
Filomat 33:16 (2019), 5273–5290
https://doi.org/10.2298/FIL1916273A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The main principle of this paper is to show that, a warped product pointwise semi-slant
submanifold of type Mn = Nn1

T × f Nn2
θ in a complex space form M̃2m(c) admitting shrinking or steady

gradient Ricci soliton, whose potential function is a well-define warped function, is an Einstein warped
product pointwise semi-slant submanifold under extrinsic restrictions on the second fundamental form
inequality attaining the equality in [4]. Moreover, under some geometric assumption, the connected and
compactness with nonempty boundary are treated. In this case, we propose a necessary and sufficient
condition in terms of Dirichlet energy function which show that a connected, compact warped product
pointwise semi-slant submanifold of complex space forms must be a Riemannian product. As more
applications, for the first one, we prove that Mn is a trivial compact warped product, when the warping
function exist the solution of PDE such as Euler-Lagrange equation. In the second one, by imposing boundary
conditions, we derive a necessary and sufficient condition in terms of Ricci curvature, and prove that, a
compact warped product pointwise semi-slant submanifold Mn of a complex space form, is either a CR-
warped product or just a usual Riemannian product manifold. We also discuss some obstructions to these
constructions in more details.

1. Introduction and motivations results

At present, the clue of the warped product manifolds plays very important roles not only in differential
geometry but also in general relativity theory in physics. For example, Robertson-Walker space-times,
asymptotically flat spacetime, Schwarzschild spacetime, and Reissner-Nordstrom spacetime are warped
product manifolds [31].

The idea of warped product manifolds with negative curvatures was introduced by Bishop and O’Neill
[6]. Assume that (Nn1

1 , 11) and (Nn2
2 , 12) are two Riemannian manifolds and f : Nn1

1 → (0,∞) is a positive
differentiable function on Nn1

1 . Consider the product manifold Nn1
1 × Nn2

2 with canonical projections γi :
Nn1

1 × Nn2
2 → Nni

i via γi(x1, x2) = xi (i = 1, 2) for every p = (x1, x2) ∈ Nn1
1 × Nn2

2 . The warped product
Mn = Nn1

1 × f Nn2
2 is the product manifold Nn1

1 ×Nn2
2 equipped with the Riemannian structure 1 such that

1(X,X) = 11(γ1∗(X), γ1∗(X)) + f 2(γ1(p))12(γ2∗(X), γ2∗(X)) (1.1)
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for any tangent vector X ∈ X(TpM), p ∈M. Then we have 1 = 11 + f 212. In this case, the function f is called
a warping function on Mn. The following lemma is a direct consequence of the warped product manifolds:

Lemma 1.1. ([6]) Let Mn = Nn1
1 × f Nn2

2 be a warped product manifold. For X,Y ∈ X(TN1) and Z,W ∈ X(TN2), we
have

(i) ∇XY ∈ X(TN1),
(ii) ∇ZX = ∇XZ = (X ln f )Z,

(iii) ∇ZW = ∇
′

ZW − 1(Z,W)∇ ln f ,

where ∇ and ∇′ denote Levi-Civita connections on M and N2, respectively. Furthermore, ∇ ln f is the gradient of
ln f , which is defined as:

1(∇ ln f ,X) = X(ln f ). (1.2)

The following remarks are consequences of Lemma 1.1:

Remark 1.1. A warped product manifold Mn = Nn1
1 × f Nn2

2 is said to be trivial or simply if the warping function f
is constant function along Nn1

1 .

Remark 1.2. If Mn = Nn1
1 × f Nn2

2 is a warped product manifold, then Nn1
1 is totally geodesic on Mn and Nn2

2 is totally
umbilical on Mn.

In the last few decades, the theory of warped product submanifolds has been a magnificent field in almost
Hermitian manifolds and almost contact metric manifolds. Specifically, Chen [10] introduced the notion
of CR-warped product submanifolds in Kaehler manifolds. Many articles have been written on warped
product submanifolds in the different type of structures (see [18] and references therein). Recently, Sahin
[41] studied the warped product pointwise semi-slant submanifolds in a Kaehler manifold and obtained
the following inequality:

||h||2 ≥ 2n2

(
csc2 θ + cot2 θ

)
||∇ ln f ||2, (1.3)

whose equality holds if Nn1
T is totally geodesic and Nn1

θ is totally umbilical in a Kaehler manifold M̃2m.
According to Nash’s theorem [36], we know that in a sufficiently high co-dimension, every Riemannian
manifold is isometrically immersed in a suitable Euclidean space. In particular, every warped product
Nn1

1 × f Nn2
2 can be immersed as a Riemannian submanifold in some Euclidean space. Based on these concepts,

many geometers have obtained geometric obstructions for CR-warped product in different ambient space
forms (for instance [5, 13, 22]). Motivated by previous studies, a sharp relationship between the warping
function and the squared norm of the second fundamental form for a non-trivial warped product pointwise
semi-slant submanifold Mn = Nn1

T × f Nn2
θ isometrically immersed in a complex space form M̃2m(c) with

constant holomorphic sectional curvature c satisfies the optimal inequality [4] was established as in the
form

||h||2 ≥ 2n2

(
||∇ ln f ||2 +

n1c
4
− ∆(ln f )

)
. (1.4)

The equality holds in (1.4) if and only if Nn1
T is totally geodesic, Nn2

θ is totally umbilical and Mn is minimal
into M̂2m(c). Some applications were also derived on compact Riemannian submanifold considering the
equality case without boundaries. These types of results give a lot of influence to the analysis of physics,
in terms of the second fundamental form (see [12, 14]). Therefore, we need to find some classification
of such inequality when satisfying equality and Riemannian manifold is compact. Some classifications
of different types of inequalities which attain equalities in various ambient space forms can be found in
[2, 5, 13, 15, 17, 19, 42].

Therefore, we only consider a non-trivial warped product pointwise semi-slant submanifold of the type
Mn = Nn1

T × f Nn2
θ isometrically immersed into a complex space form because other types of warped products
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are trivial in Kaehler manifold. We also consider connected, compact Riemannian submanifolds whose
boundaries are non-empty and provided some new necessary and sufficient conditions for warped product
pointwise semi-slant submanifolds, which can be reduced to Riemannian product manifolds. Assume that
ϕ is a differential function on Mn. The gradient ∇ f of f is given as

1(∇ϕ,X) = Xϕ, and ∇ϕ =

n∑
i=1

ei(ϕ)ei, (1.5)

and the Laplacian ∆ϕ of ϕ is defined as.

