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Abstract. The formation of three dimensional study from two dimensional study due to high intensified
magnetic field is investigated for a thin film second-grade fluid with variable fluid properties. The effects
of Soret, Dufour, thermophoresis, thermal radiation and viscous dissipation are taken into account in the
problem. Similarity transformations are employed to convert the governing equations into dimensionless
form which have been solved by using homotopy analysis method (HAM). Quite real results are achieved
with the help of emerging parameters which are shown through different graphs for velocities, temperature
and concentration profiles.

1. Introduction

A current resisting at right angle to both the electric and magnetic fields is known as Hall current.
Hall current is generated when strong magnetic field is applied. Therefore magnetohydrodynamic has
great importance due to its various applications like materials processing, MHD energy generators, cancer
therapy, biomedical flow and separation devices. Khan et al. [1] discussed the boundary layer flow problem
in which the high intensified magnetic field effect is investigated taken into account the Brownian motion
and thermophoresis effects. Rafiq et al. [2] examined the peristaltic flow of viscous nanofluid in a channel
with compliant walls in the presence of Hall and ion-slip effects. Khan et al. [3] analyzed the heat and
mass transfer flow with the effects of thermophoresis and thermal radiation in MHD thin film second grade
fluid of variable properties. Filippini et al. [4] investigated the ferromagnetic in a magnetic transmission
gear adopting a homogenized hysteretic model able to include eddy current and hysteresis losses in two
dimensional laminated materials for iron poles. Khan et al. [5] worked on the effective thermal conductivity
and viscosity of the nanofluid in which the Brownian motion effect on the effective thermal conductivity is
included through KKL (Koo-Klein-streuer-Li) correlation. Hajmohammadi and Ali [6] assessed the effec-
tiveness of the magnetic field on nanofluids in a rotary system described by a stationary housing and the
rotating cylinder in which the magnetic field can be imposed by the environment or applied as controlled
parameter. Bilal and Ramzan [7] presented the unsteady two-dimensional flow of mixed convection and
nonlinear thermal radiation in the presence of water-based carbon nanotubes over the vertically convected
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stretched sheet embedded in a Darcy’ Forchheimer porous media using Saffman’s proposed model for the
suspension of fine dust particles in the nanofluid in which strong magnetic field is applied normal to the
flow. Fersadou et al. [8] investigated the mixed convection heat transfer and entropy generation analysis
for Cu-water nanofluid inside two interacting open cavities by heating or cooling the right and the left
walls of each cavity at uniform but different heat flux densities. Khan and Zuhra [9] investigated the two
dimensional magnetohydrodynamic unsteady flow and heat transfer in a thin film second grade nanofluid
embedded with graphene nanoparticles past a stretching sheet. They proved that graphene nanoparticles
have continuous electrical conductivity since the charge carrier movement in graphene bears extremely
high values compared to the available nanomaterials. Atashafrooz [10] studied the buoyancy force effects
on the MHD mixed convection nanofluid flow and entropy generation over an inclined step in an inclined
duct where the inclined step leads to the flow separation in duct and affects the hydrodynamic and thermal
behaviors. Palwasha et al. [11] analyzed the application of strong MHD on heat and mass transfer flow
of second grade fluid past a stretching sheet in which quite interestingly it is shown that two dimensional
study converts into three dimensional case due to Hall current effect. Khan et al. [12] performed a theoret-
ical study on the behavior of transformed internal energy in a magnetohydrodynamic Maxwell nanofluid
flow past a stretching sheet along with Arrhenius activation energy and chemical reaction. Zuhra et al.
[13] investigated the effect of MHD on the second grade nanofluid heat and mass transfer flow contain-
ing nanoparticles and gyrotactic microorganisms. Bidemi and Ahamed [14] considered two dimensional
unsteady Casson magneto-nanofluid flow past an inclined plate embedded in a porous medium with Soret-
Dufour effects by showing that the applied magnetic field slow down the motion of the fluid. Khan et al.
[15] analyzed the slip flow of Eyring-Powell nanoliquid film containing graphene nanoparticles and heat
transfer in the presence of magnetohydrodynamics to prove that temperature decreased with increasing
magnetic field strength. Daniel et al. [16] focused on the impacts of slip conditions on the two-dimensional
unsteady mixed convection flow of electrical magnetohydrodynamic nanofluid past a stretching sheet in
the presence of thermal radiation, viscous dissipation, and chemical reaction. Zangooee et al. [17] discussed
the nanofluid flow between two stretchable and rotating disks with homogeneous-heterogeneous chemical
reactions and Joule heating in the presence of magnetic field and thermal radiation. The other MHD and
non-MHD studies can be seen in the references [18–23].
Navier-Stokes equations can be seen in modeling of the fluid flows in various problem due to their extensive
applications. Benbernou [24] established a Serrin-type regularity criterion in terms of pressure for Leray
weak solutions to the Navier-Stokes equations. Involving fluid flow, Gala et al. [25] presented a study
that deals with the blow-up criterion for the hydrodynamic system modeling the flow of three-dimensional
nematic liquid crystal materials. Magnetohydrodynamics equations represent the flow of an electrically
conducting fluid in the presence of magnetic field, which essentially needs to consider the interaction
between magnetic fields and fluid conductors of electricity. To solve such equations in three dimensions,
Benbernou et al. [26] presented logarithmically improved regularity criterion for the incompressible magne-
tohydrodynamics equation in terms of the derivative of the pressure in one direction. Gala and Ragusa [27]
used logarithmically improved regularity criteria for supercritical quasi-geostrophic equations in Orlicz-
Morrey spaces. Moreover, this criterion is in terms of the norm of the solution in a Orlicz-Morrey space.
The Boussinesq equation is one of the important subjects for researches in nonlinear sciences. However,
similar to the classic Navier-Stokes equations, the question of global regularity of the weak solutions of
the 3D Boussinesq equations still remains a big open problem. There are a huge literatures on the in-
compressible Boussinesq equations. Attempting Boussinesq equations, Gala and Ragusa [28] developed
logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative
indices. In another note, Gala et al. [29] considered the regularity problem under the critical condition
to the Boussinesq equations with zero heat conductivity. Mechdene et al. [30] reported the logarithmical
regularity criterion of the three-dimensional Boussinesq equations in terms of pressure. Similarly, Gala
and Ragusa [31] proved a logarithmic regularity criterion for the 2D MHD equations without magnetic
diffusion in terms of the magnetic field in homogeneous Besov space B0

