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Some Quaternion Matrix Equations Involving ¢-Hermicity

Zhuo-Heng He?

*Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China

Abstract. Let H be the real quaternion algebra and H™" denote the set of all m X n matrices over H. For
A € H™", we denote by A, the n X m matrix obtained by applying ¢ entrywise to the transposed matrix
A', where ¢ is a nonstandard involution of H. A € H™" is said to be ¢-Hermitian if A = Ag. In this paper,
we construct a simultaneous decomposition of four real quaternion matrices with the same row number
(A,B,C, D), where A is ¢-Hermitian, and B,C,D are general matrices. Using this simultaneous matrix
decomposition, we derive necessary and sufficient conditions for the existence of a solution to some real
quaternion matrix equations involving ¢-Hermicity in terms of ranks of the given real quaternion matrices.
We also present the general solutions to these real quaternion matrix equations when they are solvable.
Finally some numerical examples are presented to illustrate the results of this paper.

1. Introduction

Quaternion matrix equation and its general Hermitian solutions play important roles in dealing with
many problems arising from systems and control theory [14]. There have been many papers using different
approaches to investigate the real quaternion matrix equations (e.g., [1]-[5], [11]-[13], [15], [16], [20], [21]).
For instance, Rodman [14] gave a necessary and sufficient condition for the existence of a unique solution
to the Sylvester quaternion matrix equation. Pereira and Vettori [13] considered the stabilities of some
quaternionic linear systems and their applications. Futorny et.al. [1] derived the Roth’s solvability criteria

for the quaternion matrix equations AX — XB=Cand X — AXB = C.

Solving the real quaternion matrix equations involving ¢-Hermicity is a new topic in quaternion linear
algebra and has attracted more and more attention in recent years. For example, He, Liu and Tam [7]
considered mixed pairs of quaternion matrix Sylvester equations involving ¢-Hermicity. Very recently, He
[6] considered the following system of quaternion matrix equations involving ¢-Hermicity

A1X1 + (A1 X1)g + C1Y1(Cr)p + FIW(F1) = Ey, _ _ _
{ AaXs + (AaXa)o + CoYa(Colo + EXW(F2)y = En, Y1= (e Y2 = (Y2)oy W= W, M

Some necessary and sufficient conditions for the existence of a solution (X, Y, Z) to the system (1) in terms
of ranks and Moore-Penrose inverses were presented in [6]. Moreover, the general solution to the system
(1) is given when it is solvable.
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In this paper, we consider the following two real quaternion matrix equations involving ¢-Hermicity:
BXBy +CYCy+DZDy = A, X=Xy, Y=Yy, Z=1Zy, ()
and
BXC+ (BXC)y + DYDy = A, Y =Yy, 3)

where A = Ay, B,C, and D are given real quaternion matrices, X, Y, Z are unknowns. In order to study the
above mentioned two equations, we need to construct a simultaneous decomposition for the quaternion
matrix array

m p1 p2 pP3
m (A B C D) @

where B € H™",C € H™"2,D € H™", and A € H™" is ¢-Hermitian. Another goal of this paper is to
find invertible quaternion matrices P, Ty, T, T3, such that

PAP,=Ss, PBTy =Sz,  PCT,=Sc,  PDT;=Sp, (5)

where Sg, Sc, Sp are quasi-diagonal matrices with the finest possible subdivision of matrices, and S, is
¢-Hermitian with an appropriate form (see Theorem 3.1 for the definitions in details).

The rest of this paper is organized as follows. In Section 2, we review the definition and properties
of ¢-Hermitian quaternion matrix. We in Section 3 construct a simultaneous decomposition of four real
quaternion matrices involving ¢-Hermicity (4). As applications of this simultaneous decomposition, we in
Sections 4 and 5 consider the solvability conditions and general solutions to the systems of real quaternion
matrix equations involving ¢-Hermicity (2) and (3).

2. Preliminaries

In this section, we review some definitions and some known lemmas which are used in this paper.
Let R and IH™" stand, respectively, for the real number field and the set of all m X n matrices over the
real quaternion algebra

H = {a + mi + aj + ask| i = = k2 = ijk = —1,a0,a1,a,03 € R}.

The symbol r(A) stands for the rank of a given real quaternion matrix A. The identity matrix and zero
matrix with appropriate sizes are denoted by I and 0, respectively. The set of all n X n invertible matrix over
the quaternion algebra are denoted by GL,(IH).

Rodman [14] presented the definitions of the nonstandard involution ¢, the resulting real quaternion
matrix Ay, and the ¢-Hermitian real quaternion matrix. At first, we review the definition of an involution.

Definition 2.1 (Involution). [14] A map ¢: H — H is called an antiendomorphism if p(xy) = P(y)P(x) for all
x,y € H, and ¢(x +y) = ¢(x) + P(y) for all x, y € H. An antiendomorphism ¢ is called an involution if (P(x)) = x
for every x € H.

