(x) < 1 and

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (7)

Proposition 2.1. Let p(x) and q(x) be measurable functions such that p ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ +∞ for a.e.
x ∈ Ω. Let u ∈ Lq(x)(Ω) and u , 0. Then we have

|u|p(x)q(x) ≤ 1⇒ |u|p
+

p(x)q(x) ≤ ||u|
p(x)
|q(x) ≤ |u|

p−

p(x)q(x),

|u|p(x)q(x) ≥ 1⇒ |u|p
−

p(x)q(x) ≤ ||u|
p(x)
|q(x) ≤ |u|

p+

p(x)q(x).

In particular, if p(x) = p is a constant then ||u|p|q(x) = |u|ppq(x).

If p ∈ C+(Ω) the variable exponent Sobolev space W1,p(x)(Ω), consisting of functions u ∈ Lp(x)(Ω) whose
distributional gradient ∇u exists almost everywhere and belongs to [Lp(x)(Ω)]N, endowed with the norm

‖u‖ = |u|p(x) + |∇u|p(x),

is a separable and reflexive Banach space. The space of smooth functions are in general not dense in
W1,p(x)(Ω), but if the exponent p ∈ C+(Ω) is logarithmic Hölder continuous, that is,

|p(x) − p(y)| ≤ −
M

log(|x − y|)
, ∀x, y ∈ Ω, |x − y| ≤

1
2
,
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then the smooth functions are dense in W1,p(x)(Ω) and so we can define the space W1,p(x)
0 (Ω) as the closure of

C∞0 (Ω) under the norm
‖u‖p(x) = |∇u|p(x)

by the p(x)-Poincaré inequality. We point out that the above norm is equivalent with the following norm

‖u‖p(x) =

N∑
i=1

|∂xi u|p(x),

provied that p(x) ≥ 2 for all x ∈ Ω. The space
(
W1,p(x)

0 (Ω), ‖.‖p(x)

)
is a separable and Banach space.

Proposition 2.2. If s ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω then the embedding

W1,p(x)
0 (Ω) ↪→ Ls(x)(Ω)

is compact and continuous, where p∗(x) =
Np(x)

N−p(x) if p(x) < N or p∗(x) = ∞ if p(x) > N.

We introduce a natural generalization of the variable exponent Sobolev space W1,p(x)(Ω) that will enable
us to study problem (1) with sufficient accuracy. Define −→p : Ω → RN the vectorial function −→p (x) =

(p1(x), p2(x), .., pN(x)), the components pi ∈ C(Ω), i ∈ {1, 2, ...,N} are logarithmic Hölder continuous, that is,
there exists M > 0 such that |pi(x) − pi(y)| ≤ − M

log(|x−y|) for any x, y ∈ Ω with |x − y| ≤ 1
2 and i ∈ {1, 2, ...,N}. We

introduce the anisotropic variable exponent Sobolev space, W1,−→p (x)
0 (Ω), as the colsure of C∞0 (Ω) with respect

to the norm

‖u‖−→p (x) =

N∑
i=1

|∂xi u|pi(x).

Then W1,−→p (x)
0 (Ω) is a reflexive and separable Banach space, see [13]. In the case when pi are all constant

functions the resulting anisotropic space is denoted by W1,−→p
0 (Ω), where−→p is the constant vector (p1, p2, ..., pN).

The theory of such spaces has been developed in [8]. Let us introduce
−→
P +,
−→
P − ∈ RN and P+

+,P+
−,P−+,P−− ∈ R+

as
−→
P + = (p+

1 , p
+
2 , ..., p

+
N),

−→
P − = (p−1 , p

−

2 , ..., p
−

N)

and
P+

+ = max{p+
1 , p

+
2 , ..., p

+
N}, P+

− = max{p−1 , p
−

2 , ..., p
−

N},

P−+ = min{p+
1 , p

+
2 , ..., p

+
N}, P−− = min{p−1 , p

−

2 , ..., p
−

N}.

Throughout this paper we assume that

N∑
i=1

1
p−i

> 1 (8)

and define P∗
−
∈ R and P−,∞ ∈ R+ by

P∗− =
N∑N

i=1
1

p−i
− 1

, P−,∞ = max{P+
−,P

∗

−}.

Proposition 2.3 (see [13, Theorem 1]). If s ∈ C+(Ω) satisfies 1 < s(x) < P−,∞ for all x ∈ Ω then the embedding
W1,−→p (x)

0 (Ω) ↪→ Ls(x)(Ω) is compact and continuous.
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3. Main results

In this section, we will state and prove the main results of the paper. Let us denote by X the anisotropic

variable exponent Sobolev space W1,−→p (x)
0 (Ω) and denote by ci a general positive constant whose value may

change from line to line. Problem (1) will be considered in two different situations when the nonlinearity
is sublinear or superlinear at infinify in the sense that q+ < P−

−
or P+

+ < q−, respectively.