∞,∞. Working on the stretching flow,
Khan et al. [32] discussed the boundary layer movement of a non-Newtonian second grade fluid through a
porous medium past a stretching surface with heat transfer under the consideration of thin film. Zuhra et
al. [33] analyzed the steady non-Newtonian nanofluids flow containing graphene nanoparticles on stretch-
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ing sheet by comparing the behavior of two non-Newtonian nanofluids namely Casson and Williamson.
Khan et al. [34] discussed the effect of strong applied magnetic field on thin film flow of second grade
fluid with entropy generation past a stretching sheet. Khan et al. [35] investigated the effect of inclined
magnetic field on flow and heat transfer containing graphene nanoparticles past a stretching sheet. Khan et
al. [36] reported the mixed convection in gravity-driven non-Newtonian nanoliquid thin films (Casson and
Williamson) flow containing both nanoparticles and gyrotactic microorganisms along a convectively heated
vertical solid surface with the actively controlled nanofluid model boundary conditions to investigate the
liquids thermodynamics analytically.
Due to strong applications of magnetohydrodynamics, it is the author interest to investigate the influence
of strong applied magnetic field on mixed convection heat and mass transfer thin film flow with fluid
variable properties past a stretching sheet using Homotopy Analysis Method (HAM) [37]. The influences
of the emerging parameters on velocities, temperature and concentration profiles are shown in figures and
explained.

2. Methods

2.1. Basic equations

The mixed convective steady MHD laminar boundary layer flow of an incompressible and electrically
conducting second grade thin film fluid with temperature dependent viscosity and thermal conductivity
past a stretching sheet in two dimensions is considered. x-axis is along the surface of the stretching sheet
and y-axis is normal to it. Leading edge of the stretching surface is in the direction of z-axis as shown in
Fig. 1.

Figure 1: Problem geometry.

A strong magnetic field is applied in the direction normal to the sheet. Due to high intensity of magnetic
field a force in z-direction is generated which causes a cross flow in the z-direction consequently the flow
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becomes three-dimensional. Applying Ohm’s law in the general form involving Hall current as in [11] is

→

j +
ωeτe

B0
×

(
→

j ×
→

B
)

= σ
(
→

E +
→

V ×
→

B
)
, (1)

where
→

j = (jx, jy, jz) is the current density vector,
→

V = (u, v, w) is the velocity vector,
→

E is the intensity vector

of the electric field,
→

B = (0, B0, 0) is the magnetic induction vector, ωe, σ, τe and e are electron frequency,
electrical conductivity, electron collision time and charge of electron respectively. Due to the absence of

imposed or polarization voltage on the flow field, the electric field vector
→

E = 0. Following the above
assumptions, the Ohm’s law in general form for a weakly ionized gases results in jy = 0 everywhere in the
flow so comparing the x, z components in Eq. (1) and simplifying for the current density components jx
and jz as

jx =
σB0

1 + m2 (mu − w), (2)

jz =
σB0

1 + m2 (mw + u), (3)

where u, v and w are the components of the velocity vector
→

V along (x, y and z)-axes respectively and m =
ωeτe is Hall parameter.
The governing equations of the problem are
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where µ(T) =
µ0