The matrix representation of involutions are given in the following lemma.

Lemma 2.2. [14] Let ¢ be an antiendomorphism of H. Assume that ¢ does not map H into zero. Then ¢ is one-to-one
and onto H; thus, ¢ is in fact an antiautomorphism. Moreover, ¢ is real linear, and can be represented as a 4 X 4 real
matrix with respect to the basis {1,1,j,k}. Then ¢ is an involution if and only if

= ((1) ?) ®)

where either T = —I3 or T is a 3 X 3 real orthogonal symmetric matrix with eigenvalues 1,1, -1.
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So we can classify involutions into two classes: the standard involution and the nonstandard involution,
as defined below.

1

Definition 2.3 (Standard Involution). [14] An involution ¢ is standard if ¢ = (0

_(}3) . Fora e H, let a* denote

the standard involution of a.

Definition 2.4 (Nonstandard Involution). [14] An involution ¢ is nonstandard if
10
= 1)
where T is a 3 X 3 real orthogonal symmetric matrix with eigenvalues 1,1, —1.

In this paper, we consider only the nonstandard involution. Some examples of nonstandard involutions
can be found in [7].

For A € H™", we denote by A, [14] the X m matrix obtained by applying ¢ entrywise to the transposed
matrix A’, where ¢ is a nonstandard involution. We give some algebraic properties of quaternion matrix
nonstandard involution.

Proposition 2.5. [14] Let ¢ be a nonstandard involution. Then,
(1) (@A + BB)y = ApPp(a) + Byp(B), a,p € H, A, B € H™".
(2) (Aa + Bf)y = p(a)Ay + ¢(B)By, a,p € H, A, B € H™".
(3) (AB)y = ByAy, A€ H™", B € H™?.

4) (Ag)y = A, A e H™".

(5) If A € H™" is invertible, then (Ay)™" = (A™)s.

(6) 1(A) = r(Ap), A € H™".

(7) I¢ = I, 04) =0.

Now we recall the definition of the ¢-Hermitian matrix.

Definition 2.6 (¢-Hermitian). [14] A € H™" is said to be ¢-Hermitian if A = Ay, where ¢ is a nonstandard
involution.

For n € {i, j, k}, areal quaternion matrix A € IH*" is said to be -Hermitian if A7 = A, where A" = —nA*n
and A* stands for the conjugate transpose of A [19]. n-Hermitian matrix is a special case of ¢-Hermitian,

which has applications in statistical signal processing and widely linear modelling ([17]-[19]).
Now we review the decomposition of a ¢-Hermitian matrix A € IH™".

Lemma 2.7. Let ¢ be a nonstandard involution. For every ¢p-Hermitian A € IH™", there exists an invertible matrix
S such that

0 0
w53 )

for a nonnegative integer t < n. Moreover, t is uniquely determined by A and t = r(A).

The following lemma that is an important tool for obtaining the main result.

Lemma 2.8. [10], [22] Let B € H™",C € H™" gnd D € H"* be given. Then there exist Py € GL,,(H),
Wp € GL,,(H), Wc € GL,,(H), and Wp € GL,,(IH) such that

PiBWs=Ss,  Pi.CWc=Sc,  P.DWp=S5p,
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where
000O0TI O te
000000 ) — 76
00071 00 rs
01 0y n 01 0000 1y
§_I Or(B)gv_OOOr(B)—rzgv_OOOOOOr(B)—rz—r5—r7 @)
B=lo o) 27 |{r ool n P70 T 0000 t7 ’
000 0011 00O ra—17
000000 L —t4
1 00000 r3
000000

1 =1(B, C) =r(B), r2 = 1(B) +r(C) = (B, C), r3 =1(B, C, D) = (B, C),

ry =7(B, D)+ r(B, C)—r(B)—r(B, C, D), 15 = r(g g (0:) —r(B, D) —r(C),

D B 0

r6=r(B)+r(C)+r(D)—r(D 0 C

),7721’(3, C)+r(C, D) +r(B, D)-r(B, C, D)—r(D B O)'

D 0 C
3. A simultaneous decomposition of four real quaternion matrices (4)

In this section, we establish a simultaneous decomposition of four real quaternion matrices involving
¢-Hermicity (4).