Definition 3.1. We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈W1,−→p (x)
0 (Ω)\{0} such that

N∑
i=1

∫
Ω

|∂xi u|
pi(x)−2∂xi u∂xi v dx − λ

∫
Ω

V(x)|u|q(x)−2uv dx = 0

for all v ∈ W1,−→p (x)
0 (Ω). If λ is an eigenvalue of problem (1) then the corresponding eigenfunction u ∈ W1,−→p (x)

0 (Ω)\{0}
is a weak solution of (1).

Our first result concerns the existence of a continuous family of eigenvalues for problem (1) in a
neighborhood of the origin.

Theorem 3.2. Assume that the following conditions hold:

(H1) 1 < q(x) < P−
−
≤

N∑N
i=1

1
p−i

< N < s(x) for all x ∈ Ω;

(H2) V ∈ Ls(x)(Ω) and there exists a measurable set Ω0 ⊂ Ω, |Ω0| > 0 such that V(x) > 0 for all x ∈ Ω0.

Then there exists λ > 0 such that any λ ∈ (0, λ) is an eigenvalue of problem (1).

Proof. Let us consider the energy functional Jλ : X→ R given by the formula

Jλ(u) = Φ(u) − λΨ(u),

where

Φ(u) =

N∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) dx, Ψ(u) =

∫
Ω

V(x)
q(x)
|u|q(x) dx. (9)

From (H1)-(H2), using Proposition 2.1, it is clear that for all u ∈ X,

|Ψ(u)| ≤
2
q−
|V|s(x)||u|q(x)

| s(x)
s(x)−1

≤


2

q− |V|s(x)|u|
q−
s(x)q(x)
s(x)−1

if |u| s(x)q(x)
s(x)−1
≤ 1,

2
q− |V|s(x)|u|

q+

s(x)q(x)
s(x)−1

if |u| s(x)q(x)
s(x)−1
≥ 1.

On the other hand, by (H1)-(H2), we have α(x) =
s(x)q(x)
s(x)−1 < P∗− and β(x) =

s(x)q(x)
s(x)−q(x) < P∗− for all x ∈ Ω and

by Proposition 2.3, the embeddings X ↪→ Lα(x)(Ω) and X ↪→ Lβ(x)(Ω) are continuous and compact. Thus, the
functional Jλ is well-defined on X. The proof is divided into the following four steps.

Step 1. We prove that Jλ ∈ C1(X,R) and its derivative is

J′λ(u)(v) =

N∑
i=1

∫
Ω

|∂xi u|
pi(x)−2∂xi u · ∂xi v dx − λ

∫
Ω

V(x)|u|q(x)−2uv dx
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for all u, v ∈ X. Hence, we can find weak solutions of problem (1) as the critical points of the functional Jλ
in the space X.

We first need to prove that Ψ ∈ C1(X,R), that is, for given u ∈ X we show that for all v ∈ X,

lim
t→0

Ψ(u + tv) −Ψ(u)
t

= Ψ′(u)(v),

and Ψ′ : X→ X∗ is continuous, where we denote by X∗ the dual space of X.
Indeed, by conditions (H1)-(H2), for |t| < 1 using inequality (4) and Proposition 2.1, it implies that∫

Ω

∣∣∣V(x)|u + tv|q(x)−2(u + tv)v
∣∣∣ dx ≤

∫
Ω

|V(x)||u + tv|q(x)−1
|v| dx

≤

∫
Ω

|V(x)|(|u| + |v|)q(x)−1
|v| dx

≤ 3|V(x)|s(x)

∣∣∣||u| + |v||q(x)−1
∣∣∣ q(x)

q(x)−1
|v|β(x)

≤ 3|V|s(x) ||u| + |v||
qτ−1
q(x) |v|β(x)

< +∞,

where τ = + if ||u|+ |v||q(x) > 1 and τ = − if ||u|+ |v||q(x) ≤ 1 since X ↪→ Lβ(x)(Ω), X ↪→ Lq(x)(Ω) and V ∈ Ls(x)(Ω).
For all v ∈ X, using the Lebesgue theorem we have

lim
t→0

Ψ(u + tv) −Ψ(u)
t

=
d
dt

Ψ(u + tv)
∣∣∣∣∣
t=0

=

(
d
dt

∫
Ω

V(x)
q(x)
|u + tv|q(x) dx

)∣∣∣∣∣∣
t=0

=

∫
Ω

d
dt

(∫
Ω

V(x)
q(x)
|u + tv|q(x) dx

)∣∣∣∣∣∣
t=0

dx

=

∫
Ω

V(x)|u + tv|q(x)−2(u + tv)v|t=0 dx

=

∫
Ω

V(x)|u|q(x)−2uv dx

= Ψ′(u)(v).