1−γ
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represents the temperature reliant viscosity having µ0 as the liquid viscosity at

reference temperature T0 and γ is the strength of interrelation between µ and T, K(T) = K∞
(
1 − ε

( T−T0

Tre f

(
bx2

2ν

) ))
shows the temperature reliant thermal conductivity having K∞ as the thermal conductivity of the fluid
far away from the surface of the sheet, ε represents the variable thermal conductivity parameter [11],
α1(>0) represents the material parameter, ρ represents the density, βT represents the coefficient of thermal
expansion, βC represents the coefficient of volumetric expansion, cP represents the specific heat at constant
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pressure P, gr represents the gravitational acceleration, T represents the fluid temperature, C represents the
concentration, qr represents the radiative heat flux, Dm represents the molecular diffusivity, KT represents
the thermal diffusion ratio, Tm represents the mean fluid temperature, T∞ represents the fluid temperature
far away from the surface of the sheet, C∞ represents the fluid concentration far away from the surface of the
sheet, Csus represents the absorption susceptibility, VT (= - k1ν

Tre f

∂T
∂y ) represents the thermophoretic velocity

in which k1 is the thermophoretic coefficient, ν =
µ
ρ represents the kinematic viscosity of the second grade

fluid and Tre f represents constant reference temperature [11].
Initially the slit is fixed with the origin. An external force is applied to the slit to make it stretch at the rate
b in the positive x-direction with velocity U0. Considering the stretching velocity along positive x-axis as
U0 = bx,
where b > 0 is the stretching rate. The surface temperature
Ts(x) = T0 - Tre f

[
bx2

2ν

]
is assumed to vary with the distance x from the slit in which T0 is the temperature at the slit such that 0 ≤
Tre f ≤ T0. Similarly the surface concentration
Cs(x) = C0 - Cre f

[
bx2

2ν

]
is varying with the distance x from the slit in which C0 is the concentration at the slit and Cre f is the reference
concentration such that 0 ≤ Cre f ≤ C0.
The boundary conditions are represented as

u = U0, v = 0, w = 0, T = T0, C = C0 at y = 0, (9)

∂u
∂y

=
∂w
∂y

=
∂T
∂y

= 0, v =
dδ
dx
, T = T∞, C = C∞ at y = δ, (10)

where δ is the thickness of the second grade liquid film. By Rosseland approximation [11], the radiative
heat flux is defined as

qr = −
4σ1

3k2

∂T4

∂y
, (11)

where σ1 and k2 are the Stefan-Boltzmann constant and the mean absorption coefficient respectively. By
taking assumption that the differences in temperature within the flow are such that T4 can be expressed
as a linear combination of the temperature and using the Taylor’s theorem to expand T4 about T∞ and
neglecting higher order terms, one obtains

T4 = 4T3
∞T − 3T4

∞, (12)

so

∂qr

∂y
= −

16T3
∞σ1

3k2

∂2T
∂y2 . (13)

Applying the transformations for nondimensional variables f, g, θ, φ and similarity variable ζ as

u = bxf′(ζ), v = −(bν)
1
2 f(ζ), w = bxg(ζ), ζ =

[
b
ν

] 1
2 y, (14)

T(x) = T0 − Tre f

[
bx2

2ν

]
θ(ζ), C(x) = C0 − Cre f

[
bx2

2ν

]
φ(ζ), β =

[
b
ν

] 1
2 δ, (15)

where β represents the non-dimensional parameter for the thickness of the second grade fluid film. It is
easy to see that mass conservation Eq. (4) is identically satisfied through Eq. (14). By using Eqs. (14)
and (15), the basic governing Eqs. (5-10) of the problem are transformed into the following six ordinary
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differential equations (16-21)

f′′′ + (1 + ∧θ)
[
ff′′ − f′2

]
+ γ1(1 + ∧θ)

[
2f′f′′′ − f′′2 − ffiv + g′2 + gg′′

]
+ Gr(1 + ∧θ)θ + Gm(1 + ∧θ)φ

−
M(1 + ∧θ)( f ′ + m1)

1 + m2 = 0, (16)

g′′ + (1 + ∧θ)
[
fg′ − f′g

]
+ γ1(1 + ∧θ)

[
f′g′′ − fg′′′

]
+

M(1 + ∧θ)(m f ′ − 1)
1 + m2 = 0, (17)

(1 + Nr + εθ)θ′′ − Pr(2f′θ − fθ′) + Br
[
M(f′2 + g2) + (f′′2 + g′2) + γ1

[
f′′(f′f′′ − ff′′′) + f′g′2 − fg′g′′

]]
+

PrDuφ′′ = 0, (18)

