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Abstract. In this article, we generalize and investigate existence of solution for infinite systems of nonlinear
integral equations with two variables in a given Banach sequence space BC(R+ ×R+, c) using Meir-Keeler
condensing and noncompactness. Validity of results are shown with the help of an illustrative example.
We also introduce a coupled semi-analytic method in the case of two variables in order to construct an
iteration algorithm to find a numerical solution for above-mentioned problem. The numerical results show
that the produced sequence for approximating the solution in the examples is in the Banach sequence space
BC(R+ ×R+, c) itself.

1. Introduction, Definitions and Preliminaries

The measure of noncompactness was introduced by Kuratowski [17] in the year 1930. Subsequently, it
was used by Darbo [9] to generalize Schauder’s fixed point theorem as well as Banach’s contraction princi-
ple for condensing operators. The Hausdorff measure χ of noncompactness was introduced by Goldenstein
et al. [14] in 1957. It was further studied by Goldenstein and Markus [15] (see [8] for different types of
measure of noncompactness).

By applying measures of noncompactness, many authors studied fixed point theory, differential equa-
tions, functional equations, integral and integro-differential equations, optimization problems, and so on
(see [8]). For example, Mursaleen and Mohiuddine [21] proved existence theorems for infinite systems of
differential equations in the space `p.On the other hand, existence theorems for the infinite systems of linear
equations in the spaces `1 and `p were given by Alotaibi et al. [5]. Arab et al. [6] proved the existence of
solutions of systems of integral equations in two variables. Das et al. [10] proved the existence of solution
for infinite systems of integral equations in two variables in the spaces c0 and `1. In a sequel, Das et al. [11]
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∗Corresponding Author: Mohsen Rabbani
Email addresses: anupam.das@rgu.ac.in (Anupam Das), bh_rgu@yahoo.co.in (Bipan Hazarika), harimsri@math.uvic.ca (H. M.

Srivastava), mrabbani@iausari.ac.ir (Mohsen Rabbani), mathreza.arab@gmail.com (R. Arab)



A. Das et al. / Filomat 33:16 (2019), 5375–5386 5376

studied the existence of solution of infinite systems of integral equations in two variables in the space `p
(see also the recent works [26]).

Consider a real Banach space E with the norm ‖ . ‖ . Let B(a0, d) be a closed ball in E centered at a0 and
with radius d. If X is a nonempty subset of E, then by X̄ and ConvX we denote the closure and convex
closure of X. Moreover, we letME denote the family of all nonempty and bounded subsets of E and byNE
we denote its subfamily consisting of all relatively compact sets. The following definition of a measure of
noncompactness found in [8].

Definition 1.1. A function µ :ME → R+(= [0,∞)) is called a measure of noncompactness if it satisfies the
following conditions:

(i) the family kerµ =
{
X ∈ ME : µ (X) = 0

}
is nonempty and kerµ ⊂ NE.

(ii) X ⊂ Y =⇒ µ (X) 5 µ (Y) .
(iii) µ

(
X̄
)

= µ (X) .
(iv) µ (ConvX) = µ (X) .
(v) µ (λX + (1 − λ) Y) 5 λµ (X) + (1 − λ)µ (Y) for λ ∈ [0, 1] .

(vi) if Xn ∈ ME, Xn = X̄n, Xn+1 ⊂ Xn for n = 1, 2, 3, · · · and lim
n→∞

µ (Xn) = 0, then
∞⋂

n=1
Xn , φ.

The family kerµ is said to be the kernel of measure µ. A measure µ is said to be the sublinear if it satisfies the
following conditions:

(1) µ (λX) = |λ|µ (X) for λ ∈ R.
(2) µ (X + Y) 5 µ (Y) + µ (Y) .

A sublinear measure of noncompactness µ satisfies the following condition:

µ (X ∪ Y) = max
{
µ (λX) , µ (λY)

}
and such that kerµ = NE is said to be regular.