∆ϕ =

n∑
i=1

{(∇ei ei)ϕ − ei(ei(ϕ))} = −
n∑

i=1

1(∇ei1radϕ, ei). (1.6)

Using the Laplacian, the Hessian Hess(ϕ) of ϕ is defined as.

∆ϕ = −Trace(Hess(ϕ)) = −

n∑
i=1

Hess(ϕ)(ei, ei), (1.7)

HessC(ϕ)(X,Y) = Hess(ϕ)(X,Y) + Hess(ϕ)(JX, JX) (1.8)

where HessC(ϕ) is the complex Hessian ofϕ. We observed that the definition triviality for a warped product
implies Mn to be a simply Riemannian product manifold. If we use the warping function ln f in (1.8), we
obtain the following theorem

Theorem 1.1. Let φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) be an isometric immersion from a warped product pointwise
semi-slant manifold Mn = Nn1

T × f Nn2
θ into a complex space form M̃2m(c). If the following is satisfies

||h||2 ≥ 2n2

(
c
4

n1 +

d1∑
i=1

HessC(ln f )(ei, ei)
)
, (1.9)

where HessC(ln f ) is the complex Hessian of the warping function ln f which satisfies Eq. (1.8), then Mn is a trivial
warped product pointwise semi-slant submanifold of a complex space form M̃2m(c).

If the basic inequality (1.4) attaining equality case, we prove the following theorem.

Theorem 1.2. Let φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) be an isometric immersion from a warped product pointwise
semi-slant Nn1

T × f Nn2
θ into a complex space form M̃2m(c) such that the following equality is satisfied for the warped

product submanifold Mn:

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 = n2

d1∑
i=1

HessC(ln f )(ei, ei) +
n1n2c

4
. (1.10)

Then, one of the following statements is satisfied for Mn:

(i) The non-trivial warped product pointwise semi-slant manifold Nn1
T × f Nn2

θ is trivial, or simply Mn is a Rieman-
nian product manifold.

(ii) The pointwise slant function is given by θ = cot−1
(√

n2

)
for the warped product pointwise semi-slant

submanifold Nn1
T × f Nn2

θ in a complex space form M̃2m(c).

In [20], Calin and Chang presented the geometric approach to Riemannian manifolds and found appli-
cations to partial differential equations which include the Lagrangian formalism on Riemannian manifolds;
the energy-momentum tensor and conservation laws; the Hamiltonian formalism; Hamilton-Jacobi theory;
harmonic functions and geodesics; and fundamental solutions for heat operators with potential. For a
compact submanifold of a Riemannian manifold with a boundary, we have the following theorem:
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Theorem 1.3. [20] Let Mn be a connected and compact Riemannian manifold and f be a positive differentiable
function defined on Mn such that ∆ϕ = 0 on M and ϕ = 0 on the boundary ∂M of M. Then ϕ vanishes identically.

We assume that Mn is a compact Riemannian manifold and f is a positive differentiable function on Mn.
Then, the kinetic energy function on Mn is defined as [20]:

E(ϕ) =
1
2

∫
M
||∇ϕ||2dV, (1.11)

where dV denotes the volume element of Mn. Due to the impact of pointwise slant function θ : Mn
−→ R in

a warped product pointwise semi-slant submanifold Mn = Nn1
T × f Nn2

θ , and taking into account of Theorem
1.3 and the kinetic energy formula (1.11), we have the following theorem:

Theorem 1.4. Assume that φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) is an isometric immersion from a connected and
compact warped product pointwise semi-slant manifold Mn = Nn1

T × f Nn2
θ into a complex space form M̃2m(c). Then

Nn1
T × f Nn2

θ is simply a Riemannian product of Nn1
T and Nn2

θ if and only if the kinetic energy of the warping function
satisfies:

E(ln f ) =
1

4n2
tan2 θ

{∫
M

(
n2n1c

4
−

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2
)
dV − 8n2

∫
M

(
csc2 θ cotθ

( dθ
dV

)
E(ln f )

)
dV

}
,

(1.12)

where 0 < E(ln f ) < ∞ and dV is the volume element of Mn.

Moreover, the Hamiltonian in a local orthonormal frame {e1, e2, · · · , en} of TpMn, p ∈M is defined by

H(d f , p) =
1
2

n∑
j=1

d f (e j)2 =
1
2

n∑
j=1

e j( f )2 =
1
2
||∇ f ||2. (1.13)

Considering the Hamiltonian of the warping function and the Theorem 1.3, we have the following theorem:

Theorem 1.5. An isometric immersion φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) of a non-trivial connected, compact
warped product pointwise semi-slant submanifold Nn1

T × f Nn2
θ into a complex space form M̃2m(c) is trivial if and only

if it satisfies, for a local orthonormal frame {e1, e2, · · · , en} of TpMn, p ∈M,

H
(
d(ln f ), p

)
=

1
4n2

tan2 θ

(
n2n1c

4
−

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2
)
. (1.14)

Now, we give a motivation for our work which is related to the classification of the Ricci curvature. Many
results on the Ricci curvature and gradient Ricci curvature have been obtained during the last decades (see
[23, 25, 32, 35, 37] for more details). Furthermore, Ricci solitons are natural extensions of Einstein manifolds
and they appear as self-similar solutions of the Ricci flow ∂1i j

∂(t) = −2Ri j. Ricci solitons are also important in
understanding singularities of the Ricci flow. Since the notion of a Ricci soliton was introduced by Hamilton
[32], the gradient expanding, steady or shrinking Ricci soliton have been studied by many geometers (see
[8, 9, 21, 26]) in different geometric aspects. A Riemannian metric 1 on a Riemannian manifold Mn is called
a Ricci soliton if a smooth vector field X exists, such that the Ricci curvature satisfies the following condition

Ric +
1
2
LX1 = λ1, (1.15)

for any constant λ, where L is the Lie derivative. A Ricci soliton is called expanding, steady and shrinking
if λ < 0, λ = 0, and λ > 0, respectively. If we choose X = ∇ϕ for a smooth function ϕ defined on Mn, then
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Mn is called a gradient Ricci soliton with respect to ϕ as a potential function. In this case, the fundamental
equation can be written as:

Ric + ∇2ϕ = λ1, (1.16)

where ∇2ϕ denotes the Hessian of ϕ.

Remark 1.3. If the potential function ϕ is a constant function in (1.16), then gradient Ricci soliton (Mn, λ,∇ϕ) is
called an Einstein manifold.