φ′′ + Sc(f − τθ′)φ′ + Sc(Sr − τφ)θ′′ − 2Scf′φ = 0, (19)

f = g = 0, f′ = θ = φ = 1 at ζ = 0, (20)

f′′ = g′ = θ′ = φ′ = 0 at ζ = β, (21)

where prime (′) represents the derivative with respect to ζ, ∧ = γ(T0 - T∞) represents the variable viscosity

parameter, γ1 =
α1β2

ρδ2 represents the second grade fluid parameter, Gr =
grβT(T0 − T∞)δ2

νβ2 represents the ther-

mal Grashof number, Gm =
grβC(C0 − C∞)δ2

νβ2 represents the solutal Grashof number, M =
σB2

0δ
2

ρνβ2 represents the

magnetic field parameter, Nr =
16T3

∞σ1

3k2K
represents the thermal radiation parameter, Sc = ν

Dm
represents the

Schmidt number, Sr =
DmKT(T0−T∞)
νTm(C0−C∞) represents the Soret number, τ = - k1(T0−T∞)

Tre f
represents the thermophoretic

parameter, Pr =
µ0cP

K represents the Prandtl number, Br =
µU2

0
K(T0−T∞) represents the Brinkman number and Du

=
DmKT(C∞−C0)
Csusνcp(T∞−T0) represents the Dufour number. For γ1 = 0, the present study corresponds to viscous fluid

case.

3. Solution of the Problem by Homotopy Analysis Method

Applying the suitable initial approximations to satisfy the boundary conditions and auxiliary linear
operators for velocity, temperature and concentration in the following form

f0(ζ) = ζ, g0(ζ) = 1, θ0(ζ) = 1, φ0(ζ) = 1, (22)

Lf = f′′′, Lg = g′′, Lθ = θ′′, Lφ = φ′′. (23)

The following properties are satisfied with the linear operators

L f [C1 + C2ζ + C3ζ
2] = 0, L1[C4 + C5ζ] = 0, Lθ[C6 + C7ζ] = 0, Lφ[C8 + C9ζ] = 0, (24)

where Ci(i = 1-9) are the arbitrary constants.
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3.1. Zeroth-order deformation problems
Introducing the nonlinear operator ℵ as

ℵ f [ f (ζ, p), 1(ζ, p), θ(ζ, p), φ(ζ, p)] =
∂3 f (ζ, p)
∂ζ3 + (1 + ∧θ(ζ, p))

[
f (ζ, p) ∂

2 f (ζ,p)
∂ζ2 −

(
∂ f (ζ,p)
∂ζ

)2
]
+

γ1(1 + ∧θ(ζ, p))
[
2 ∂ f (ζ,p)

∂ζ
∂3 f (ζ,p)
∂ζ3 −

(
∂2 f (ζ,p)
∂ζ2

)2
− f (ζ, p) ∂

4 f (ζ,p)
∂ζ4 +

(
∂1(ζ,p)
∂ζ

)2
+ 1(ζ, p) ∂

21(ζ,p)
∂ζ2

]
+

Gr(1 + ∧θ(ζ, p))θ(ζ, p) + Gm(1 + ∧θ(ζ, p))φ(ζ, p) −
M(1 + ∧θ(ζ, p))

1 + m2

[
∂ f (ζ,p)
∂ζ + m1(ζ, p)

]
, (25)

ℵ1[ f (ζ, p), 1(ζ, p), θ(ζ, p)] =
∂21(ζ, p)
∂ζ2 + (1 + ∧θ(ζ, p))

[
f (ζ, p) ∂1(ζ,p)

∂ζ −
∂ f (ζ,p)
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]
+

γ1(1 + ∧θ(ζ, p))
[
∂ f (ζ,p)
∂ζ
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∂ζ2 − f (ζ, p) ∂
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∂ζ3

]
+

M(1 + ∧θ(ζ, p))
1 + m2

[
m∂ f (ζ,p)
∂ζ − 1(ζ, p)

]
, (26)

ℵθ[ f (ζ, p), θ(ζ, p)] = (1 + Nr + εθ(ζ, p))
∂2θ(ζ, p)
∂ζ2 − Pr

[
2 ∂ f (ζ,p)

∂ζ θ(ζ, p) − f (ζ, p) ∂θ(ζ,p)
∂ζ

]
+ Br

[
M

[(
∂ f (ζ,p)
∂ζ

)2
+

(
1(ζ, p)

)2
]

+
[(
∂2 f (ζ,p)
∂ζ2

)2
+

(
∂1(ζ,p)
∂ζ

)2
]]