For a bounded subset S̄ of a metric space X, the Kuratowski measure of noncompactness is defined as
follows:

α
(
S̄
)

= inf

δ > 0 : S̄ =

n⋃
i=1

S̄i and diam
(
S̄i
)
5 δ

(
1 5 i 5 n (n ∈N)

) ,
where diam

(
S̄i
)

denotes the diameter of the set S̄i, that is,

diam
(
S̄i
)

= sup
{
d(x, y) : x, y ∈ S̄i

}
andN denotes the set of positive integers.

Definition 1.2. (see [4]) Let E1 and E2 be two Banach spaces and let µ1 and µ2 be two arbitrary measures
of noncompactness on E1 and E2, respectively. An operator f from E1 to E2 is called a

(
µ1, µ2

)
-condensing

operator if it is continuous and µ2
(

f (D)
)
< µ1(D) for every set D ⊂ E1 with compact closure.

Remark 1.3. If E1 = E2 and µ1 = µ2 = µ, then f is called a µ-condensing operator.

Theorem 1.4. (see [9]) Let Ω be a nonempty, closed, bounded and convex subset of a Banach space E and let
f : Ω→ Ω be a continuous mapping such that there exists a constant k ∈ [0, 1) with the property given by

µ2
(

f (Ω)
)
< kµ1(Ω).

Then f has a fixed point in Ω.
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The contractive maps and the compact maps are condensing if we take as measures of noncompactness
the diameter of a set and the indicator function of a family of non-relatively compact sets, respectively
(see [4]). In the year 1955, Darbo [9] proved a fixed point theorem by using the concept of measures of
noncompactness, which guarantees the existence of a fixed point for condensing operators. Subsequently, in
the year 1969, Meir and Keeler [18] proved an interesting fixed point theorem (see Theorem 1.6 below), which
is a generalization of the Banach contraction principle [7]. Darbo’s theorem has provided an abundance
of applications in the existence of solutions for differential and integral equations (see, for details [2] and
[19]). It extends both the classical Schauder’s fixed point theorem and the celebrated Banach’s contraction
principle.

Definition 1.5. (see [18]) Let (X, d) be a metric space. Then a mapping T on X is said to be a Meir-Keeler
contraction if, for any ε > 0, there exists δ > 0 such that

ε 5 d(x, y) < ε + δ =⇒ d
(
Tx,Ty

)
< ε (∀ x, y ∈ X).

Theorem 1.6. (see [18]) Let (X, d) be a complete metric space. If T : X → X is a Meir-Keeler contraction, then T
has a unique fixed point.

In [3], the following definitions and associated results are given, which will be needed in our study here.

Definition 1.7. (see [3]) Let C be a nonempty subset of a Banach space E and let µ be an arbitrary measure
of noncompactness on E. We say that an operator T : C → C is a Meir-Keeler condensing operator if, for
any ε > 0, there exists δ > 0 such that

ε 5 µ (X) < ε + δ =⇒ µ (T (X)) < ε (1)

for any bounded subset X of C.

Theorem 1.8. (see [3]) Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let
µ be an arbitrary measure of noncompactness on E. If T : C→ C is a continuous and Meir-Keeler condensing
operator, then T has at least one fixed point and the set of all fixed points of T in C is compact.

The main object of this article is to establish the existence of solution of some infinite systems of integral
equations in two variables in the sequence space BC(R+ × R+, c) by using the Meir-Keeler condensing
operators.

2. Measure of Noncompactness

In the Banach space (c, ‖ . ‖c), the measure of noncompactness cannot be expressed as a simple rule.
Nevertheless, we have an equivalent measure of noncompactness in c, which can be formulated as follows
(see [8]):

µc
(
Q̄
)

= lim
n→∞

sup
x∈Q̄

sup
k=n
| xk − lim

m→∞
xm |


 , (2)

where x = (xi)
∞

i=1 ∈ c and Q̄ ∈ Mc.