Taking into account the relation between Laplacian ∆ and gradient ∇2 such that ∆ = ∇2, (1.16) can be
modified as

Ric + Hess(ϕ) = λ1. (1.17)

It is also called the fundamental equation of Ricci tensor or gradient soliton in terms of the Hessian tensor.
For more classifications, we refer to ([8, 21, 23, 26, 28–30, 32, 33, 35, 45] and references therein). In particular,
if the vector field X is the gradient of (ln f ), i.e., X = ∇(ln f ) in (1.15), we present a very interesting result
where the gradient Ricci soliton decomposed with warped product submanifolds in complex space form
as follows:

Theorem 1.6. Let φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) be an isometric immersion from a warped product pointwise
semi-slant submanifold Nn1

T × f Nn2
θ into a complex space form M̃2m(c) admitting shrinking gradient Ricci soliton

such that the warping function being a soliton function. If we assume that θ , arc cot
√

n2, then a warped product
pointwise semi-slant submanifold Nn1

T × f Nn2
θ is an Einstein warped product pointwise semi-slant submanifold if and

only if the following equation is satisfied:

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 + 2n2RT =
(
λ +

c
4

)
n1n2, (1.18)

for a positive constant λ ∈ R and RT is scalar curvature of Nn1
T .

Another goal of our inequality (1.4) is to provide potential applications to the gradient Ricci curvature for
a compact Riemannian manifold. Taking into account the Green Theorem (see [44] for more detail), we
obtain the following theorem:

Theorem 1.7. Assume that φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) is an isometric immersion of a compact warped
product pointwise semi-slant submanifold Nn1

T × f Nn2
θ into a complex space form M̃2m(c). If the following equality is

satisfied for the warped product submanifold Mn

n1∑
i=1

n2∑
j=1

||hµ(ei, e∗j)||
2 =

n1n2c
4

+ n2

∫
M
Ric(∇ ln f , •)dV, (1.19)

then, at least one of the following statements is true for Mn:

(i) A warped product pointwise semi-slant submanifold Nn1
T × f Nn2

θ of a complex space form M̃2m(c) is a CR-warped
product submanifold.

(ii) A warped product pointwise semi-slant submanifold Nn1
T × f Nn2

θ of a complex space form M̃2m(c) is simply a
Riemannian product of Nn1

T and Nn2
θ .

Moreover, we will provide some new results related with the above theorems.
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2. Preliminaries

Let (M̃, J, 1) be a 2m-dimensional Hermitian manifold with an almost complex structure J and a Rie-
mannian metric 1, which satisfy J2 = −I and 1(JU, JV) = 1(U,V), for vector fields U,V ∈ X(TM̃), where TM̃
denotes the tangent bundle on M̃. Let ∇̃ be the covariant differential operator on M̃2m with respect to 1.
If the almost complex structure J satisfies (∇̃U J)V = 0, for any U,V ∈ X(TM̃), then an almost Hermitian
manifold (M̃, J, 1) is called a Kaehler manifold according to Yano and Kon [43].

Assume that Mn be isometrically immersed into an almost Hermitian manifold M̃2m with the induced
metric 1. If ∇ and ∇⊥ are the induced Riemannian connections on the tangent bundle TM and the normal
bundle T⊥M of Mn, respectively, then the Gauss and Weingarten formulas are given by

∇̃UV = ∇UV + h(U,V), (2.1)

∇̃UN = −ANU + ∇⊥UN, (2.2)

for each U,V ∈ X(TM) and N ∈ X(T⊥M), where h and AN are the second fundamental form and the shape
operator (corresponding to the normal vector field N), respectively. We have 1(h(U,V),N) = 1(ANU,V), for
each U,V ∈ X(TM). Now, for any U ∈ X(TM) and N ∈ X(T⊥M), we have

(i) JU = TU + FU, (ii) JN = tN + f N, (2.3)

where TU(tN) and FU( f N) are the tangential and normal components of JU(JN), respectively. If T is
identically zero, then the submanifold Mn is called a totally real submanifold. The Gauss equation for a
submanifold Mn is following as:

R̃
(
X,Y,Z,W

)
= R(X,Y,Z,W) + 1

(
h(X,Z), h(Y,W)

)
− 1

(
h(X,W), h(Y,Z)

)
, (2.4)

for any X,Y,Z,W ∈ X(TM), where R̃ and R are the curvature tensors on M̃2m and Mn, respectively. Assuming
that M̃2m(c) is a complex space form of constant holomorphic sectional curvature c. Then the curvature
tensor R̃ of M̃2m(c) can be expressed as

R̃(X,Y)Z =
c
4

(
1(X,Z)Y − 1(Y,Z)X + 1(X, JZ)JY − 1(Y, JZ)X + 21(X, JY)JZ

)
. (2.5)

The mean curvature vector H for an orthonormal frame {e1, e2, · · · en} of tangent space TM on Mn is defined
by

H =
1
n

trace(h) =
1
n

n∑
i=1

h
(
ei, ei

)
, (2.6)

where n = dimM. In addition, we set

hr
i j = 1(h(ei, e j), er) and ||h||2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)). (2.7)

If J preserves any tangent space of Mn, that is, J(TxM) ⊆ TxM, for each x ∈Mn, then Mn is called a holomorphic
submanifold. Similarly, M is called a totally real submanifold if J maps any tangent space of Mn into normal
space, that is, J(TxM) ⊆ T⊥M, for each x ∈Mn. Now, we give the following definition:

Definition 2.1. [10] A Riemannian submanifold Mn of a Kaehler manifold M̃2m is said to be a CR-submanifold if a
pair of orthogonal distributionsDT andD⊥ exists such that

(i) TM = DT
⊕D

⊥,
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(ii) the distributionDT is holomorphic, that is, J(DT) ⊆ DT, and
(iii) the distributionD⊥ is totally real, that is, JD⊥ ⊆ (T⊥M).

If d1 and d2 are the dimensions of a holomorphic distributionDT and a totally real distributionD⊥ of
a CR-submanifold of an almost Hermitian manifold M̃2m, then Mn is holomorphic if d2 = 0, and totally real
if d1 = 0. It is called a proper CR-submanifold if neither d1 = 0 nor d2 = 0. Moreover, if µ is a holomorphic
subspace under J of a normal bundle T⊥M, then, for a CR-submanifold, the normal bundle T⊥M can be
decomposed as

T⊥M = JD⊥ ⊕ µ.