+

γ1Br
[
∂2 f (ζ,p)
∂ζ2

(
∂ f (ζ,p)
∂ζ

∂2 f (ζ,p)
∂ζ2 − f (ζ, p) ∂

3 f (ζ,p)
∂ζ3

)
+

∂ f (ζ,p)
∂ζ

(
∂1(ζ,p)
∂ζ

)2
− f (ζ, p) ∂1(ζ,p)

∂ζ
∂21(ζ,p)
∂ζ2

]
+ PrDu

∂2φ(ζ, p)
∂ζ2 , (27)

ℵφ[ f (ζ, p), θ(ζ, p), φ(ζ, p)] =
∂2φ(ζ, p)
∂ζ2 + Sc

[
f (ζ, p) − τ ∂θ(ζ,p)

∂ζ

] ∂φ(ζ, p)
∂ζ

+ Sc
[
Sr − τφ(ζ, p)

] ∂2θ(ζ, p)
∂ζ2

− 2Sc
∂ f (ζ, p)
∂ζ

φ(ζ, p), (28)

where p is an embedding parameter such that p ∈ [0, 1].
The zeroth-order deformation equations are constructed as

(1 − p)L f [f(ζ, p) − f0(ζ)] = p}ℵ f [f(ζ, p), g(ζ, p), θ(ζ, p), φ(ζ, p)], (29)

(1 − p)L1[g(ζ, p) − g0(ζ)] = p}ℵ1[f(ζ, p), g(ζ, p), θ(ζ, p)], (30)

(1 − p)Lθ[θ(ζ, p) − θ0(ζ)] = p}ℵθ[f(ζ, p), g(ζ, p), θ(ζ, p)], (31)

(1 − p)Lφ[φ(ζ, p) − φ0(ζ)] = p}ℵφ[f(ζ, p), θ(ζ, p), φ(ζ, p)], (32)

where } denotes the auxiliary nonzero parameter.
Eq. (29) has the boundary conditions

f(0, p) = 0, f′(0, p) = 1, f′′(β, p) = 0. (33)

Eq. (30) has the boundary conditions

g(0, p) = 0, g′(β, p) = 0. (34)

Eq. (31) has the boundary conditions

θ(0, p) = 1, θ′(β, p) = 0. (35)
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Similarly Eq. (32) has the boundary conditions

φ(0, p) = 1, φ′(β, p) = 0. (36)

Noting the following results

p = 0⇒ f(ζ, 0) = f0(ζ) and p = 1⇒ f(ζ, 1) = f (ζ), (37)

p = 0⇒ g(ζ, 0) = 10(ζ) and p = 1⇒ g(ζ, 1) = 1(ζ), (38)

p = 0⇒ θ(ζ, 0) = θ0(ζ) and p = 1⇒ θ(ζ, 1) = θ(ζ). (39)

Similarly

p = 0⇒ φ(ζ, 0) = φ0(ζ) and p = 1⇒ φ(ζ, 1) = φ(ζ). (40)

f (ζ, p) becomes f0(ζ) to f (ζ) when p assumes the values from 0 to 1. g(ζ, p) becomes g0(ζ) to g(ζ) when p
has the values from 0 to 1. Similarly, θ(ζ, p) becomes θ0(ζ) to θ(ζ) when p assumes the values from 0 to
1. Exactly in the same manner for p = 0, φ (ζ, 0) = φ0 (ζ) and for p = 1, φ(ζ, 1) = φ(ζ). Using Taylor series
expansion and Eqs. (37-40), one develops

f(ζ, p) = f0(ζ) +

∞∑
m=1

fm(ζ)pm, fm(ζ) =
1

m!
∂mf(ζ, p)
∂pm |p=0, (41)

g(ζ, p) = g0(ζ) +

∞∑
m=1

gm(ζ)pm, gm(ζ) =
1

m!
∂mg(ζ, p)
∂pm |p=0, (42)

θ(ζ, p) = θ0(ζ) +

∞∑
m=1

θm(ζ)pm, θm(ζ) =
1

m!
∂mθ(ζ, p)
∂pm |p=0, (43)

φ(ζ, p) = φ0(ζ) +

∞∑
m=1

φm(ζ)pm, φm(ζ) =
1

m!
∂mφ(ζ, p)
∂pm |p=0 . (44)

The convergence of the series is strongly dependent on }. Suppose } is chosen in such a way that the series
in Eqs. (41-44) converge at p = 1, then Eqs. (41-44) result in

f(ζ) = f0(ζ) +

∞∑
m=1

fm(ζ), (45)

g(ζ) = g0(ζ) +

∞∑
m=1

gm(ζ), (46)

θ(ζ) = θ0(ζ) +

∞∑
m=1

θm(ζ), (47)