Theorem 3.1. Let A = Ay € H™",B € H™",C € H™, and D € H"™" be given. Then there exist
P e GL,(H), T, € GL,,(H), T, € GL,,(H), T3 € GL,,(H), such that

PAP(p = SA, PBT1 = SB, PCT2 = Sc, PDT3 = SD, (8)
where
An A Ao O
$4=a)o =| (Ar)s -+ Aw A9y O )
(A110)p -+ (Ag1)y 0 0O
0 0 0 I
Ly 00 00 0 0 01, 00 0.0 0 010
I 0000 00
0 Iy 0 0 00 0 0 0 01,0 888008
0 0L, 0 00 000 0 00 3
00 0L 00 00 0 0 00 0 Iy 0 0 00
m,
4 00 0 0 00 00 0 0 00
Sg=|0 0 0 050 G=|Ly 00 0 00|, Sp=|01L,0 0 00], (10)
888888 0 Iy, 0 0 00 0 0 I, 0 00
0000 00 0 0Ly, 0 00 00 0 0 00
000 0 00 000 0 00 Iug, 0 0 0 00
000 0 00 00 0 0 00 00 00 00
0 0 0 0 0O 0O 0 0 0 00O 0O 0 0 0 00
and
A B C D
B, 0 0 O
t=r| 0 - 2¢(B,C,D 11
Cob 0 0 O (B,C D), (1)
D, 0 0 O
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D B 0
my = r(D) + r(B) + r(C) — r(D 0 C) ,

0

_ (D B
mz—i"D 0

my = (B, C) +r(C, D) +r(B, D) - (B, C, D)_r(D B o),

D 0 C

ms =r(B, C, D) —r(C, D), mg = r(g ]g g) —r(C, D) —r(B),

my =r(B, C, D) —r(B, D), mg =r(B, C, D) —r(B, C).

g) —r(B, C)—r(D), mz = r(g lg C) —r(B, D) -r(C),

5101

(12)

(13)

(14)

(15)

(16)

Proof. It follows from Lemma 2.8 that there exist four matrices P; € GL,,(IH), Wp € GL,,(H), W¢ € GL,,(H),

and Wp € GL,,(H) such that

Wg 0 0
Pi(B,C,D){ 0O W¢ 0 |=
0 0 Wp
I 00 0 0O 0 001 0O 00 00O
01 00O0O 0 00 O0TI O 00 00
0 0I 00O 0 000 0O 00 0 I
0001 00 0 000 0O 01 00
000 O0TIO 0 00 O0O0TUO 00 00O
0 000 O0TU O I 00 0 0O 01 00
00 00 0O 0O I 00O0UO 00 I O
000 O0O0O 0 0I 00O 00 00O
00 0 O0O0O 0 000 O0UO I 0 0 O
0000 O0TU O 0 00 O0O0TUO 00 00
Let
(€] 1)
Al Al,l()
P1A(P1)y = P1As(P1)y = : .
(€] (1)
(A1,10)¢ A10,10

where the symbol £ means “equals by definition”. Now we pay attention to the ¢-Hermitian matrix A

By Lemma 2.7, we can find an invertible matrix P, such that

1 0 0 1
PZA(10),10(P2)¢> = (0 It)' t= r(Ago),w :

Then we have

2

1) 1) AH

Al Al,lO :

Ligcp)y O : Ligepy 0) 4| ., 0
0 PJl o 0 g (Aé?)(P
(Al,w)ﬁb A10,10 (A%Z,%OLP
(A )q‘)

1,11

SO OO OO OO OO~

OO OO OO OO OO

(A

m —1(B,C,D)

(2)
19 A1,10

2
9,11)4>

A(Z)

1
10,10°
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I 0 Wg 0 0
(r@(,)c,m b ) PiB,CD)| 0 We 0 |=
2 0 0 Wp
I 00 0 0O 0 0011 0O 00 0O0TI O m
01 00 O0DO 0 00 O0TI O 00 0 O0O0UO My
0 0I 00O 0 000 0O 00 01 00O ms
0001 0O 0 000 OO 0 I 00 00O i
000 O0TIO 0 000 O0UO 000 O0O0OTG O Ms
000 0 O0TO O I 00 0 0O 071 00O0O My
000 O0O0TO O 0O I 00O0UO 00 I 00O M
000 O0O0OTG O 0 0I 00O 00 0 O0O0UO my
0 00 0 O0O 0 000 OO I 00 0 0O mg
000 0 O0TO O 0 000 OTP O 00 0 0 0 Olm-—rB,CD)-t
000 0 O0TO O 0 00 O0OTP 000 O0O0TO O t
Let
2
0 _A1,11
P3 — I”hm .
0 -AY
9,11
0 Im_rbcd
Then we obtain
2 2 2 (2
A11 A19 Al,lO A1,11 A1 Aqg A0 O
2 R I L
Ps (A529))¢> ‘42;9) Ag,io A(9,i1 (P3)y = (A9)p -+ A A9 O
(Azlgo FRREER (A%Q%O o 0 0 (A180)¢J (A9(,)10)¢> 8 ?
(A1,11 ¢ (‘49,11)¢J 0 I; '
Let

. I 0
P2 Ps( r(BbC’D) Pz) Py, T1 =Wc, To = Wp, Tz = WE.