A pointwise slant submanifold has been studied in almost Hermitian manifolds by Chen-Gray [16]. They
defined as follows:

Definition 2.2. [16] Assume that the set T∗M consists of all non-zero tangent vectors on a submanifold Mn of an
almost Hermitian manifold M̃2m. Then, for any non-zero vector X ∈ X(TxM), x ∈ Mn, the angle θ(X) between
JX and tangent space TxM is called the Wirtinger angle of X. The Wirtinger angle become a real-valued function
as θ : T∗M → R, called the Wirtinger function ( slant function). In this case, the submanifold Mn of almost
Hermitian manifolds M̃2m is called a pointwise slant submanifold.

Definition 2.3. A point x in a pointwise slant submanifold is called a totally real point if the pointwise slant function
θ satisfies cosθ = 0, at x. In the same way, a point x is called a complex point if the pointwise slant function satisfies
sinθ = 0 at x.

Definition 2.4. If every point on Mn of almost Hermitian manifold M̃2m is a totally real point, then the pointwise
slant submanifold Mn is called a totally real submanifold. Similarly, if every point on Mn is a complex point, then Mn

is said to be a complex submanifold.

The following characterization theorem was derived by Chen-Gray in [16]:

Theorem 2.1. Let Mn be a submanifold of an almost Hermitian manifold M̃2m. Then Mn is a pointwise slant
submanifold if and only if there exists a constant λ ∈ [0, 1] such that

T2 = −λI. (2.8)

Furthermore, θ is a real-valued function defined on the tangent bundle TM, and satisfies λ = cos2 θ.

Note that, for a pointwise slant submanifold Mn of an almost Hermitian manifold M̃2m, Theorem 2.1 gives
the follwoing relations:

1(TU,TV) = cos2 θ1(U,V), (2.9)

1(FU,FV) = sin2 θ1(U,V). (2.10)

for any U,V ∈ X(TM).

The idea of pointwise semi-slant submanifolds as a natural generalization of CR-submanifolds of an
almost Hermitian manifold in terms of a semi-slant function was defined and studied by Sahin [41] as
follows:

Definition 2.5. [41] A Riemannian submanifold Mn of a Kaehler manifold M̃2m is said to be a pointwise semi-slant
submanifold if there exist two orthogonal distributionsDT andDθ such that

(i) TM = DT
⊕D

θ,
(ii) the distributionDT is a complex (holomorphic) distribution, that is, J(DT) ⊆ DT, and



A. Ali et al. / Filomat 33:16 (2019), 5273–5290 5280

(iii) the distributionDθ is a pointwise slant distribution with a pointwise slant function θ : Mn
→ R.

For some examples of pointwise semi-slant submanifold in a Kaehler manifold and related problems,
we refer to [7, 38, 41].

Let us denote p and q as dimensions of the complex distributionDT and the pointwise slant distribution
D
θ of a pointwise semi-slant submanifold in a Kaehler manifold M̃2m, respectively. Then the following

remarks hold.

Remark 2.1. Mn is invariant if q = 0 and pointwise slant if p = 0.

Remark 2.2. If the slant function θ : Mn
→ R is globally constant on Mn and θ = π

2 , then Mn is called a
CR-submanifold.

Remark 2.3. If the slant function θ : Mn
→ (0, π2 ), then Mn is called a proper pointwise semi-slant submanifold.

Remark 2.4. If µ is an invariant subspace under J of the normal bundle T⊥M, then the normal bundle T⊥M can be
decomposed as T⊥M = FDθ

⊕ µ in the case of a pointwise semi-slant submanifold.

3. Non-trivial warped product pointwise semi-slant submanifolds Nn1

T
× f Nn2

θ
into a complex space form

It is well known that if two factors of a warped product submanifold are holomorphic and pointwise
slant submanifolds, then it is called a warped product pointwise semi-slant submanifold of almost Hermi-
tian manifolds. There are two types of warped product pointwise semi-slant submanifolds of a Kaehler
manifold:

(i) Nn2
θ × f Nn1

T , and (ii) Nn1
T × f Nn2

θ .

For the first case, we recall the following theorem:

Theorem 3.1. [41] There is a no proper warped product pointwise semi-slant submanifold Mn = Nn2
θ × f Nn1

T in a
Kaehler manifold M̃2m such that Nn2

θ is a proper pointwise slant submanifold and Nn1
T is a holomorphic submanifold

of M̃2m.

Before proceeding to the second case, we recall that the following result:

Lemma 3.1. [41] Let Mn = Nn1
T × f Nn2

θ be a warped product pointwise semi-slant submanifold of a Kaehler manifold
M̃2m, where Nn1

T and Nn2
θ are holomorphic and pointwise slant submanifolds of M̃2m, respectively. Then

1(h(X,Z),FTW) = − (JX ln f )1(Z,TW) − (X ln f ) cos2 θ1(Z,W), (3.1)
1(h(Z, JX),FW) =(X ln f )1(Z,W) − (JX ln f )1(Z,TW), (3.2)
1(h(X,Y),FZ) =0, (3.3)

for any X,Y ∈ X(TNT) and Z,W ∈ X(TNθ).

The first author in [4] proved the following theorem:

Theorem 3.2. [4] Let ϕ : Mn = Nn1
T × f Nn2

θ −→ M̃2m be isometrically immersed from a warped product pointwise
semi-slant submanifold Nn1

T × f Nn2
θ into a Kaehler manifold M̃2m. Then Nn1

T is always a minimal submanifold of M̃2m.

Theorem 3.3. [1] Letϕ be aDθ
−minimal isometric immersion of a warped product pointwise semi-slant submanifold

Nn1
T × f Nn2

θ into a Kaehler manifold M̃2m. If Nn2
θ is totally umbilical in M̃2m, then ϕ is a Nn2

θ −totally geodesic.
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Theorem 3.2 and Theorem 3.3 were extended into complex space forms, and also they briefly describe
a method to prove the triviality for both the inequality and the equality in Eq.(1.4) holds for a compact
Riemannian submanifold without the boundary.

Theorem 3.4. [4] On a compact orientated warped product pointwise semi-slant submanifold Mn = Nn1
T × f Nn2

θ in
a complex space form M̃2m(c), if the following inequality holds:

||h||2 ≥
n1n2c

2
, (3.4)

where n1 and n2 are dimensions of Nn1
T and Nn2

θ , respectively, then Mn is simply a Riemannian product manifold.