Since the embedding X ↪→ Lβ(x)(Ω) is continuous, there exists c1 > 0 such that |v|β(x) ≤ c1‖v‖−→p (x) for all
v ∈ X and by condition (H1)-(H2),

|Ψ′(u)(v) =

∣∣∣∣∣∫
Ω

V(x)|u|q(x)−2uv dx
∣∣∣∣∣

≤

∫
Ω

|V(x)||u|q(x)−1
|v| dx

≤ 3|V|s(x) |u|
qτ−1
q(x) |v|β(x)

≤ 3c1|V|s(x) |u|
qτ−1
q(x) ‖v‖−→p (x)

for any v ∈ X, where τ = + if |u|q(x) > 1 and τ = − if |u|q(x) ≤ 1. Combining this with the linearity of Ψ′ we

deduce that Ψ′ ∈ X∗. Note that the map u 7→ |u|q(x)−2u from Lq(x)(Ω) into L
q(x)

q(x)−1 (Ω) is continuous. For the
Fréchet differentiability, we conclude that Ψ is Fréchet differentiable and

Ψ′(u)(v) =

∫
Ω

V(x)|u|q(x)−2uv dx
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for all u, v ∈ X. Similarly, we can show that Φ ∈ C1(X,R) and

Φ′(u)(v) =

N∑
i=1

∫
Ω

|∂xi u|
pi(x)−2∂xi u · ∂xi v dx

for all u, v ∈ X. The step 1 is completed.
Step 2. We prove that there exists λ > 0 such that for any λ ∈ (0, λ), there exist constants r, ρ > 0 such

that Jλ(u) ≥ r for all u ∈ X with ‖u‖−→p (x) = ρ.

Indeed, since α(x) =
s(x)q(x)
s(x)−1 < P∗

−
, the embedding X ↪→ Lα(x)(Ω) is continuous, there exists c2 > 0 such

that
|u|α(x) ≤ c2‖u‖−→p (x), ∀u ∈ X.

Now, let us assume that ‖u‖−→p (x) = ρ < min
{
1, 1

c2

}
sufficiently small, where c2 is given in the above inequality.

Then we have |u|α(x) < 1. For such an element u we get |∂xi u|pi(x) < 1 for all i = 1, 2, ...,N. Using (6) and some
simple computations, we obtain

N∑
i=1

∫
Ω

|∂xi u|
pi(x) dx ≥

N∑
i=1

|∂xi u|
p+

i
pi(x)

≥

N∑
i=1

|∂xi u|
P+

+

pi(x)

≥ N

∑N
i=1 |∂xi u|pi(x)

N

P+
+

=
‖u‖P

+
+
−→p (x)

NP+
+−1

. (10)

Thus, by (10) for any u ∈ X with ‖u‖−→p (x) = ρ small enough,

Jλ(u) =

N∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) dx − λ

∫
Ω

V(x)
q(x)
|u|q(x) dx

≥

‖u‖P
+
+
−→p (x)

P+
+NP+

+−1
− λ

2cq−

2

q−
|V|s(x)‖u‖

q−
−→p (x)

=
1

P+
+NP+

+−1
ρP+

+ − λ
2cq−

2

q−
|V|s(x)ρ

q−

= ρq−
 1

P+
+NP+

+−1
ρP+

+−q−
− λ

2cq−

2

q−
|V|s(x)

 .
Putting

λ =
ρP+

+−q−

2P+
+NP+

+−1
.

q−

2cq−

2 |V|s(x)

,

then for any λ ∈ (0, λ) and u ∈ X with ‖u‖−→p (x) = ρ, there exists r =
ρP+

+

2P+
+NP+

+−1 such that Jλ(u) ≥ r > 0.

Step 3. We prove that there exists ϕ ∈ X such that ϕ ≥ 0, ϕ , 0 and Jλ(tϕ) < 0 for all t > 0 small enough.
Indeed, condition (H1) implies that q(x) < P−− for all x ∈ Ω0. In the sequel, we use the notation

q−0 = infx∈Ω0
q(x). Let ε0 > 0 be such that q−0 + ε0 < P−−. We also have since q ∈ C(Ω0) that there exists an open

subset Ω1 ⊂ Ω0 such that
|q(x) − q−0 | < ε0, ∀x ∈ Ω1
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and thus
q(x) ≤ q−0 + ε0 < P−−, ∀x ∈ Ω1.