Hence, the matrices P € GL,,(H), Ty € GL,,(H), T € GL,,(H), and T3 € GL,,(H) satisfy the equation (8).
Now we want to give the expressions of t,mj, ..., ms. It is easy to verify that

A B C D
_|Bs 0 0 0
t—rCqb 00 0 —-2r(B,C,D).

Dy 0 0 0

It follows from Sy, Sg, Sc, and Sp in (9)-(10) that
111110 0 0y m r(B)
1101011 0llm r(C)
1011010 1||ms r(D)
1112111 0ffma|_ r(B,C)
1112110 1||lms|™ (B, D)
1112 01 1 1||me r(C,D)
1112111 1||lm r(B,C,D)
1011010 Ylm) (r(BEL)-rB)-r0O)

Solving for m;, (i = 1,...,8) gives (12)-(16). O
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Remark 3.2. n-Hermitian is a special case of ¢p-Hermitian, where 1 € {i,j, k}. As a special case of Theorem 3.1, we
can obtain the simultaneous decomposition of four real quaternion matrices with the same row number (A, B, C, D),
where A € H™" is n-Hermitian, B € H"™",C € H™, and D € H"*"3 are general matrices.

Let D vanish in Theorem 3.1, then we obtain the simultaneous decomposition of a matrix triplet with
the same row numbers

(A/ B/ C)/
where A is a ¢-Hermitian matrix.

Corollary 3.3. Let A = Ay, € H™™,B € H™", and C € H"P? be given. Then there exist P € GL,(H), T €
GL,,(H), T, € GL,,(H), such that

PAPy = Sg, PBT, = Sg, PCT, = Sc,

where

m (A, A, A, A, 0 I 00 I 00
1y (Aiz)(p Aléz A% A%Al 0 010 0 00
(Sa, Sp, Sc)=n3 | (Ao (Ay)e Ay Ay O 0 0O 0 I 0f
(Al (Al)e (Al 0 0 0 0O 0 00O
U 0 0 0 0 I 0 0O 0 0O
and
A B C
ny =r(B) +r(C)—r(B, C), np =r(B, C) =r(C), n3=7(B, C)—r(B), ng4 =r|By 0 0|-2r(B, C).
Co 0 O
4. Solvability conditions and general ¢-Hermitian solution to (2)
In this section, we consider the following real quaternion matrix equation
BXBy+CYCy +DZDy = A, X=Xy, Y=Yy, Z=12y, (17)

where A = Ay, B,C, and D are given real quaternion matrices. We give some solvability conditions for the
real quaternion matrix equation (17) to possess a ¢-Hermitian solution and to present an expression of this
¢-Hermitian solution when the solvability conditions are met. A numerical example is given to illustrate
the main result.

Theorem 4.1. Let A = Ay € H™",B € H™"',C € H™2, and D € H"™%* be given. Then the real quaternion
matrix equation (17) has a ¢-Hermitian solution (X, Y, Z) if and only if the ranks satisfy:

r(A,B,C,D) =r(B,C,D), r(é B C) =r(B,C) +r(D), (18)
o 0 0

A B D A C D

r(cd) 0 0) =r(B,D) + r(C), r(B¢ 0 0) =r(C,D) + r(B), (19)
0 Dy Dy 0 O
D -A 0 0 B

r[D 0 A C 0f= Zr(g ]g g) (20)
0 C 0 00
0 0 By 0 O

<
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In this case, the general ¢p-Hermitian solution to (17) can be expressed as

X= Tlg(ﬂ)q), Y = TZ?(TZ)qb/ Z= Tsi(T3)¢,

where
X1 X12 X13 X4 A5 Xie
X12)p  Xm A A Ay Xoe
X=X, = (X13)g  (A23)p X33 Asa—Asze Az Xz , 1)
(X14)p  (A24)p (Asa—Aze)y As—Ass Az Xas
(A15)g  (A2s) (Azs)e (Ass)¢ Ass  Xsg
X16)p  (X26)e (X36) (Xa6)p  (Xs6)p  Xeo
Ags — Ass A7 — Az Aes  (Are—Aua+Xia)g  (A)e Y6
(Ae7 — Aaz)o Y2 Az You (A27)p Yoo
Y=Y, = (Ass)s (A78) Ass (A18)e (A2s)y Y3 , 22)
A —As+ Xue (Yaa)o Asg Y Ap —X1p Y
Az Ay Ass (A2 — X12) Axp —Xpn  Yse
(Y16) (Yoe)g  (Y36) (Ya6) (Yse)p  Yes
Agg (As9) s (A79)e (Az9)g (A19)¢ Z16
Agg Ags Aygz (Aze)p  (Ara—X1a)p Zoe
7 ’Z‘¢ _ | Am (A7) A7z =Y A7)y (Ar7)ep —You  Zss / (23)
Azg Azs Asz Az —Xs3 (Aiz—X13)p  Zas
Ay Au—-Xu Aiz—(Ya)y A —Xis Zss Zs6
(Z16)e  (Z26)g (Z36)¢ (Z16)g (Zs6)¢» Zes

in which X11, X22, X33, Xe6, Y22, Yaa, Yoo, Zss, and Zes are arbitrary ¢p-Hermitian matrices over H with appropriate
sizes, the remaining Xij, Y;j, Z;; are arbitrary matrices over H with appropriate sizes.