For the equality case of inequality (1.4), the following result was proven:

Theorem 3.5. [4] Let Mn = Nn1
T × f Nn2

θ be a compact orientated warped product pointwise semi-slant submanifold
in a complex space form M̃2m(c). Then Mn is simply a Riemannian product manifold if and only if

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 =
n1n2c

4
, (3.5)

where hµ is a component of h in Γ(µ).

Now, we give direct consequences of the inequality (1.4), from Theorem 3.4 and Theorem 3.5, as follows:

Remark 3.1. If we consider θ = π
2 in Theorem 3.4 and Theorem 3.5, then these theorems generalize the results for

CR-warped products into a complex space form M̃2m(c).

Corollary 3.1. Let Mn = Nn1
T × f Nn2

⊥
be a compact orientated CR-warped product submanifold into a complex space

form M̃2m(c). Then, Mn is a CR-product submanifold if and only if

||h||2 ≥
n2n1c

2
,

where n1 and n2 are dimensions of Nn1
T and Nn2

⊥
, respectively.

Corollary 3.2. Assume that Mn = Nn1
T × f Nn2

⊥
is a compact orientated CR-warped product submanifold in a complex

space form M̃2m(c) such that Nn1
T is holomorphic and Nn2

⊥
is totally real in M̃2m(c). Then, Mn is simply a Riemannian

product submanifold if and only if

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 =
n2n1c

4
.

Based on the Laplacian property of a positive differential function defined on any compact Riemannian
manifold, we obtain the following corollary by using Eqs. (1.4):

Theorem 3.6. Assume that Mn = Nn1
T × f Nn2

θ is a warped product pointwise semi-slant submanifold in a complex
space form M̃2m(c), and let Nn1

T be a compact invariant submanifold and λ be a non-zero eigenvalue of the Laplacian
on Nn1

T . Then∫
Nn1

T

||h||2dVT ≥

∫
Nn1

T

( c
2

n2n1

)
dVT + 2n2λ

∫
Nn1

T

(ln f )2dVT, (3.6)

where dVT is the volume element on NT
n1 . Moreover, the equality sign of (3.6) holds if and only if we have

(i) ∆ln f = λ ln f .
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(ii) In the warped product pointwise semi-slant submanifold, both Nn1
T and Nn2

θ are totally geodesic.

Proof. Assume that f is a non-constant function. By using the minimum principle property on the eigenvalue
λ, we have∫

Nn1
T

||∇ ln f ||2dVT ≥ λ

∫
Nn1

T

(ln f )2dVT, (3.7)

with the equality holding if and only if one has ∆ln f = λ ln f . From (A) and (3.7), we get the required result
(3.6), and the proof completes.

Corollary 3.3. Let ln f be a harmonic function on Nn1
T . Then, any warped product pointwise semi-slant submanifold

Nn1
T × f Nn2

θ into a complex space form M̃2m(c) with c ≤ 0 does not exist.

Proof. Let Nn1
T × f Nn2

θ be a warped product pointwise semi-slant submanifold in a complex space form
M̃2m(c) such that ln f is a harmonic function on Nn1

T . Then, from the inequality (A), one obtains c > 0 and
this completes the proof of the corollary.

.

Corollary 3.4. A warped product pointwise semi-slant submanifold Nn1
T × f Nn2

θ into a complex space form M̃(c) with
c ≤ 0 such that ln f be a positive eigenfunction of the Laplacian on Nn1

T corresponding to an eigenvalue λ ≥ 0 does
not exist.

4. Necessary and sufficient conditions for a warped product pointwise semi-slant submanifold of a
complex space form to be a Riemannian product manifold

The following study is devoted to proving that a warped product pointwise semi-slant submanifold
isometrically immersed into a complex space form is a trivial warped product submanifold by using
inequality (1.4). As immediate consequences, we obtained complete classifications of warped product
submanifolds in terms of various mathematical tools.

4.1. Consequences to the Hessian of warping functions
In this section, we find some fundamental applications in terms of the Hessian of a positive differen-

tiable function. In this direction, we derive some necessary and sufficient conditions under which a warped
product pointwise semi-slant submanifold isometrically immersed submanifold into a complex space form
becomes a Riemannian product manifold.

Proof of Theorem 1.1.
From (1.6), one obtains

∆(ln f ) = −

n∑
i=1

1
(
∇ei1rad ln f , ei

)
= −

2d1∑
i=1

1
(
∇ei1rad ln f , ei

)
+

2d2∑
j=1

1
(
∇e j1rad ln f , e j

)
.

Then, one obtains

∆(ln f ) = −

d1∑
i=1

1
(
∇ei1rad ln f , ei

)
−

d1∑
i=1

1
(
∇Jei1rad ln f , Jei

)
−

d2∑
j=1

1
(
∇e j1rad ln f , e j

)
− sec2 θ

d2∑
i=1

1
(
∇Te j1rad ln f ,Te j

)
.
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Taking into account that ∇ is a Levi-Civita connection on Mn and (1.7), we derive

∆(ln f ) = −

d1∑
i=1

(
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

)
−

d2∑
j=1

(
e j1

(
1rad ln f , e j

)
− 1

(
∇e j e j, 1rad ln f

))
.

− sec2 θ
d2∑
j=1

(
Te j1

(
1rad ln f ,Te j

)
− 1

(
∇Te j Te j, 1rad ln f

))
.

From the property of the gradient function (1.5), we get

∆(ln f ) = −

d1∑
i=1

(
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

)
−

d2∑
j=1

(
e j(e j ln f ) − (∇e j e j ln f )

)

− sec2 θ
d2∑
j=1

(
Te j(Te j ln f ) − (∇Te j Te j ln f )

)
.

= −

d1∑
i=1

(
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

)
−

d2∑
j=1

(
e j

(1(1rad f , e j)
f

)
−

1
f
1(∇e j e j, 1rad f )

)

− sec2 θ
d2∑
j=1

(
Te j

(1(1rad f ,Te j)
f

)
−

1
f
1(∇Te j Te j, 1rad f )

)
.

From the hypothesis of a warped product pointwise semi-slant submanifold, Nn1
T is totally geodesic in Mn.

It implies that 1rad f ∈ X(TNT), and from Lemma 1.1(ii), we obtain

∆(ln f ) = −

d1∑
i=1

(
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

)
−

d2∑
j=1

(
1(e j, e j)||∇ ln f ||2 + sec2 θ1(Te j,Te j)||∇ ln f ||2

)
.