Let us denote by BC(R+ ×R+, c) the space of all bounded continuous functions on R+ ×R+ with values
in c. Then BC(R+ × R+, c) is also a Banach space with norm ‖ x(t, s) ‖BC(R+×R+,c)= sup {‖ x(t, s) ‖c: t, s ∈ R+}

where x(t, s) ∈ BC(R+ ×R+, c).
For any non-empty bounded subset Ê of BC(R+ ×R+, c) and t, s ∈ R+, let Ê(t, s) =

{
x(t, s) : x ∈ Ê

}
. Now,

using (2), we conclude that the measure of noncompactness for Ê ⊂ BC(R+ ×R+, c) can be defined by

µBC(R+×R+,c)(Ê) = sup
{
µc(Ê(t, s)) : t, s ∈ R+

}
.
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Let (E, ‖ . ‖) be some Banach sequence space.
Consider the following system:

xn(t, s) = Fn

(
t, s,

∫ α(s)

0

∫ β(t)

0
Gn (t, s, v,w, x(v,w)) dv dw, x(t, s)

)
, (3)

where
x(t, s) =

(
xi(t, s)

)∞
i=1
∈ E, (t, s) ∈ R+ ×R+, n ∈N and xi(t, s) ∈ BC(R+ ×R+,R)

for all i ∈N.

3. Existence of Solution for an Infinite Systems of Nonlinear Integral Equations in Two Variables in the
Space BC(R+ × R+, c)

Assume that

(i) α, β : R+ → R+ are continuous.
(ii) Fn : R+ ×R+ ×R × BC(R+ ×R+, c)→ R (n ∈N) are continuous and there exists continuous functions

ân : R+ ×R+ → R, bn : R+ ×R+ → R+ (n ∈N) such that

Fn

(
t, s, φ(t, s), x(t, s)

)
= ân(t, s)xn(t, s) + bn(t, s)φ(t, s),

where x(t, s) = (xi(t, s))∞i=1 ∈ BC(R+ × R+, c) and φ : R+ × R+ → R. Also, there exists a non-negative
sequence (an)∞i=1 such that |ân(t, s)| ≤ an for all n ∈N, t, s ∈ R+ with lim

n→∞
an = 0.

(iii) Gn : R+ ×R+ ×R+ ×R+ × BC(R+ ×R+, c)→ R (n ∈N) are continuous and there exists a constant

Hn = sup

bn(t, s)

∣∣∣∣∣∣∣∣∣
α(s)∫
0

β(t)∫
0

Gn (t, s, v,w, x(v,w)) dvdw

∣∣∣∣∣∣∣∣∣ : t, s, v,w ∈ R+, x(v,w) ∈ BC(R+ ×R+, c)

 .
Also

lim
t,s→∞

∣∣∣∣∣∣∣∣∣bn(t, s)

α(s)∫
0

β(t)∫
0

[
Gn (t, s, v,w, x(v,w)) − Gn

(
t, s, v,w, y(v,w)

)]
dvdw

∣∣∣∣∣∣∣∣∣ = 0.

(iv) Define an operator F on R+ ×R+ × BC(R+ ×R+, c) to BC(R+ ×R+, c) as follows

(t, s, x(t, s))→ (F x) (t, s), where

(F x) (t, s) =
(
Fn(t, s, γn(x(t, s)), x(t, s))

)∞
n=1 ,

and γn(x(t, s)) =
α(s)∫
0

β(t)∫
0

Gn (t, s, v,w, x(v,w)) dvdw.

(v) As n→∞, Hn → 0. Also we assume

sup
n

Hn = H and

sup {an : n ∈N} = A < ∞ such that 0 < A < 1.

Theorem 3.1. Under the hypothesis (i)− (v), infinite system (3) has at least one solution x(t, s) = (xi(t, s))∞i=1 ∈

BC(R+ ×R+, c) for all t, s ∈ R+. Also, xi(t, s) ∈ BC(R+ ×R+,R) for all i ∈N.
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Proof. By using (3) and (i)-(v), we have for arbitrarily fixed t, s ∈ R+,

‖ x(t, s) ‖c

= sup
n≥1

∣∣∣∣∣∣∣∣∣Fn

t, s,

α(s)∫
0

β(t)∫
0

Gn (t, s, v,w, x(v,w)) dvdw, x(t, s)


∣∣∣∣∣∣∣∣∣

= sup
n≥1

∣∣∣∣∣∣∣∣∣ân(t, s)xn(t, s) + bn(t, s)

α(s)∫
0

β(t)∫
0

Gn (t, s, v,w, x(v,w)) dvdw

∣∣∣∣∣∣∣∣∣
≤ sup

n≥1

|ân(t, s)| |xn(t, s)| + bn(t, s)

∣∣∣∣∣∣∣∣∣
α(s)∫
0

β(t)∫
0

Gn (t, s, v,w, x(v,w)) dvdw

∣∣∣∣∣∣∣∣∣


≤ A ‖ x(t, s) ‖c +H.

i.e. (1 − A) ‖ x(t, s) ‖c≤ H implies ‖ x(t, s) ‖c≤ H
1−A = r(say).