Proof. Observe that the dimensions of the coefficient matrices A, B, C, and D in the real quaternion matrix
equation (17) have the same number of rows. Hence, the coefficient matrices A, B, C, D can be arranged in
the following matrix array

(A B C D).

It follows from Theorem 3.1 that there exist P € GL,,(H), T1 € GL,(H), T> € GL,,(H), T3 € GL,,(IH), such
that

PAPy = Sa, PBT, = Sg, PCT, =S¢, PDTs = Sp,

where 54, Sg, Sc, and Sp are given in (9) and (10). Hence the matrix equation (17) is equivalent to the matrix
equation

P_lSB[Tl_lX(Tl)qf](SBMP(;l + P_lsc[Tz_lY(Tz)g,l](schp(;l + P_lSD[Tg?lZ(T3)(;1](5D)¢P(;1 =P'S,P;),
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ie.,
SB[T1_1X(T1);,1](SB)¢ + Sc[Tz_lY(Tz),?Jl](Sc)cp + SD[Tg?lZ(T3),_¢,1](5D)¢ =Sa.

Let the matrices

X1 X16

X=T{'X(T)p =] . 1 [=Xy,
(X16)¢ X6
Y Y16

Y = Tz‘lY(Tz);)1 =| =Y,
(Yie)p -+ Yeo
Zy o Zis

Z=T;'Z(T) =]+ =7,
(Z16)o = Zes

be partitioned in accordance with (24). Substituting X Y, and Z of (25)-(27) into (24) yields

X11+Yas+Zss Xio+Yss Xi3+(Zas)y X1a+(Zos)g Xis (Y1a+Z2s)g (Yoa+Zss)e (Yaa)y (Zas)y 0 0

(X12+Ya5)p Xon+Ys5 X23 Xo4 X5 (Yas) (Yos)p  (Yss)p O 00
(X13)p+Zas (X23)g  Xsz+Zu  Xaut(Zoa)y Xas  (Zoa)g (Z34)g 0 (Z14)p 00
(X14)p+Z25  (X2a)g (Xaa)p+Zoa Xu+Zm Xas Zy Zys 0 (Z12)p 00
(X15) (X25)p  (X35) (X5)g X5 0 0 0 0 00
Yia+Zss Y15 Zo Zn 0 Yu+Zn Yit+Zs Yz (Zi2)p 00
You4+Zs5 Yas Z3y (Zs)y 0 (Yio+Zas)y Ymt+Zsz Yz (Z13)p 00
Y34 Y35 0 0 0 (Yi3)p (Y23)g Y3 0 00
Zs5 0 Z1g Zyp 0 Z1p Zy3 0 Zi 00
0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 00
An - A Ao O
(A19)p -+ Ag  Ago O]
(A110)p -+ (A910)e 0 0
0 e 0 0 I;

If the equation (17) has a ¢-Hermitian solution (X, Y, Z), then by (28), we obtain that

t =0, Ag = Aeo, Ass = (As6)e, ((A1,10)<p, R (A9,10)¢) =0,

A =0, Azg =0, Agg =0, As6 =0, As7 =0, Asg =0, Asg =0, Ago =0,
and

X+ Y+ Zss = A1, Xio + Yas = Arp, Xi3 +Zsy = Arz, X1a + Zsp = Arg, Xi5 = Ass,
Yy +Zsy = Avg, Yoo +Zsz = A1y, Y3 = Atg, Zs1 = A9, Xo1 + Y54 = Ap1, Xop + Y5 = Aoy,

Xoz3 = Az, Xog = Apa, Xos = Azs, Ys1 = Ans, Yo = Aoy, Y3 = Agg, Xa1 +Zys = Az,

5105

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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X3 = Az, X33 +Zss = Azz, Xaa+ Zap = Aszs, X35 = Ass, Zap = Asg, Zaz = Az7, Zs = Azo,

Xa1 +Zos = Apt, Xap = Asp, Xz + Zoa = Asz, Xaa +Zop = Aga, Xas = Ass, Zo = Ass,

Zoz = Ay, Zo1 = Aygg, Xs1 = As1, X2 = Asp, X53 = Ass, Xs4 = Asy, Xs5 = Ass,

Y4+ Zos = A1, Y15 = Asp, Zos = Aes, Lo = Ass, Y11 +Zop = Ags, Y12 + Z23 = Agy,

Y13 = Aes, Zo1 = Aeo, You +Zss = Ay, Yos = Ay, Zzs = Ays, Zzp = Azs, Yo1 + Z3p = Ays,