Finally, from (2.9), we get:

∆(ln f ) = −

d1∑
i=1

(
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

)
− n2||∇ ln f ||2. (4.1)

Thus from (1.4), (4.1) and (1.8), it follows that

||h||2 ≥ 2n2

(
c
4

n1 + (n2 + 1)||∇ ln f ||2 +

d1∑
i=1

HessC(ln f )(ei, ei)
)
. (4.2)

If the inequality (1.9) holds, then (4.2) implies that ||∇ ln f ||2 ≤ 0, which is impossible. Therefore, we can
conclude that 1rad ln f = 0, and so f is a constant function on Mn. Hence, Mn becomes a trivial warped
product pointwise semi-slant submanifold.

Proof of Theorem 1.2.
Assume that the equality holds in the inequality (1.4). Then, we have

n1n2c
2
− 2n2∆(ln f ) + 2n2||∇ ln f ||2 = ||h||2.

By the definition of the componentsD andDθ, the above equation can be expressed as:

n1n2c
2
− 2n2∆(ln f ) + 2n2||∇ ln f ||2 =||h(D,D)||2 + ||h(Dθ,Dθ)||2 + 2||h(D,Dθ)||2. (4.3)
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Assume that M = Nn1
T × f Nn2

θ be an n = n1 + n2 dimensional warped product pointwise semi-slant sub-
manifold of 2m-dimensional Kaehler manifold M̃ with dim(Nn1

T ) = n1 = 2d1 and dim(Nn2
θ ) = n2 = 2d2, where

Nn2
θ and Nn1

T are integral manifolds of Dθ and D, respectively. Thus, we consider the {e1, e2, · · · ed1 , ed1+1 =
Je1, · · · e2d1 = Jed1 } and {e2d1+1 = e∗1, · · · e2d1+d2 = e∗d2

, e2d1+d2+1 = e∗d2+1 = secθTe∗1, · · · en1+n2 = e∗n2
= secθTe∗d2

} to be
orthonormal frames of TNT and TNθ, respectively. Thus the orthonormal frames of the normal subbundles
FDθ and µ are {en+1 = ē1 = cscθFe∗1, · · · en+d2 = ēd2 = cscθFe∗1, en+d2+1 = ēd2+1 = cscθ secθFTe∗1, · · · , en+2d2 =
ē2d2 = cscθ secθFTe∗d2

} and {en+2d2+1, · · · e2m}, respectively. According to the above orthonormal frames and
using (2.7), Eq. (4.3) takes the new form

n1n2c
2
− 2n2∆(ln f ) + 2n2||∇ ln f ||2 =

2m∑
r=1

2d1∑
i, j=1

1
(
h(ei, e j), er

)2
+

2m∑
r=1

2d2∑
i, j=1

1
(
h(e∗i , e

∗

j), er

)2

+ 2
2m∑
r=1

2d1∑
i=1

2d2∑
j=1

1
(
h(ei, e∗j), er

)2
. (4.4)

On the other hand, the equality of inequality (1.4), implies that Mn is a minimal submanifold of M̃2m(c).
Theorem 3.2 and Theorem 3.3 imply h(ei, e j) = h(e∗t , e

∗
s) = 0, for 1 ≤ i, j ≤ 2d1, 1 ≤ t, s ≤ 2d2. Applying these

facts in Eq. (4.4), we get

n1n2c
2

+ 2n2||∇ ln f ||2 =2
2d2∑
r=1

2d1∑
i=1

2d2∑
j=1

1
(
h(ei, e∗j), ēr

)2
+ 2

2m∑
r=n+2d2+1

2d1∑
i=1

2d2∑
j=1

1
(
h(ei, e∗j), er

)2
+ 2n2∆(ln f ). (4.5)

Using Lemma 3.1 (for example see [41]) in the first term of the right hand side of the Eq. (4.5), we derive

n1n2c
4

+ n2||∇ ln f ||2 = n2

(
1 + 2 cot2 θ

)
||∇ ln f ||2 +

2d1∑
i=1

2d2∑
j=1

||hµ(ei, e∗j)||
2 + n2∆(ln f ),

which implies that

n1n2c
4

= 2n2 cot2 θ||∇ ln f ||2 + n2∆(ln f ) +

2d1∑
i=1

2d2∑
j=1

||hµ(ei, e∗j)||
2. (4.6)

From (4.6) and (4.1), we derive

1
n2

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 =

d1∑
i=1

{
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

}
+ 2

(
n2 − cot2 θ

)
||∇ ln f ||2 +

n1c
4
. (4.7)

By the hypothesis, if (1.10) holds, then (4.7) indicate that
(
n2 − 2 cot2 θ

)
||∇ ln f ||2 = 0, which implies that

either ||∇ ln f ||2 = 0 or
(
n2 − 2 cot2 θ

)
= 0. For the first case if ||∇ ln f ||2 = 0, then f is a constant function

on Mn (that is, Mn is simply a Riemannian product of Nn1
T ), and hence Nn2

θ (Mn is trivial) proves the first
statement (i). Similarly, the condition

(
n2 − 2 cot2 θ

)
= 0, proves the second statement (ii) of the Theorem.

This completes the proof of the theorem.

Theorem 4.1. There is no a warped product pointwise semi-slant submanifold Nn1
T × f Nn2

θ into a complex space form
M̃2m(c) with c ≤ 0 such that Nn1

T is a compact holomorphic submanifold and Nn2
θ is a pointwise slant submanifold of

M̃2m(c).
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Proof. Assume that a warped product pointwise semi-slant submanifold Nn1
T × f Nn2

θ in a complex space
form M̃2m(c) with c ≤ 0 exists such that Nn1

T is compact. Then, the function ln f has an absolute maximum at
some point p ∈ Nn1

T . At this critical point, the Hessian Hess(ln f ) is non-positive definite. Thus, (1.9) leads
to a contradiction. This completes the proof of the theorem.

Theorem 4.2. Assume that Mn = Nn1
T × f Nn2

θ is a warped product pointwise semi-slant submanifold in a complex
space form M̃2m(c). If Nn1

T is a compact invariant submanifold and λ is a non-zero eigenvalue of the Laplacian on Nn1
T ,

then ∫
NT

( n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2
)
dVT ≥

∫
NT

(n1n2c
4

)
dVT − 2n2λ

∫
NT

(
cot2 θ(ln f )2

)
dVT,

where dVT is the volume element on NT
n1 . Moreover, the equality sign holds if and only if we have

(i) ∆ln f = λ ln f .
(ii) In the warped product pointwise semi-slant submanifold, both Nn1

T and Nn2
θ are totally geodesic.