Therefore ‖ x(t, s) ‖BC(R+×R+,c)≤ r which gives x(t, s) ∈ BC(R+ ×R+, c).
Let Ē = Ē

(
x0(t, s), r

)
be the closed ball with center at x0(t, s) = (x0

i (t, s))∞i=0 where x0
i (t, s) = 0 for all

i ∈N, t, s ∈ R+ and radius r, thus Ē is an non-empty, bounded, closed and convex subset of BC(R+ ×R+, c).
Assume F = (Fn) be an operator defined as follows for all t, s ∈ R+,

(F x) (t, s) = {(Fnx) (t, s)}∞n=1 =
{
Fn

(
t, s, γn(x(t, s)), x(t, s)

)}∞
n=1 ,

where x(t, s) = (xi(t, s))∞i=1 ∈ Ē and xi(t, s) ∈ BC(R+ ×R+,R), ∀i ∈N.
Now, we have to show that for arbitrary fixed t, s ∈ R+, (F x) (t, s) ∈ BC(R+ ×R+, c).
Let us consider fixed x(t, s) ∈ Ē and t, s ∈ R+. For arbitrary m,n ∈Nwe have∣∣∣Fn

(
t, s, γn(x(t, s)), x(t, s)

)
− Fm

(
t, s, γm(x(t, s)), x(t, s)

)∣∣∣
=

∣∣∣ân(t, s)xn(t, s)bn(t, s)γn(x(t, s)) − âm(t, s)xm(t, s) − bm(t, s)γm(x(t, s))
∣∣∣

≤ |ân(t, s)| |xn(t, s)| + bn(t, s)
∣∣∣γn(x(t, s))

∣∣∣ + |âm(t, s)| |xm(t, s)| + bm(t, s)
∣∣∣γm(x(t, s))

∣∣∣
≤ an |xn(t, s)| + Hn + am |xm(t, s)| + Hm

As m,n→∞we have
∣∣∣Fn

(
t, s, γn(x(t, s)), x(t, s)

)
− Fm

(
t, s, γm(x(t, s)), x(t, s)

)∣∣∣→ 0 which gives |(Fnx) (t, s) − (Fmx) (t, s)| →
0. Thus (F x) (t, s) is a real Cauchy sequence hence it is convergent. Since t, s ∈ R+ are arbitrary therefore
(F x) (t, s) ∈ BC(R+ ×R+, c).

Again, ‖ (F x) (t, s) − x0(t, s) ‖BC(R+×R+,c)≤ r thus F is self mapping on Ē.
We have to show that F is continuous on Ē.
Let x(t, s) = (xi(t, s))∞i=1 , y(t, s) =

(
yi(t, s)

)∞
i=1 ∈ Ē and ε > 0 be such that

‖ x(t, s) − y(t, s) ‖BC(R+×R+,c)<
ε

2A .
For t, s ∈ R+ we have∣∣∣(Fnx) (t, s) −

(
Fny

)
(t, s)

∣∣∣
=

∣∣∣Fn
(
t, s, γn(x(t, s)), x(t, s)

)
− Fn

(
t, s, γn(y(t, s)), y(t, s)

)∣∣∣
≤ an

∣∣∣xn(t, s) − yn(t, s)
∣∣∣ + bn(t, s)

∣∣∣γn(x(t, s)) − γn(y(t, s))
∣∣∣

<
ε
2

+ bn(t, s)

∣∣∣∣∣∣∣∣∣
α(s)∫
0

β(t)∫
0

[
Gn (t, s, v,w, x(v,w)) − Gn

(
t, s, v,w, y(v,w)

)]
dvdw

∣∣∣∣∣∣∣∣∣ .
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By using assumption (iii), we can choose t1 > 0 such that max (t, s) > t1,∣∣∣∣∣∣∣∣∣bn(t, s)

α(s)∫
0

β(t)∫
0

[
Gn (t, s, v,w, x(v,w)) − Gn

(
t, s, v,w, y(v,w)

)]
dvdw

∣∣∣∣∣∣∣∣∣ <
ε
2
.