Yoo +Z3z = Azy, Yo3 = Ays, Z31 = Az9, Yaa = Ag1, Y35 = Agp, Y31 = Ags, Y32 = Agy,

Y33 = Ags, Z15 = Ag1, Z14 = Aoz, Z1p = Aos, Z12 = Ags, Z13 = Ag7, Z11 = Ago.
Hence, the general ¢-Hermitian solution (X, Y, Z) can be expressed as (21)-(23) by (28).

Conversely, assume that the equalities in (29) and (30) hold, then by (25)-(28), it can be verified that the

matrices having the forms of (21)-(23) form a ¢-Hermitian solution of (24), i.e., (17).

We now show that (18)-(20) < (29) and (30). From S 4, Sg, Sc, and Sp in Theorem 3.1, we can infer that
We now show that (18)-(20) &= (29) and (30). From S4, Sg, Sc, and Sp in Theorem 3.1, we can infer that

HA, B, C, D) = #(B, C, D) < ((A110)p, -+, (Ag10)) =0, £ =0,

7’([1)4 B C) = T’(B,C) + T(D) — A29 =0, Agg =0, A49 = A69, t=0,

s 0 0

7‘((1:4 g [0)) = T’(B,D)+7'(C) <:>A3g =0, A48 =0, A58 =0, Asg =0,t=0,
¢

1’(é4 g Ig) = }’(C,D) + I’(B) (=== A56 = O, A57 = 0, A58 = O, A59 = 0, t= 0,
¢

0 Dy Dy 0 0

D -A 0 0 B DB O

r|D 0 A cC 0 ZZT’D 0 C <:>A46:(A46)(]5/t:0-

0 Co 0 0 0

0 0 B 0 0

¢

Now we present an example to illustrate Theorem 4.1.

Example 4.2. Given the real quaternion matrices:

B = i+j+k 1 1+i+j-k (1 2i+j -1+k
“\-1-j+k i -1+i+j+k) T li+k 1+i+j-k 0o )
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pofit2k i+l §) ,_, _( -1+5i-20k  -25-2i-17j-5k
Tl2jex —1-j k) AT T 25-2i+17j-5k -9-18i-14k |

we consider the -Hermitian solution to the real quaternion matrix equation (17), where (a) = a¥* = —ja‘j fora € H.
Check that

A B C

r(A,B,C,D) =r(B,C,D) =2, r(Drb 0 0

) =rB,C)+r(D) =23,

A B D A C D
r(c¢) 0 0)—r(B,D)+r(C)—3,r(B¢ 0 0)—r(C,D)+r(B)—3,
0 Dy, Dy 0 O
D -A 0 0 B
rfD 0 A C 0 =2r(g lg g)=6
0 G, 0 0 0
0 0 By, 0 O

All the rank equalities in (18)-(20) hold. Hence, the real quaternion matrix equation (17) has a ¢p-Hermitian solution
(X,Y,Z). Note that

1 i+k 0 0 1+i k i i-k k
i+k 1+i 1-k|, Y=Y,=[1+i i 2k|,Z=Z,=|i-k i 1

0 1-k O k 2k 1 k 1 1

X=Xy =

satisfy the real quaternion matrix equation (17).

5. The solution to (3) with Y being ¢p-Hermitian
We now turn attention to the following real quaternion matrix
BXC+ (BXC)y + DYDy = A, Y =Yy, (31)

where A = Ay, B, C, and D are given real quaternion matrices. We derive necessary and sufficient conditions
for (31) in terms of ranks of the coefficient matrices. We also give the general solution to this real quaternion
matrix equation. A numerical example is also given to illustrate the main result.

Theorem 5.1. Let A = Ay € H™",B € H™"',C € H**", and D € H"™%* be given. Then the real quaternion
matrix equation (31) has a solution (X,Y), where Y is ¢p-Hermitian, if and only if the ranks satisfy:

A B C

"(A, B, Cy, D) =1(B, Cy, D), r(qu : 0¢) = 1B, Cy) + (D), (32)
A B D) _ A Cy, D) _

r(B(p 0 O) =r(B, D) + r(B), r(c 0 ) =1(Cy, D) +1(C), (33)
A 0 B 0 D
0 -A 0 Cy D

rlBs 0 0 0 0 :2r(lg CO g). (34)
0 C 0 0 0 ¢
D, Dy 0 0 0



Z. H. He/Filomat 33:16 (2019), 5097-5112 5108

In this case, the general solution to (31) can be expressed as

X =TiX(T2)s, Y = T5Y(Ts)y,

where
X1 X12 Asg X14 Ap —(Xa)y  Xie
A Az Ans X4 An+Z X
X = |Ase = Ase X32 Asg X34 (A23)e X36 (35)
Ags —Ags Agr— A7y Asg (Ars — Ase + X11)p (A24) Xge |
Asg Asz Asg (A15) (A2s) Xs6
Xe1 Xe2 Xe3 X4 Xes Xe6
Agg (A9)e (A79) (Az9)p (A19)g Yie
Agg Ay Agz (Aza)g (A1a)p — Xaa Y26
v=| A4 (A67) A7z (Az7 — X32) (A7 — X12) Y36 (36)
Asg Asy Azz — X3 Aszs (A13)p — X34 Yas |’
A Au-Xu)y Az —Xio Az —(Xaa)p An— X —(Xia)y  Yse
(Y16)o (Ya6)o (Y36)g (Yae)o (Ys6)g Yes

in which Yes and Z are arbitrary ¢-Hermitian matrices and ¢-skewhermitian (Z + Zy = 0) matrices over H,
respectively, the remaining X;; and Y;j are arbitrary matrices over H.

Proof. Note that the dimensions of the coefficient matrices A, B, Cy, and D in real quaternion matrix equation
(31) have the same number of rows. Hence, the coefficient matrices A, B, C, D can be arranged in the following
matrix array

(A B ¢y D).

It follows from Theorem 3.1 that there exist P € GL,,(H), T1 € GL,,(H), T> € GL,,(H), T3 € GL,,(IH), such
that

PAPy=Ss,  PBT1=S;,  PCyT»=Sc,  PDTs=Sp,

where 54, 5g,5¢c, and Sp are given in (9) and (10). Hence the real quaternion matrix equation (31) is
equivalent to the real quaternion matrix equation

P_lsB[Tflx(Tz)(Zl](Sc)qufpl + P_lSc[Tz_lx(p(Tl);/,l](SBMP;l + P_lsD[T3Y(T3)¢](SD)¢P;bl = P_15AP;,1,
ie.,
SB[T{lx(Tz);,l](Sc)(p + SC[T2_1X¢(T1)(_()1](SB)¢ + Sp[T3Y(T3)9](Sp)y = Sa. (37)

Let the matrices

X - Xie
X=T'X(Ty),' = + . |, (38)
Xe1 0 Xes
Yiu o Y
Y=T;'Y(Ta); =+ 0 i |=Y, (39)

(Yie)p -+ Yes
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be partitioned in accordance with (37). Substituting X and Y of (38) and (39) into (37) yields

X4+ (X14)p+Ys5 Xi5+(Xaa)g (Xaat+Ya5)e (XaatY25)e (Xsa)o X11+(Yas)y Xi2+(Y3s)g X1z (Yis)p 0 0

Xoa+(X15)p  Xos+(Xas5)p  (Xss)g (Xa5)p  (Xs5)g X1 Xn Xs 0 00
X34+Yss5 X35 pon (Yaa)g 0 Xa1+(Y2a)p X3+(Yaa)p Xa3 (Y14) 0 0
Xaat+Yos5 Xu5 Yo Y2 0 Xan+Yn  Xep+Ys Xa (Yi2)p 00

Xs4 Xs5 0 0 0 X5 X5 Xs3 0 00
(X11)p+Y25 (X21)g  (Xs1)p+Yos (Xa1)o+Y22 (Xs1)g Y2, Yos 0 (Y12) 00
(X12)p+Y35 (X22)p  (X32)p+Yas (Xaa+Y23)p Xs2)p  (Y23)o Y33 0 (Y13)p 00

(X13)9 (X23) (X33) Xa3)g  (Xs3)p 0 0 0 0 00
Y15 0 Y1a Y12 0 Y12 Y13 0 Y 00
0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 00
An - A Ao O
(A19)g -+ Agg  Ag1p Of- (40)

(A100)p -+ (Agp0)p 0 O

0 e 0 0 I;

If the equation (31) has a solution (X, Y), then by (40), we obtain that

t=0, ((A1,10)¢, e, (A9,10)¢) =0, Au=As, A =Ag, (41)

A =0, Aso =0, Ago =0, Aes =0, Azg =0, Agg =0, A5 =0, A5 =0, As5 =0, (42)
and

X1+ (X14)g + Y5 = A1, Xis + (Xoa)p = A1, (Xaa + Yas)g = Arz, (Xaa + Y25)p = Ang,

(Xs4)p = A1, X11 + (Ya5)p = Ate, X12 + (Yas)gp = A1z, Xiz = Aus, (Y15)g = Aro,

Xo5 + (X25)g = Az, (X35)9 = Ans, (Xas)g = Ana, (X55)¢ = Azs, Xo1 = Aze, X2 = Agy,

Xoz = Ass, Yaa = Asz, (Yau)p = Asa, Xa1 + (Yaa)p = Ase, Xa2 + (Yaa)p = Asz, X33 = Asg,

(Y1a)p = Aso, Yo = Asa, Xa1 + Yoo = Ase, Xao + Yo3 = Az, X3 = Ass, (Y12)g = Agg, X51 = Asg,

Xsp = Asy, Xs3 = Asg, Yoo = Aes, Yo3 = Aez, (Y12)p = Aeo, Y33 = A7z, (Y13)p = Az, Y11 = Aoo.