Let ϕ ∈ C∞0 (Ω0) such that Ω1 ⊂ supp(ϕ), ϕ(x) = 1 for all x ∈ Ω1 and 0 ≤ ϕ ≤ 1 in Ω0. Then, using the
above information, for any t ∈ (0, 1) we have

Jλ(tϕ) =

N∑
i=1

∫
Ω

1
pi(x)

|∂xi tϕ|
pi(x) dx − λ

∫
Ω

V(x)
q(x)
|tϕ|q(x) dx

≤
tP−
−

P−
−

N∑
i=1

∫
Ω0

|∂xiϕ|
pi(x) dx − λ

∫
Ω1

V(x)
q(x)

tq(x)
|ϕ|q(x) dx

≤
tP−
−

P−
−

N∑
i=1

∫
Ω0

|∂xiϕ|
pi(x) dx −

λtq−0 +ε0

q+
0

∫
Ω1

V(x)|ϕ|q(x) dx.

Therefore, Jλ(tϕ) < 0 for 0 < t < δ
1

P−
−
−q−0 −ε0 with

0 < δ < min

1,
λP−
−

q+
0
.

∫
Ω1

V(x)|ϕ|q(x)dx∑N
i=1

∫
Ω0
|∂xiϕ|

pi(x) dx

 .
The above fraction is meaningful if we can show that

∑N
i=1

∫
Ω0
|∂xiϕ|

pi(x) dx > 0. Indeed, it is clear that∫
Ω1

|ϕ|q(x) dx ≤
∫

Ω

|ϕ|q(x) dx ≤
∫

Ω

|ϕ|q
−

dx.

On the other hand, the space X is continuously embedded in Lq− (Ω) and thus, there exists c3 > 0 such
that |ϕ|q− ≤ c3‖ϕ‖−→p (x), which implies that ‖ϕ‖−→p (x) > 0. Combining this with (5) or (6) the claim follows at
once.

By Step 2, we have
inf

u∈∂Bρ(0)
Jλ(u) > 0.

We also have from Step 2 again, the functional Jλ is bounded from below on Bρ(0). Moreover, by Step 3,
there exists ϕ ∈ X such that Jλ(tϕ) < 0 for all t > 0 small enough. It follows from Step 2 that

Jλ(u) ≥
‖u‖P

+
+
−→p (x)

P+
+NP+

+−1
−
λcq−

2

q−
|V|s(x)‖u‖

q−
−→p (x)

,

which yields
−∞ < cλ = inf

u∈Bρ(0)
Jλ(u) < 0.

Let us choose ε > 0 such that 0 < ε < infu∈∂Bρ(0) Jλ(u) − infu∈Bρ(0) Jλ(u). Applying the Ekeland variational

principle in [7] to the functional Jλ : Bρ(0)→ R, it follows that there exists uε ∈ Bρ(0) such that

Jλ(uε) < inf
u∈Bρ(0)

Jλ(u) + ε,

Jλ(uε) < Jλ(u) + ε‖u − uε‖−→p (x), u , uε,

then, we have Jλ(uε) < infu∈∂Bρ(0) Jλ(u) and thus, uε ∈ Bρ(0).
Now, we define the functional Iλ : Bρ(0) → R by Iλ(u) = Jλ(u) + ε‖u − uε‖−→p (x). It is clear that uε is a

minimum point of Iλ and thus
Iλ(uε + τv) − Iλ(uε)

t
≥ 0
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for all τ > 0 small enough and all v ∈ Bρ(0). The above information shows that

Jλ(uε + τv) − Jλ(uε)
τ

+ ε‖v‖−→p (x) ≥ 0.

Letting τ→ 0+, we deduce that 〈
J′λ(uε), v

〉
≥ −ε‖v‖−→p (x).

It should be noticed that −v also belongs to Bρ(0), so replacing v by −v, we get〈
J′λ(uε),−v

〉
≥ −ε‖ − v‖−→p (x)

or 〈
J′λ(uε), v

〉
≤ ε‖v‖−→p (x),

which helps us to deduce that ‖J′λ(uε)‖X∗ ≤ ε. Therefore, there exists a sequence {un} ⊂ Bρ(0) such that

Jλ(un)→ cλ = inf
u∈Bρ(0)

Jλ(u) < 0 and J′λ(un)→ 0 in X∗ as n→∞. (11)

Is is clear that the sequence {un} is bounded in X. Now, since the Banach space X is reflexive, there exists
u ∈ X such that passing to a subsequence, still denoted by {un}, it converges weakly to u in X.