φ(ζ) = φ0(ζ) +

∞∑
m=1

φm(ζ). (48)
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3.2. mth order deformation problem

By taking m times derivative with respect to p of Eqs. (29) and (33), then dividing by m! and substituting
p = 0, yield the below simplifications

L f [fm(ζ) − χmfm−1(ζ)] = }R
f
m(ζ), (49)

fm(0) = f ′′m (β) = f ′m(0) = 0, (50)

R
f
m(ζ) = f ′′′m−1 +

m−1∑
k=o

[
fm−1−k f ′′k − f ′m−1−k f ′k

]
+ ∧

m−1∑
k=o

θm−1−k

k∑
l=o

[
fk−l f ′′l − f ′k−l f ′l

]
+

γ1

m−1∑
k=o

[
2 f ′m−1−k f ′′′k − f ′′m−1−k f ′′k − fm−1−k f iv

k + 1′′m−1−k1
′′ + 1m−1−k1

′′

k

]
+

γ1 ∧

m−1∑
k=o

θm−1−k

k∑
l=o

[
2 f ′k−l f ′′′l − f ′′k−l f ′′l − fk−l f iv

l + 1′′k−l1
′′

l + 1k−l1
′′

l

]
+ Grθm−1 + ∧Gr

m−1∑
k=o

θm−1−kθk+

Gmφm−1 + ∧Gm
m−1∑
k=o

φm−1−kφk −
M

1 + m2

[
f ′m−1 + mgm−1

]
−
∧M

1 + m2

m−1∑
k=o

[
f ′m−1−kθk −mgm−1−kθk

]
. (51)

By taking m times derivative with respect to p of Eqs. (30) and (34), then dividing by m! and substituting p
= 0, yield the below simplifications

L1[gm(ζ) − χmgm−1(ζ)] = }R
1

m(ζ), (52)

1m(0) = 1′m(β) = 0, (53)

R
1

m(ζ) = 1′′m−1 +

m−1∑
k=o

[
fm−1−k1

′

k − f ′m−1−k1k

]
+∧

m−1∑
k=o

θm−1−k

k∑
l=o

[
fk−l1

′

l − f ′k−l1l

]
+γ1

m−1∑
k=o

[
f ′m−1−k1

′′

k − fm−1−k1
′′′

k

]
+ ∧γ1

m−1∑
k=o

θm−1−k

k∑
l=o

[
f ′k−l1

′′

l − fk−l1
′′′

l

]
+

M
1 + m2

[
m f ′m−1 − gm−1

]
+
∧M

1 + m2

m−1∑
k=o

[
m f ′m−1−kθk − gm−1−kθk

]
.

(54)

By taking m times derivative with respect to p of Eqs. (31) and (35), then dividing by m! and substituting p
= 0, develop the below simplifications

Lθ[θm(ζ) − χmθm−1(ζ)] = }Rθm(ζ), (55)

θm(0) = θ′m(β) = 0, (56)

Rθm(ζ) = (1 + Nr)θ′′m−1 + ε
m−1∑
k=o

[
θm−1−kθ′′k

]
− Pr

m−1∑
k=o

[
2 f ′m−1−kθk − fm−1−kθ′k

]
+

Br
[
M

∑m−1
k=o

(
f ′m−1−k f ′k + 1m−1−k1k

)
+

∑m−1
k=o

[
f ′′m−1−k f ′′k + 1′m−1−k1

′

k

]]
γ1Br

[∑m−1
k=o f ′′m−1−k

∑k
l=o

(
f ′k−l f ′′l − fk−l f ′′′l

)
+

∑m−1
k=o f ′m−1−k

∑k
l=o

(
1′k−l1

′

l

)
−

∑m−1
k=o fm−1−k

∑k
l=o

(
1′k−l1

′′

l

)]
+ PrDuφ′′m−1. (57)
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Similarly by taking m times derivative with respect to p of Eqs. (32) and (36), then dividing by m! and
substituting p = 0, develop the below simplifications

Lφ[φm(ζ) − χmφm−1(ζ)] = }R
φ
m(ζ), (58)

φm(0) = φ′m(β) = 0, (59)

R
φ
m(ζ) = φ′′m−1+Sc

m−1∑
k=o

[
fm−1−kφ′k

]
−Scτ

m−1∑
k=o

[
θ′m−1−kφ

′

k

]
+ScSrθ′′m−1−Scτ

m−1∑
k=o

[
φm−1−kθ′′k

]
−2Sc

m−1∑
k=o

[
f ′m−1−kφk

]
,

(60)

χm =

{
0, m 6 1
1, m > 1. (61)