Proof. Integrating Eq.(4.6) and using Green lemma∫
NT

n1n2c
4

dVT = 2n2

∫
NT

cot2 θ||∇ ln f ||2dVT +

∫
NT

2d1∑
i=1

2d2∑
j=1

||hµ(ei, e∗j)||
2dVT. (4.8)

The minimum principle properties for the first eigenvalue λ and the warping function, we have

λ

∫
NT

(ln f )2dV ≤
∫

NT

‖∇ ln f ‖2dV. (4.9)

Combining above two equations, we get required proof.

5. Classifications of the gradient Ricci solitons

Proof of Theorem 1.6.

Assume that Mn is a warped product pointwise semi-slant submanifold of a complex space form
M̃2m(c). Suppose that a vector field X is equal to the gradient of a warping function ln f , that is, X = ∇(ln f ).
Then, the fundamental Eq. (1.17) of the gradient Ricci soliton takes a new form such as

Ricln f + Hess(ln f ) = λ1, (5.1)

for a positive constant λ ∈ R and Hessian tensor Hess(ln f ) for the warping function ln f . As we know,
the Ricci tensor and Hessian tensor are symmetric (0, 2) tensor fields. Thus, for any vector fields X and Y
tangent to Nn1

T , (5.1) implies that

Ricln f (X,Y) + Hess(ln f )(X,Y) = λ1(X,Y). (5.2)

Assume that {e1, · · · en1 } is an orthonormal frame for Nn1
T such that {e1, e2, · · · , ed1 , ed1+1 = Je1, · · · e2d1 = Jed1 }.

Taking X = Y = ei, for 1 ≤ i ≤ d1 in (5.2) with the summation over the vector fields on Nn1
T , we get

d1∑
i=1

Ricln f (ei, ei) +

d1∑
i=1

Hess(ln f )
(
ei, ei

)
= λd1. (5.3)
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Replacing ei by Jei in the above equation, we get

d1∑
i=1

Ricln f (Jei, Jei) +

d1∑
i=1

Hess(ln f )(Jei, Jei) = λd1. (5.4)

Thus, from (5.3) and (5.4), it is easy to obtain

d1∑
i=1

(
Ricln f (ei, ei)+Ricln f (Jei, Jei)

)
+

d1∑
i=1

Hess(ln f )(ei, ei) +

d1∑
i=1

Hess(ln f )(Jei, Jei) = 2d1λ. (5.5)

Again for the equality case of the inequality (1.4), we have the following equation from (4.7)

1
n2

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 =

d1∑
i=1

{
Hess(ln f )(ei, ei) + Hess(ln f )(Jei, Jei)

}
+ 2

(
n2 − cot2 θ

)
||∇ ln f ||2 +

n1c
4
. (5.6)

Using (5.5) and (5.6), and the fact that for Kaehler manifold, Ric(X,X) = Ric(JX, JX), we have

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 + 2n2RT =n1n2λ +
n1n2c

4
+ n2

(
n2 − cot2 θ

)
||∇ ln f ||2. (5.7)

As if Mn is a warped product submanifold and satisfies Eq. (1.18), then, we find the following from (5.7)

n2

(
n2 − cot2 θ

)
||∇ ln f ||2 = 0

From the hypothesis, θ , cot−1 √n2. Therefore, ∇(ln f ) = 0, which implies that f is a constant function of
Mn. Hence, Mn is an Einstein warped product pointwise semi-slant submanifold of Nn1

T and Nn2
θ by Remark

1.3.
Conversely, assume that Mn is a Einstein warped product pointwise semi-slant submanifold. Then a

warping function or a potential function ln f must be constant. This implies that ||∇(ln f )||2 = 0. Thus, we
get the required result (1.18) from Eq. (5.7). This completes the proof of the theorem.

Similarly, for steady gradient Ricci soliton, that is, λ = 0, we immediately obtain the following theorem

Theorem 5.1. Assume that ϕ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) is an isometric immersion of a warped product
pointwise semi-slant submanifold Nn1

T × f Nn2
θ admitting steady gradient Ricci soliton into a complex space form

M̃2m(c) with such that θ , arc cot
√

n2. Then the non-trivial warped product pointwise semi-slant submanifold
Nn1

T × f Nn2
θ is an Einstein warped product submanifold if and only if

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 + n2RT =
n1n2c

4
. (5.8)

where RT is scalar curvature of Nn1
T .

Proof. The proof follows from Theorem 1.6 with λ = 0 in (5.1).

6. Classifications of the Ricci curvature and divergence of the Hessian tensor

In this section, we studied some applications of the derived inequality with equality cases. Let identify
any (0, 2)-tensor T on M with a (1, 1)-tensor by equation

1(T(Z),Y) = T(Z,Y).
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for all Y,Z ∈ Γ(TM). Thus , we get

div(φT) = φdivT + T(∇φ, •) and ∇(φT) = φ∇T + dφ ⊗ T,

for all φ ∈ C∞(M). In particular, we have div(φ1) = dφ. Moreover, the following general facts are well
known in the literature

(1) div∇2φ = Ric(∇φ, •) + d∆φ and (ii)
1
2

d‖∇‖2 = ∇2φ(∇, •). (6.1)

We consider Mn to be a compact Riemannian manifold with boundary and obtain following classification
resultsWe considered Mn to be a compact Riemannian manifold with a compact boundary, and obtain some
classifications.

6.1. Proof of Theorem 1.7
We use the Ricci identity (6.1). Applying these Ricci identity on a warping function φ = ln f , which

implies that

div(Hess(ln f )) = d
(
∆(ln f )

)
+ Ric(∇ ln f , •). (6.2)

From the hypothesis, Mn is a compact warped product submanifold with a boundary, and then taking
integration along the volume element dV, we get

∆(ln f ) =

∫
M

(
div(Hess(ln f ))

)
dV −

∫
M
Ric(∇ ln f , •)dV. (6.3)

Using the Green theorem on a compact manifold Mn, one gets
∫

M ∆ f dV = 0. Using the results of Yano and
Kon from (see [43]), it follows ∆ f = −div(∇ f ) and from the Green lemma

∫
M div(X)dV = 0 for an arbitrary

vector field X on Mn. Thus, we get
∫

M div(Hess(ln f ))dV = 0. Therefore, (6.3) implies that

∆(ln f ) = −

∫
M
Ric(∇ ln f , •)dV. (6.4)

On the other hand, assuming that the equality holds in the inequality (1.4), and from (4.6) we have

n2∆(ln f ) + 2n2 cot2 θ||∇ ln f ||2 =
n1n2c

4
−

2d1∑
i=1

2d2∑
j=1

||hµ(ei, e∗j)||
2. (6.5)

From (6.4) and (6.5), we obtain

2 cot2 θ||∇ ln f ||2 −
∫

M
Ric(∇ ln f , •)dV =

n1c
4
−

1
n2

2d1∑
i=1

2d2∑
j=1

||hµ(ei, e∗j)||
2.