Step 4. We prove that {un}which is given by (11) converges strongly to u in X, i.e. limn→∞ ‖un−u‖−→p (x) = 0.
By conditions (H1)-(H2), using (4) and Proposition 2.1 we have∣∣∣∣∣∫

Ω

V(x)|un|
q(x)−2un(un − u) dx

∣∣∣∣∣ ≤ 2|V|s(x)

∣∣∣|un|
q(x)−2un(un − u)

∣∣∣ s(x)
s(x)−1

≤ 4|V|s(x)

∣∣∣|un|
q(x)−2un

∣∣∣ q(x)
q(x)−1
|un − u|β(x)

≤ 4|V|s(x)

(
1 + |un|

q+
−1

q(x)

)
|un − u|β(x)

→ 0 as n→∞,

since X is continuously and compactly embedded in Lβ(x)(Ω) with β(x) =
s(x)q(x)

s(x)−q(x) . Moreover, by (11) we have
limn→∞ Jλ(un)(un − u) = 0, i.e.

lim
n→∞

 N∑
i=1

∫
Ω

|∂xi un|
pi(x)−2∂xi un(∂xi un − ∂xi u) dx − λ

∫
Ω

V(x)|un|
q(x)−2un(un − u) dx

 = 0,

which yields

lim
n→∞

N∑
i=1

∫
Ω

|∂xi un|
pi(x)−2∂xi un(∂xi un − ∂xi u) dx = 0.

Combining this with the fact that {un} converges weakly to u in X, we get

lim
m→∞

N∑
i=1

∫
Ω

(
|∂xi um|

pi(x)−2∂xi um − |∂xi u|
pi(x)−2∂xi u

)
(∂xi um − ∂xi u) dx = 0. (12)

Next, we apply the following inequality (see [19])

(|ξ|r−2ξ − |η|r−2η) · (ξ − η) ≥ 2−r
|ξ − η|r, ξ, η ∈ RN, (13)

valid for all r ≥ 2. Relations (12) and (13) show actually the sequence {um} converges strongly to u in X.
Thus, in view of (11), we obtain Jλ(u) = cλ < 0 and J′λ(u) = 0. This means that u is a non-trivial weak solution
of (1), i.e. any λ ∈ (0, λ) is an eigenvalue of problem (1). Theorem 3.2 is completely proved.
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Now we will prove the second main result for problem (1) regarding the superlinear case. For the case
of a non-constant sign weight V we define the following:

W+ =

{
u ∈ X :

∫
Ω

V(x)|u|q(x) dx > 0
}
,

W− =

{
u ∈ X :

∫
Ω

V(x)|u|q(x) dx < 0
}
,

λ∗ = inf
u∈W+

Φ(u)
Ψ(u)

, λ∗ = inf
u∈W+

∑N
i=1

∫
Ω
|∂xi u|pi(x) dx∫

Ω
V(x)|u|q(x) dx

, (14)

µ∗ = sup
u∈W−

Φ(u)
Ψ(u)

, µ∗ = sup
u∈W−

∑N
i=1

∫
Ω
|∂xi u|pi(x) dx∫

Ω
V(x)|u|q(x) dx

. (15)

Theorem 3.3. Assume that (8) and the following conditions hold:

(H3) P+
+ < q− ≤ q+ < P∗− and q+

−
1
2 < q−, where P∗− = N∑N

i=1
1

p−i
−1

;

(H4) V ∈ Ls(x)(Ω) is a sign-changing function such that s ∈ C(Ω) and

s(x) > max
{

1,
P∗
−

P∗
−
− q(x)

}
for all x ∈ Ω.

Then we have the following assertions:

(i) The numbers λ∗ and µ∗ are the positive and negative eigenvalues of problem (1) respectively, satisfying µ∗ ≤
µ∗ < 0 < λ∗ ≤ λ∗;

(ii) Any λ ∈ (−µ∗) ∪ (λ∗,+∞) is an eigenvalue of problem (1) while any λ ∈ (µ∗, λ∗) is not an eigenvalue of (1).

Proof. It is clear that if λ is an eigenvalue of problem (1) with weight V then −λ is an eigenvalue of problem
(1) with weight −V. For this reason, it is sufficient to prove Theorem 3.3 only for λ > 0 and we will consider
problem (1) only in the set W+ defined as before. For this case, the proof of Theorem 3.3 is divided into the
following four steps.