If f∗m(ζ), g∗m(ζ), θ∗m(ζ) and φ∗m(ζ) are the particular solutions, then the general solutions of Eqs. (49), (52), (55)
and (58) are

fm(ζ) = f∗m(ζ) + C1 + C2ζ + C3ζ
2, (62)

gm(ζ) = g∗m(ζ) + C4 + C5(ζ), (63)

θm(ζ) = θ∗m(ζ) + C6 + C7ζ, (64)

φm(ζ) = φ∗m(ζ) + C8 + C9ζ. (65)

4. Results and Discussion

The non-dimensional Eqs. (16-21) are solved through the symbolic computer package MATHEMATICA
employing HAM package. The effects of embedded parameters on velocities (f (ζ), g(ζ)), temperature θ(ζ)
and concentration φ(ζ) profiles are shown in Figures (6-11), (12-15) and (16-18) respectively. The physical
description of the problem is displayed in Fig. 1. Following Liao [37], the }-curves are drawn to evaluate
the range of values of } that generates a convergent series solution. Therefore, for the admissible values of
}-curves for f (ζ), g(ζ), θ(ζ) and φ(ζ) are plotted in the ranges of - 0.25 ≤ } ≤ 0.00, - 0.35 ≤ } ≤ 0.10, - 0.20 ≤ }
≤ 0.00 and - 0.30 ≤ } ≤ 0.10 in Figs. (2-5) respectively.

Figure 2: } curve of f (ζ).
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Figure 3: } curve of g(ζ).

Figure 4: } curve of θ(ζ).

Figure 5: } curve of φ(ζ).



N. S. Khan / Filomat 33:16 (2019), 5387–5405 5398

4.1. Velocity Profile
Hall current is generated by the application of strong magnetic field to the boundary layer flow in the

present problem. Boundary layer fluid motion decreases through the resistance offered by of magnetic
field of high intensity since the magnetic field is applied in perpendicular direction to the flow. The
magnetic field overcomes the flow regime. When the applied magnetic field is strong then the Hall effect
generates an electric current to the flow in a side perpendicular to both the electric and magnetic fields
which communicates with the applied magnetic field to produce a transverse flow of the fluid. Hall effect
creates an extra flow in the transverse side, therefore it considerably affects the boundary layer flow features
in the channel.
In the present problem one of the most important quantity is the layer thickness. The present boundary
layer flow is relying on the thin film fluid parameter β. From Fig. 6, it appears that the velocity receives
enhancement with dissimilar values of film size parameter β. As the thickness of the fluid film grows
large, the speed of the boundary layer flow also rises which develops further by the favor of gravity force.
Increasing thickness of the fluid film increases the mass of the boundary layer, consequently boundary
layer flow becomes fast. The Hall parameter m plays a significant contribution in the boundary layer flow
which is seen in Fig. 7. The axial velocity f (ζ) tends to increase by increasing the Hall parameter m. The fact

is that Hall force pushes the fluid molecules in z-direction. The MHD dragging force -
M(1 + ∧θ)( f ′ + m1)

1 + m2

in Eq. (16) becomes less in amount with rising quantities of m yielding an acceleration in the primary flow
which generates the increment in the primary flow velocity f (ζ). Figure 8 depicts that the non-dimensional
velocity f (ζ) profile mitigates for the increasing quantities of second-grade fluid parameter γ1. Incremental
quantities of non-Newtonian parameter γ1 increase viscoelastic behaviors which are used to decrease the
flow. When the values of second-grade fluid parameter γ1 increase the resistivity forces of the fluid increase
consequently flow is hardly generated because force of attraction among liquid molecules is high. Figure 9
provides the role of magnetic field parameter M. For the high values of M, there exists an enough decrement
in the axial velocity f (ζ). The axial motion is too much weaken for the excessive amount of M. The MHD

dragging factor -
(1 + ∧θ)M( f ′ + m1)

1 + m2 in Eq. (16) shows the clear coupling of M with other factors like ∧, θ,

f′, m and g which describe that for high values of M and smaller or fixed values of m, the dragging force is
enhanced sufficiently. Further, it is concluded that the axial velocity f (ζ) always negative to any quantity
of M, so the resulting effect of M leads to a decreasing behavior of motion.
An interesting phenomenon due to the increase in Hall parameter m for the secondary flow distribution is
shown in Fig. 10. The transverse velocity g(ζ) in secondary flow decreases consistently as the parameter m
enhances and attains the lowest value when m = 1.00. The term 1

1+m2 can be explored to deduce different
conclusions about the Hall effect. Particularly, If m = 0, then the flow becomes two dimensional. So due
to Hall effect the flow is three dimensional. The making of three dimensional study from two dimensional
study is due to the application of strong applied magnetic field whose effect can be seen in Fig. 11. The

MHD dragging power -
M(1 + ∧θ)(1 −m f ′)

1 + m2 in Eq. (17) has two constituents i. e. non-negative constituent

g(ζ) and the negative constituent f (ζ). When the constituent f (ζ) becomes positive through the multiple

of - M(1+∧θ)
1+m2 factor i. e. when it has the form

M(1 + ∧θ)(m f ′)
1 + m2 (positive). In such situation, the transverse

velocity g(ζ) becomes strong due to axial velocity f (ζ). Furthermore if in the meantime M takes part for the
rising positive values, then the transverse velocity g(ζ) is distinctively high.
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Figure 6: Axial velocity f (ζ) for different values of β.