Hence
∣∣∣(Fnx) (t, s) −

(
Fny

)
(t, s)

∣∣∣ < ε.
For t, s ∈ [0, t1], let

ᾱ = sup {α(t) : t ∈ [0, t1]} ,
β̄ = sup

{
β(t) : t ∈ [0, t1]

}
,

b̄ = sup {bn(t, s) : t, s ∈ [0, t1] ,n ∈N}
and

G = sup
n

{∣∣∣Gn (t, s, v,w, x(v,w)) − Gn
(
t, s, v,w, y(v,w)

)∣∣∣ : t, s ∈ [0, t1] , v ∈
[
0, β̄

]
w ∈ [0, ᾱ] , x, y ∈ Ē

}
.

Then
∣∣∣(Fnx) (t, s) −

(
Fny

)
(t, s)

∣∣∣ < ε
2 + b̄Gᾱβ̄.

Since Gn is continuous on [0, t1]× [0, t1]×
[
0, β̄

]
× [0, ᾱ]× Ē for all n ∈N therefore we have G→ 0 as ε→ 0

which gives ‖ (Fnx) (t, s)−
(
Fny

)
(t, s) ‖BC(R+×R+,c)→ 0 as ‖ x(t, s)− y(t, s) ‖BC(R+×R+,c)→ 0. Thus F is continuous

on Ē ⊂ BC(R+ ×R+, c).
Again for arbitrarily fixed t, s ∈ R+, we have

µc
(
F

(
Ē
))

= lim
n→∞

 sup
x(t,s)∈Ē

{
sup
k≥n

∣∣∣∣Fk(t, s, γk(x(t, s)), x(t, s)) − lim
m→∞

Fm(t, s, γm(x(t, s)), x(t, s))
∣∣∣∣}

= lim
n→∞

 sup
x(t,s)∈Ē

{
sup
k≥n

∣∣∣∣âk(t, s)xk(t, s) + bk(t, s)γk(x(t, s)) − lim
m→∞

(
âm(t, s)xm(t, s) + bm(t, s)γm(x(t, s))

)∣∣∣∣}
≤ lim

n→∞

 sup
x(t,s)∈Ē

{
sup
k≥n

(
A

∣∣∣∣xk(t, s) − lim
m→∞

xm(t, s)
∣∣∣∣ +

∣∣∣∣ lim
m→∞

(âk(t, s) − âm(t, s)) xm(t, s)
∣∣∣∣ + Hk + lim

m→∞
Hm

)}
= Aµc(Ē).

Thus µBC(R+×R+,c)
(
F

(
Ē
))
≤ AµBC(R+×R+,c)(Ē).

Observe that µBC(R+×R+,c)
(
F

(
Ē
))
≤ AµBC(R+×R+,c)(Ē) < ε implies µBC(R+×R+,c)(Ē) < ε

A .

Taking δ = ε(1−A)
A we get ε ≤ µBC(R+×R+,c)(Ē) < ε + δ. Therefore F is a Meir-Keeler condensing operator

defined on the set Ē ⊂ BC(R+ × R+, c). Since t, s are arbitrarily fixed so F satisfies all the conditions of
Theorem 1.8 which implies F has a fixed point in B̄ for all t, s ∈ R+. The system (3) has a solution in
BC(R+ ×R+, c).

4. An Illustrative Example

In this section, we give the following illustrative example.