Step 1. We prove that λ∗ > 0.
By relation (14), it follows that

q−

P+
+

λ∗ ≤ λ
∗
≤

q+

P−
−

λ∗, (16)

and 0 ≤ λ∗ ≤ λ∗ since P+
+ < q−.

We will prove that

lim
‖u‖−→p (x)→0, u∈W+

Φ(u)
Ψ(u)

= +∞, (17)

lim
‖u‖−→p (x)→+∞, u∈W+

Φ(u)
Ψ(u)

= +∞. (18)
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Indeed, using (3) and Proposition 2.1, for all u ∈ X we have

|Ψ(u)| ≤
2
q−
|V|s(x)||u|q(x)

| s(x)
s(x)−1

≤
2
q−
|V|s(x)|u|

qτ

α(x),

where τ = − if |u|α(x) ≤ 1 and τ = + if |u|α(x) ≥ 1 and α(x) =
s(x)q(x)
s(x)−1 . By condition (H4), we have 1 < α(x) < P∗

−

for all x ∈ Ω, that is, X is continuously embedded in Lα(x)(Ω), so there exists c4 > 0 such that

|Ψ(u)| ≤
2c4

q−
|V|s(x)‖u‖

qτ
−→p (x)

. (19)

For u ∈W+ with ‖u‖−→p (x) ≤ 1 by relations (10) and (19) we infer that

Φ(u)
Ψ(u)

=

∑N
i=1

∫
Ω

1
pi(x) |∂xi u|pi(x) dx∫

Ω

V(x)
q(x) |u|

q(x) dx
≥

q−

2c4P+
+NP+

+−1|V|s(x)
‖u‖P

+
+−q−
−→p (x)

. (20)

which implies that relation (17) holds since P+
+ < q−.

On the other hand, since q+
−

1
2 < q−, it follows that there exists θ > 0 such that q+

−
1
2 < θ < q−, which

gives us q+
− 1 < q− − 1

2 < θ and

1 + θ − q+ > 0, 2(q− − θ) ≤ 2(q+
− θ) < 1. (21)

Take r(x) be any measurable function satisfying

max
{

s(x)
1 + θs(x)

,
P∗−

P∗
−

+ θ − q(x)

}
< r(x) < min

{
P∗−

P∗
−

+ θs(x)
,

1
1 + θ − q(x)

}
(22)

for all x ∈ Ω and

θ

(
r+

r−
+ 1

)
< q−. (23)

From relations (21)-(23), it implies that r ∈ L∞(Ω) and 1 < r(x) < s(x) for any x ∈ Ω. Moreover, we have

1 <
θr(x)s(x)
s(x) − r(x)

< P∗−, 1 <
(q(x) − θ)r(x)

r(x) − 1
< P∗−

for all x ∈ Ω, so there exists c5 > 0 such that

|u| θr(x)s(x)
s(x)−r(x)

≤ c5‖u‖−→p (x), |u| (q(x)−θ)r(x)
r(x)−1

≤ c5‖u‖−→p (x), ∀u ∈ X. (24)

For u ∈W+, by (3) and (5) we have

|Ψ(u)| ≤
∫

Ω

|V|u|θ||u|q(x)−θ dx ≤ 2
∣∣∣V|u|θ∣∣∣r(x)

∣∣∣|u|q(x)−θ
∣∣∣ r(x)

r(x)−1
. (25)

Using (3) and (5) we have

∣∣∣V|u|θ∣∣∣r(x)
≤

(∫
Ω

|V|r(x)
|u|θr(x) dx

) 1
r−

≤ 2
∣∣∣|V|r(x)

∣∣∣ 1
r−
s(x)
r(x)

∣∣∣|u|θr(x)
∣∣∣ 1

r−
s(x)

s(x)−r(x)
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for any u ∈W+ with
∣∣∣V|u|θ∣∣∣r(x)

> 1 and we deduce from (24) that

∣∣∣V|u|θ∣∣∣r(x)
≤ 1 + 2

∣∣∣|V|r(x)
∣∣∣ 1

r−
s(x)
r(x)

∣∣∣|u|θr(x)
∣∣∣ 1

r−
s(x)

s(x)−r(x)

≤ 1 + 2
(
1 + |V|

r+
r−

r(x)

) (
1 + |u|

θr+
r−
θr(x)s(x)
s(x)−r(x)

)
≤ c6

(
1 + ‖u‖

θr+
r−
−→p (x)

)
for any u ∈W+. Similarly, ∣∣∣|u|q(x)−θ

∣∣∣ r(x)
r(x)−1
≤ 1 + |u|q

+
−θ

r(x)(q(x)−θ)
r(x)−1

≤ 1 + c7‖u‖
q+
−θ
−→p (x)

, u ∈W+.