Further simplifications give

n1c
4

= −

∫
M
Ric(∇ ln f , •)dV +

1
n2

2d1∑
i=1

2d2∑
j=1

||hµ(ei, e∗j)||
2 + 2 cot2 θ||∇ ln f ||2. (6.6)

If the equality (1.19) is satisfied, then from (6.6) we get the following condition

2 cot2 θ||∇ ln f ||2 = 0,

which implies
cot2 θ = 0, or ||∇ ln f ||2 = 0.
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Case 6.1. If we choose cot2 θ = 0, cos2 θ
sin2 θ

= 0, which implies that cosθ = 0. From the Definitions 2.3 and 2.4, we
conclude that a pointwise slant submanifold Nn2

θ becomes a totally real submanifold; hence, Mn becomes a CR-warped
product submanifold of a complex space form M̃2m(c). This completes the proof of (i) from Theorem 1.7.

Case 6.2. When ||∇ ln f ||2 = 0, ∇ ln f = 0, which implies that 1rad ln f = 0. it shows that f is a constant function
on Mn. Hence, from Remark 1.1, we conclude that Mn is a trivial warped product pointwise semi-slant submanifold
of a complex space form M̃2m(c). This is the second part (ii) of Theorem 1.7.

7. Applications in Physical sciences

In this section, we considered a warped product pointwise semi-slant submanifold as a connected,
compact warped product pointwise semi-slant submanifold with a nonempty boundary ∂M , ∅. Thus,
we construct some necessary and sufficient conditions in terms of kinetic energy and Hamiltonian, whose
positive differentiable function is a warping function, and classify non-trivial warped product submanifolds
turning into trivial warped product submanifolds of a complex space form.

7.1. Proof of Theorem 1.4.
From Eq. (4.6) for the equality case of inequality (1.4), we have

n1n2c
4

+ n2∆(ln f ) +

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 + 2n2 cot2 θ||∇ ln f ||2. (7.1)

Taking integration on Mn over the volume element dV with nonempty boundary, we get∫
M

(n1n2c
4

)
dV =

∫
M

( n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2
)
dV + n2

∫
M

(
∆(ln f )

)
dV + 2n2

∫
M

(
cot2 θ

(
||∇ ln f ||2

))
dV. (7.2)

In the last term of the above equation, using the property of partial integration because θ is a slant function,
we get∫

M

(n1n2c
4

)
dV =

∫
M

( n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2
)
dV + n2

∫
M

(
∆(ln f )

)
dV + 2n2 cot2 θ

∫
M

(
||∇ ln f ||2

)
dV

+ 4n2

∫
M

(
csc3 θ cosθ

( dθ
dV

)( ∫
M
||∇ ln f ||2

)
dV

)
dV.

From (1.11) and (7.2), it follows that∫
M

(n1c
4

)
dV =

1
n2

∫
M

( n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2
)
dV +

∫
M

∆(ln f )dV + 4 cot2 θE(ln f )

+ 8
∫

M

(
csc3 θ cosθ

( dθ
dV

)
E(ln f )

)
dV. (7.3)

If the equality condition is satisfied in Eq. (1.12), then we get the following condition from (7.3)∫
M

∆(ln f )dV = 0 on M,

which implies that

∆(ln f ) = 0. (7.4)

As we assumed that Mn is a connected and compact warped product pointwise semi-slant submanifold,
from (7.4) and Theorem 7.1 it implies that ln f = 0 =⇒ f = 1, that is, f is constant on Mn. Hence, following
Remark 1.1, the warped product submanifold Mn is simply a Riemannian product manifold. This completes
the proof of the theorem.
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7.2. Proof of Theorem 1.5.
Using Eq. (1.13) in Eq.(4.6), the equality of inequality (1.4) gives

n2n1c
4

= 4n2 cot2 θH
(
d(ln f ), p

)
+ n2∆(ln f ) +

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2. (7.5)

From Eq. (1.14) holds if and only if the Eq. (7.5) gives ∆(ln f ) = 0 on Mn. Therefore, from Theorem 7.1, f is
a constant function; hence, we conclude that Mn is a trivial warped product submanifold. This completes
the proof of the theorem.

Furthermore, the Lagrangian for the positive differentiable function f of a compact Riemannian
manifold is defined as

L =
1
2
||∇ f ||2. (7.6)

Theorem 7.1. [20] The Euler-Lagrange equation for the Lagrangian (7.6) is

∆ f = 0. (7.7)

Theorem 7.2. Assume that φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) is an isometric immersion of a compact warped
product pointwise semi-slant submanifold Nn1

T × f Nn2
θ into complex space form M̃2m(c). If the warping function

satisfies the Euler-Lagrange equation, then the necessary condition for Mn to be a trivial warped product is

||h||2 ≥
n2n1c

2
. (7.8)

Proof. If the warping function satisfies the Euler-Lagrange equation (7.7) for the Lagrangian (7.6), then from
Theorem 7.1, we obtain

∆(ln f ) = 0, (7.9)

Thus from inequality (1.4) and (7.9), we derive

||h||2 ≥
c
2

n2n1 + n2||∇ ln f ||2. (7.10)

If the inequality (7.8) holds, then from Eq. (7.10) we get a constant warping function ln f on Mn.

Theorem 7.3. Assume that φ : Mn = Nn1
T × f Nn2

θ −→ M̃2m(c) is an isometric immersion of a compact warped
product pointwise semi-slant submanifold Nn1

T × f Nn2
θ into a complex space form M̃2m(c). If the warping function

satisfies the Euler-Lagrange equation, then the necessary and sufficient condition for the warped product Nn1
T × f Nn2

θ
to be a trivial warped product submanifold is

n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 =
n2n1c

4
. (7.11)

Proof. The proof can be done in a similar way as the proof of Theorem 7.2 by using (7.11), (4.6) and Theorem
7.1.
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