Figure 7: Axial velocity f (ζ) for different values of m.

Figure 8: Axial velocity f (ζ) for different values of γ1.
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Figure 9: Axial velocity f (ζ) for different values of M.

Figure 10: Transverse velocity g(ζ) for different values of m.

Figure 11: Transverse velocity g(ζ) for different values of M.
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4.2. Temperature Profile
Temperature profile θ(ζ) is affected by each parameter. The effect of Hall parameter m on temperature

θ(ζ) is displayed in Fig. 12. Temperature θ(ζ) rises for the high values of m. The MHD drag force -
M(1 + ∧θ)( f ′ + m1)

1 + m2 in Eq. (16) contains the term m. In numerator m has linear and in denominator m has

the quadratic form. So if m is increased then m in denominator comparatively exerts a much influence on
the drag force. Figure 13 shows the variable property of fluid showing the influence of viscosity parameter
∧. The parameter ∧ decreases the temperature θ(ζ) due to the absorption of viscous forces. The reason is
that by increasing viscosity, the cohesive and adhesive forces come into play and enhanced which absorb
the heat. These forces are very strong and capture the liquid atoms/molecules firmly. Non-Newtonian
liquids like second-grade, third-grade etc. are more viscous compared to that of Newtonian liquids. Due
to strong attractive forces among the atoms and molecules too much heat is transferred into the fluid. This
heat is used to make weaken the viscous forces. By increasing temperature the cohesive and adhesive forces
of the liquid become weak consequently, thickness of the fluid decreases. The other variable fluid property
is the thermal conductivity whose parameter ε is lying in Fig. 14 which reveals that heating conductivity
of the liquid is enhanced for increasing temperature θ(ζ). The reason is that temperature and thermal
conduction of the liquid are interrelated to one another positively. Increasing one quantity, increases the
other. Figure 15 shows that temperature decreases against the rising values of Dufour number. The reason
is that diffusion thermal effect normally affects the fluid temperature greatly.

Figure 12: Temperature θ(ζ) for different values of m.

Figure 13: Temperature θ(ζ) for different values of ∧.
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Figure 14: Temperature θ(ζ) for different values of ε.

Figure 15: Temperature θ(ζ) for different values of Du.

4.3. Concentration Profile
Figure 16 is prepared for the pertinent parameter τ. It shows that the non-dimensional concentration

φ(ζ) profile becomes low when the thermophoretic parameter τ grows high. The reason is that the greater
quantities of thermophoretic parameter τ reduce the size of concentration boundary layer. In fact the
rising quantities of τ bear depreciation in the concentration amount consequently, concentration φ(ζ)
profile resumes minimum value. The effect of Soret number Sr on concentration φ(ζ) profile is depicted
in Fig. 17, showing that concentration φ(ζ) amplifies when the parameter Sr rises. The reason is that an
increment in Sr decreases the difference of temperatures between the surface and the ambient fluid as a result
enhancements in the viscosity occur and therefore concentration φ(ζ) accelerates. By the increase of Soret
number Sr the temperature difference between hot and surrounding fluid increases, so the temperature
rises, consequently concentration φ(ζ) increases. Figure 18 shows that by making positive variation in the
values of Schmidt number Sc, the depreciation of non-dimensional concentration φ(ζ) profile takes place.
The definition of Schmidt number Sc attributes that an increase in Sc means lower molecular diffusivity,
hence the concentration boundary layer reduces.
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Figure 16: Concentration φ(ζ) for different values of τ.

Figure 17: Concentration φ(ζ) for different values of Sr.

Figure 18: Concentration φ(ζ) for different values of Sc.
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5. Conclusions

The study investigates the magnetohydrodynamic two dimensional boundary layer heat and mass
transfer flow of a thin film second-grade fluid with temperature dependent viscosity and thermal conduc-
tivity past a stretching sheet in the regime of high intensified magnetic field. The main theme is about
the transforming of two dimensional study into three dimensional space. The solution of the problem has
been made through Homotopy Analysis Method (HAM). From the given figures, it is clear that various
parameters have profound effects on the heat and mass transfer thin film flow.
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