From above information, it follows that

|Ψ(u)| ≤ c6

(
1 + ‖u‖

θr+
r−
−→p (x)

) (
1 + c7‖u‖

q+
−θ
−→p (x)

)
= c6 + c6c7‖u‖

q+
−θ
−→p (x)

+ c6‖u‖
θr+
r−
−→p (x)

+ c6c7‖u‖
θr+
r−
−→p (x)
‖u‖q

+
−θ
−→p (x)

≤ c8

(
1 + ‖u‖

2 θr+
r−
−→p (x)

+ ‖u‖2(q+
−θ)

−→p (x)

)
(26)

for all u ∈W+ with ‖u‖−→p (x) > 1.
For each i ∈ {1, 2, ...,N}, we define

αi =

P+
+, if |∂xi u|pi(x) < 1,

P−−, if |∂xi u|pi(x) > 1.

Then, for all u ∈W+ with ‖un‖−→p (x) > 1, it holds that

N∑
i=1

∫
Ω

|∂xi u|
pi(x) dx =

N∑
i=1

|∂xi u|
αi
pi(x)

≥

N∑
i=1

|∂xi u|
P−
−

pi(x) −

∑
{i: αi=P+

+}

(
|∂xi u|

P−
−

pi(x) − |∂xi u|
P+

+

pi(x)

)
≥

1
NP−

−

‖u‖P
−
−

−→p (x)
−N. (27)

Hence,

Φ(u)
Ψ(u)

=

∑N
i=1

1
pi(x)

∫
Ω
|∂xi u|pi(x) dx∫

Ω

V(x)
q(x) |u|

q(x) dx

≥

1
P+

+NP−
−

‖u‖P
−
−

−→p (x)
−

N
P+

+

c8

(
1 + ‖u‖

2 θr+
r−
−→p (x)

+ ‖u‖2(q+−θ)
−→p (x)

)
→ +∞

as ‖u‖−→p (x) → +∞ since P−
−
> 1 > 2(q+

− θ) ≥ 2(q− − θ) ≥ 2θ r+

r− > 2θ. Thus relation (18) holds.
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Now, we are in the position to prove that λ∗ > 0. Assume by contradiction that λ∗ = 0, from (16) we get
λ∗ = 0. Then, there exists a sequence {un} ⊂W+

\{0} such that

lim
n→∞

Φ(un)
Ψ(un)

= 0. (28)

We also obtain from (20) that

Φ(un)
Ψ(un)

≥


q−

2P+
+ |V|s(x)

‖un‖
P−
−
−q+

−→p (x)
, if ‖un‖−→p (x) ≥ 1,

q−

2P+
+ |V|s(x)

‖un‖
P+

+−q−
−→p (x)

, if ‖un‖−→p (x) < 1.
(29)

By (H3), P−
−
− q+ < 0 and P+

+ − q− < 0, so (29) implies that ‖un‖−→p (x) → +∞ as n → ∞, as n → ∞. Using
again (29), we get

lim
n→∞

Φ(un)
Ψ(un)

= +∞,

which contradicts with (28) and thus, we conclude that λ∗ > 0.
Step 2. We prove that λ∗ is an eigenvalue of problem (1).
Indeed, let {un} ⊂W+

\{0} be a minimizing sequence for the number λ∗, that is,

lim
n→∞

Φ(un)
Ψ(un)

= λ∗ > 0. (30)

By (18), we have {un} is a bounded sequence in X. Since X is reflexive, there exists u∗ ∈ X and a
subsequence of {un}, still denoted by {un} such that {un} converges weakly to u∗ as n → ∞. Since Φ is a
convex function, it is weakly lower semi-continuous, so we get

lim
n→∞

Φ(un) ≥ Φ(u∗). (31)

On the other hand, since the embedding X ↪→ Lα(x)(Ω) is compact, the sequence {un} converges strongly
to u∗ in Lα(x)(Ω), where α(x) =

q(x)s(x)
s(x)−1 . It is noticed that |un|α(x) → |u∗|α(x),

∣∣∣|un|
q(x)

∣∣∣ s(x)
s(x)−1
→

∣∣∣|u∗|q(x)
∣∣∣ s(x)

s(x)−1
, the

sequence
∣∣∣|un|

q(x)
∣∣∣ s(x)

s(x)−1
is bounded and {|un|

q(x)
} converges weakly to |u∗|q(x) in L

s(x)
s(x)−1 (Ω), so we deduce that

|un|
q(x)
→ |u∗|q(x) in L

s(x)
s(x)−1 (Ω). From the above information, it implies that

|Φ(un) −Φ(u)| ≤
∫

Ω

|V(x)|
q(x)