Example. Consider the following infinite system of integral equations:

xn(t, s) =
1

t2s2 + n2

3n∑
i=n

(
xn(t, s)

4i2

)
+

1
n4et2s2

s2∫
0

t2∫
0

cos
(

n∑
i=1

xi(v,w)
)

4 + sin
(
1 +

2n∑
i=1

xi(v,w)
)dvdw, (4)
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where n ∈N. Here α(t) = β(t) = t2,

Fn(t, s, γn(x(t, s)), x(t, s)) =
1

t2s2 + n2

3n∑
i=n

(
xn(t, s)

4i2

)
+

1
n4et2s2 γn(x(t, s)),

where

γn(x(t, s)) =

s2∫
0

t2∫
0

Gn (t, s, v,w, x(v,w)) dvdw,

and

Gn (t, s, v,w, x(v,w)) =

cos
(

n∑
i=1

xi(v,w)
)

4 + sin
(

2n∑
i=1

xi(v,w)
) .

If x(t, s) ∈ BC(R+ ×R+, c), then we have

Fn(t, s, γn(x(t, s)), x(t, s)) = ân(t, s)xn(t, s) + bn(t, s)γn(x(t, s))

where ân(t, s) = 1
t2s2+n2

∑3n
i=n

1
4i2 , bn(t, s) = 1

n4et2s2 are continuous functions onR+ ×R+.Also, we have |ân(t, s)| ≤

an for all t, s ∈ R+ where an = π2

24n2 It is obvious that (an)∞n=1 is a sequence converging to zero and for all
n ∈N, bn is a continuous function on R+ ×R+. Also 0 < A < 1. Since

s2∫
0

t2∫
0

cos
(

n∑
i=1

xi(v,w)
)

4 + sin
(
1 +

2n∑
i=1

xi(v,w)
)dvdw ≤

t2s2

3
.

therefore

Hn

= sup


1

n4et2s2

∣∣∣∣∣∣∣∣∣∣∣∣
s2∫

0

t2∫
0

cos
(

n∑
i=1

xi(v,w)
)

4 + sin
(
1 +

2n∑
i=1

xi(v,w)
)dvdw

∣∣∣∣∣∣∣∣∣∣∣∣ : t, s, v,w ∈ R+, x(v,w) ∈ BC(R+ ×R+, c)


=

1
3en4 .

Thus Hn → 0 as n→∞ and H = 1
3e . Moreover we get as t, s→∞∣∣∣∣∣∣∣∣∣

1
n4et2s2

s2∫
0

t2∫
0

{
Gn (t, s, v,w, x(t, s)) − Gn

(
t, s, v,w, y(t, s)

)}
dvdw

∣∣∣∣∣∣∣∣∣→ 0.

It is obvious that Fn and Gn are continuous functions for all n ∈ N.Also for fixed t, s ∈ R+ and x(t, s) ∈
BC(R+ × R+, c) we have

(
Fn(t, s, γ(x(t, s)), x(t, s)

)∞
n=1 ∈ BC(R+ × R+, c) So all the assumptions from (i)-(v) are

satisfied. Hence by Theorem 3.1 we conclude that the system 4 has a solution in BC(R+ ×R+, c).
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5. Semi-Analytic Method to Solve Infinite System (4)

In Section 4, as an application of Theorem 3.1, we have proved the existence of solution of the problem
considered in the above example. Here, in this section, we find an approximation of solution for the
above problem by a coupled semi-analytic method in the case of two variables. In fact, this method is a
combination of the modified homotopy perturbation method with infinite functions of two variables and
the Adomian decomposition method. Applications of the modified homotopy perturbation method to solve
nonlinear Fredholm integral equations and nonlinear differential equations can be found in [13, 23, 24],
respectively. Adomian [1] introduced a decomposition method for solving some frontier problems of
Physics and this technique was used in [25] to solve a system of Fredholm integro-differential equations.
Hazarika et al. [16] applied a modified homotopy perturbation method and the Adomian decomposition
method to solve nonlinear quadratic integral equations in the case of one variable. But, in this article, we
have generalized the modified homotopy perturbation method to infinite functions of two variables and
also, for simplification of nonlinear terms, we use the Adomian decomposition method in a suitable form.
For this purpose, we consider a nonlinear problem with infinite functions of two variables in the following
general form: A(x1(t, s), x2(t, s), · · · , xn(t, s), · · · ) − f (t, s,n) = 0

(
(t, s) ∈ Ω; n ∈N

)
B
(
xi,

∂xi
∂η

)
= 0 (η ∈ Γ),

(5)

where A is a general nonlinear operator, B is a boundary operator and f is a known analytic function. Similar
to the works in [16] and [23], we divide the general operator A into two nonlinear operators denoted by N1
and N2. Of course, N1 or N2 can be a linear operator in special cases. We also convert f to the functions f1
and f2. So, clearly, we can write{

N1(x1(t, s), · · · , xn(t, s), · · · ) − f1(t, s,n)
+N2(x1(t, s), · · · , xn(t, s), · · · ) − f2(t, s,n) = 0, (n ∈N).