(
|un|

q(x)
− |u∗|q(x)

)
dx

≤
2
q−
|V|s(x)

∣∣∣|un|
q(x)
− |u∗|q(x)

∣∣∣ s(x)
s(x)−1

→ 0,

as n→∞, that is,

lim
n→∞

Ψ(un) = Ψ(u∗) =

∫
Ω

V(x)
q(x)
|u∗|q(x) dx ≥ 0. (32)

In view of (31) and (32) we obtain Φ(u∗)
Ψ(u∗) = λ∗ if Ψ(u∗) > 0, i.e. u∗ ∈ W+. We need to show that Ψ(u∗) > 0.

Assume by contradiction that Ψ(u∗) = 0 or

lim
n→∞

Ψ(un) = 0. (33)

Now, taking ε ∈ (0, λ∗) be fixed, by (9), for n large enough,∣∣∣∣∣ Φ(un)
Ψ(un)

− λ∗
∣∣∣∣∣ < ε



N. T. Chung / Filomat 33:16 (2019), 5061–5075 5074

or
(λ∗ − ε)Ψ(un) < Φ(un) < (λ∗ + ε)Ψ(un),

which follows from (33) that limn→∞Φ(un) = 0. This means that un → 0 in X, that is, ‖un‖−→p (x) → 0 as n→∞
and thus,

lim
n→∞

Φ(un)
Ψ(un)

= +∞

which is a contradiction. Therefore, Ψ(u∗) > 0 and u∗ is an eigenfunction and λ∗ is an eigenvalue of problem
(1).

Step 3. We prove that any λ ∈ (λ∗,+∞) is an eigenvalue of problem (1).
Let λ ∈ (λ∗,+∞) be arbitrary but fixed. We know that λ is an eigenvalue of problem (1) if and only if

there exists uλ ∈W+
\{0} a critical point of Jλ. From relations (26) and (27), it implies that

Jλ(u) =

N∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) dx − λ

∫
Ω

V(x)
q(x)
|u|q(x) dx

≥
1

P+
+NP−

−

‖u‖P
−
−

−→p (x)
−

N
P+

+

− λc8

(
1 + ‖u‖

2 θr+
r−
−→p (x)

+ ‖u‖2(q+
−θ)

−→p (x)

)
→ +∞,

as ‖u‖−→p (x) → +∞ since P−
−
> 1 > 2(q+

− θ) ≥ 2(q− − θ) ≥ 2θ r+

r− > 2θ. This follows that Jλ is coercive in W+.
By the of proof in the step 2, the functional Ψ is weakly-strongly continuous in W+. We also know that

Φ is weakly lower semi-continuous, so by Weierstrass theorem, there exists uλ ∈ W+ a global minimum
point of Jλ. We need to prove that uλ is non-trivial critical point of Jλ. Indeed, since λ∗ = infu∈W+

Φ(u)
Ψ(u) and

λ > λ∗, it follows that there exists uλ ∈W+ such that Φ(uλ)
Ψ(uλ) < λ, that is,

Jλ(uλ) = Φ(uλ) − λΨ(uλ) < 0.

This means that infu∈W+ Jλ(u) < 0 and thus, uλ is a non-trivial critical point of Jλ or λ is an eigenvalue of
problem (1). The proof of step 3 is completed.

Step 4. We prove that any λ ∈ (0, λ∗) is not an eigenvalue of problem (1).
Indeed, assume by contradiction that there exists λ ∈ (0, λ∗) is an eigenvalue of problem (1), that is, there

exists uλ ∈W+ such that
Φ′(uλ)(v) = λΨ′(uλ)(v), ∀v ∈W+.

Thus, for v = uλ ∈W+ we have

N∑
i=1

∫
Ω

|∂xi uλ|
pi(x) dx = λ

∫
Ω

V(x)|uλ|q(x) dx. (34)

By the definition of the set W+, we have
∫

Ω
V(x)|uλ|q(x) dx > 0. By (34) and the definition of λ∗ and the

fact that λ < λ∗, we deduce that

N∑
i=1

∫
Ω

|∂xi uλ|
pi(x) dx ≥ λ∗

∫
Ω

V(x)|uλ|q(x) dx

> λ

∫
Ω

V(x)|uλ|q(x) dx

=

N∑
i=1

∫
Ω

|∂xi uλ|
pi(x) dx,

which is a contradiction. Therefore, the proof of Theorem 3.3 is now complete.
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[8] I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear equations, Ann. Inst. H. Poincaré,
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