We now introduce a modified homotopy perturbation for infinite functions of two variables:
H(u1(t, s),u2(t, s), · · · , p) = N1(u1(t, s), · · · ,un(t, s), · · · ) − f1(t, s,n)

+p(N2(u1(t, s), · · · ,un(t, s), · · · ) − f2(t, s,n)) = 0
(p ∈ [0, 1]),

(6)

where p is an embedding parameter and ui (i = 1, · · · ,n) are approximation of xi for i ∈ N. According to
the variations of p = 0 to p = 1, we can get

N1(u1(t, s), · · · ,un(t, s), · · · ) = f1(t, s,n)

...

A(u1(t, s),u2(t, s), · · · ,un(t, s), · · · ) − f (t, s,n) = 0.

So, in (6), the solution of (5) is given for p = 1 and we also have
xn(t, s) ≈ un(t, s) =

∞∑
j=0

p ju j,n(t, s) (n ∈N)

xn(t, s) = lim
p→1

un(t, s).
(7)
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In order to solve the infinite system of nonlinear integral equations in (4), we choose the operators N1 and
N2 and the function f as follows:

N1(x1(t, s), · · · , xn(t, s), · · · ) = xn(t, s),

N2(x1(t, s), · · · , xn(t, s), · · · ) = −
1

t2s2 + n2

3n∑
i=n

(
xn(t, s)

4i2

)

−
1

n4et2s2

∫ s2

0

∫ t2

0

cos
(

n∑
i=1

xi(v,w)
)

4 + sin
(
1 +

2n∑
i=1

xi(v,w)
)dvdw,

f (t, s,n) = 0.

(8)

To simplify the computations, we can choose f1(t, s) as a simple function. By substituting (8) and (7) into
the homotopy perturbation (6), we have

( ∞∑
j=0

p ju j,n(t, s) − f1(t, s,n)
)

+ p
(
−

1
t2s2 + n2

3n∑
i=n

(
xn(t, s)

4i2

)

−
1

n4et2s2

∫ s2

0

∫ t2

0

cos

 n∑
i=1

∞∑
j=0

p ju j,i(v,w)


4 + sin

1 +
2n∑
i=1

∞∑
j=0

p ju j,i(v,w)

dv dw − f2(t, s,n)
)

= 0.

(9)

In (9), for decomposing the nonlinear terms to smaller separable nonlinear terms, we apply the Adomian
decomposition method in the following form:

3n∑
i=n

∞∑
j=0

p ju j,n(t, s)

4i2
=

∞∑
j=0

p jA j,n(t, s)

cos

 n∑
i=1

∞∑
j=0

p ju j,i(t, s)


4 + sin

1 +
2n∑
i=1

∞∑
j=0

p ju j,i(t, s)

 =

∞∑
j=0

p jÂ j,n(t, s),

(10)

where the Adomian polynomials are given by

Ak,n(t, s) =
1
k!


dk

dpk

3n∑
i=n

∞∑
j=0

p ju j,n(t, s)

4i2


p=0

Âk,n(t, s) =
1
k!


dk

dpk

cos

 n∑
i=1

∞∑
j=0

p ju j,i(t, s)


4 + sin

1 +
2n∑
i=1

∞∑
j=0

p ju j,i(t, s)




p=0

.

(11)

Upon substituting from (10) into (9), we obtain
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( ∞∑
j=0

p ju j,n(t, s) − f1(t, s,n)
)

+ p

− 1
t2s2 + n2

∞∑
j=0

p jA j,n(t, s)

−
1

n4et2s2

∫ s2

0

∫ t2

0

∞∑
j=0

p jÂ j,n(v,w)dv dw − f2(t, s,n)

 = 0.

(12)

By rearranging the equation (12) in terms of p powers, we can write

p0 :
(
u0,n(t, s) − f1(t, s,n)

)
p1 :

u1,n(t, s) −
1

t2s2 + n2 A0,n(t, s) −
1

n4et2s2

∫ s2

0

∫ t2

0
Â0,n(v,w)dv dw − f2(t, s,n)


pk :

uk,n(t, s) −
1

t2s2 + n2 Ak−1,n(t, s) −
1

n4et2s2

∫ s2

0

∫ t2

0
Âk−1,n(v,w)dv dw

 (k = 2).

According to the definition of the modified homotopy perturbation (6), the coefficients of p powers are
equal to zero, so we can get an iterative algorithm to solve (4).
Algorithm:

u0,n(t, s) = f1(t, s,n)

u1,n(t, s) = f2(t, s,n) +
1

t2s2 + n2 A0,n(t, s) +
1

n4et2s2

∫ s2

0

∫ t2

0
Â0,n(v,w)dv dw

uk,n(t, s)) =
1

t2s2 + n2 Ak−1,n(t, s) +
1

n4et2s2

∫ s2

0

∫ t2

0
Âk−1,n(v,w)dv dw (k ≥ 2).

(13)

For sample, we compute some elements of {x1(t, s), x2(t, s), · · · } by using the above algorithm, in which the
Adomian polynomials are given by

A0,n(t, s) =

3n∑
i=n

u0,n(t, s)
4i2

; (14)

Â0,n(t, s) =

cos
(

n∑
i=1

u0,i(t, s)
)

4 + sin
(
1 +

2n∑
i=1

u0,i(t, s)
) . (15)

Since in (4) f (t, s) = 0 then we can choose f1(t, s) = f2(t, s) = 0 or f1(t, s) = − f2(t, s) = α ∈ R+. For sample in
the algorithm (13), we set u0,n(t, s) = f1(t, s,n) = f2(t, s,n) = 0 and using Adomian polynomials (14)-(15)) for
n = 1, we conclude that,

u0,1(t, s) = f1(t, s, 1) = 0,

u1,1(t, s) =
2

t2s2 + 12 A0,1(t, s) +
1

14et2s2

∫ s2

0

∫ t2

0
Â0,1(v,w)dv dw = 0.206549 e−s2t2

s2t2.

Since the solution of (4) is equal to lim
n→∞

xn(t, s) and, according to (7),

xn(t, s) ' lim
p→1

un(t, s) = lim
p→1

∞∑
j=0

p ju j,n(t, s),
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we approximate the first few elements of the sequence (xn(t, s))∞n=1 in terms of the above approximations.
So we have

x1(t, s) '
1∑

j=0

u j,1(t, s) = 0.206549 e−s2t2
s2t2. (16)

Similarly, we compute some elements of the above sequence by using Mathematica (Version 10) as follows:

x5(t, s) = 0.000330478 e−s2t2
s2t2;

x50(t, s) = 3.30478 × 10−8e−s2t2
s2t2;

x100(t, s) = 2.06549 × 10−9e−s2t2
s2t2;

x200(t, s) = 1.29093 × 10−10e−s2t2
s2t2;

x500(t, s) = 3.30478 × 10−12e−s2t2
s2t2.

(17)

In light of (16)-(17), we see that x1(t, s), x5(t, s), x50(t, s), x100(t, s), x200(t, s), x500(t, s) are decreasing and conver-
gent to zero function (see values on the third axis in Figure 1) in the space c. Also, by plotting the elements
of the above sequence, the convergence is verified.

Figure 1: x1(t, s), x5(t, s), x50(t, s), x100(t, s), x200(t, s), x500(t, s)
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6. Concluding Remarks and Observations

In this article, we proved existence results for the solution of an infinite systems of nonlinear integral
equations in two variables. We presented an illustrative example to illustrate the efficiency of our results.
Moreover, we introduced a coupled semi-analytic method in the case of two variables in order to construct
an iteration algorithm to get the solution of the above-mentioned infinite system of nonlinear integral
equations in two variables. The numerical results, which we presented in this article, show that the
produced sequence for approximating the solution in the examples is in the sequence space c itself.
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