Hence, the general solution (X, Y) can be expressed as (35) and (36) by (40).

Conversely, assume that the equalities in (41) and (42) hold. Then by (38)-(40), it can be verified that the
matrices having the forms of (35) and (36) form a solution of (40), i.e., (31).

We now want to prove that (32)-(34) < (41) and (42). From S4, S, Sc, and Sp in Theorem 3.1, we can
infer that

"(A,B,Cy, D) =1(B,Cy,D) & ((A110)s, -+, (Asp0)g) =0, £ =0,

A B Gy
.
Dy 0 0

) =r(B, C¢) +7(D) & Ay =0, Agg =0, Ago = Ago, t =0,
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r(}é4 g €)=T(B,D)+1’(B)<=>A68=O, A7 =0, Ags =0, Agg =0, t =0,
¢
r(’é C0¢, g):r(C¢,D)+r(C)<:>A35:O,A45:O,A55:0,A59:0,t:O,
A 0 B 0 D

0 -A 0 C, D
r B¢ 0 0 0 0 :2r(g é) g)<:>A44:A66:0/t:0-

0 C 0 0 0 ¢

Dy Dy 0 0 0

Next we give an example to illustrate Theorem 5.1.

Example 5.2. Let

i+j -2+k
B= 1+j i+k 142i+j -1-k ] 1+2j 2i + 2k
“li-j -1-k -2+i-j -i+k/)' T |-i+j+k 2-j+k|

j k
D= i+j 1+3i 1+k A=A, = -16-6j+34k 9+17i-31j-3k
-1+ k 3+i i-j) 7 T T 9-17i-31j-3k  -30+12j — 16k |
Now we consider the real quaternion matrix equation (31), where ¢(a) = a** = —ia‘i for a € H. Check that

"(A,B,Cy,D) = 1(B,C4,D) =2, Y(qu 13 %¢)=r(3,c¢)+r(1))=3,

A B D)\ _ _ A Cy Dy _ -
T’(Bix- 0 0) = T’(B/ D) + T’(B) - 4/ r(C 0) 0) - T’(C(/), D) + T’(C) - 4’
A 0 B 0 D

0 -A 0 Cy D
r[B, 0 0 0 0 =2r(lg g g):&

0 C 0 0 0 ¢

Dy Dy 0 0 0O

All the rank equalities in (32)-(34) hold. Hence, the real quaternion matrix equation (31) has a solution. It is easy to
show that

2+i+k 1+i4j 1 i+k 1437 147 i
I S T PR TS A I VI _[1_1i : 1]
Tl1+i+j+k 1 1+j 1+i+k|” "~ 27|, ..
i+j+2k 1-i+k 1+2j 2+i+k )]

satisfy the real quaternion matrix equation (31).
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Remark 5.3. The research on the system of quaternion matrix equations involving n-Hermicity has attracted more
and more attentions in recent years (e.g. [81, [9], [23]-[25]). As special cases of the quaternion matrix equations (2)
and (3), we can derive some necessary and sufficient conditions for the existence of a solution to the following four
quaternion matrix equations involving n-Hermicity for n € {i, j, k}:

BXB™ + CYC™ +DZD"™ = A, X = X", Y = Y™, Z = ZT",
BXC + (BXC)™ +DYD™ = A, Y = Y™,

where A = A™, B, C, and D are given quaternion matrices.

6. Conclusion

We have derived a simultaneous decomposition of four quaternion matrices with the same row number
(A,B,C, D), where A = A, € H™™,B € H™",C € H™",D € H™", ¢ is a nonstandard involution of H.
As applications of this simultaneous decomposition, we have presented necessary and sufficient conditions
for the existences and the general solutions to the quaternion matrix equations involving ¢-Hermicity (2)
and (3). Some numerical examples are presented to illustrate the results.

7. Acknowledgement

The author would like to thank the anonymous referee for careful reading of the manuscript and valuable
suggestions.

References

[1] V. Futorny, T. Klymchuk, V.V. Sergeichuk, Roths solvability criteria for the matrix equations AX — XB = Cand X — AXB = C over
the skew field of quaternions with an involutive automorphism g — 4, Linear Algebra Appl. 510 (2016) 246-258.
[2] M. Dehghan, M. Hajarian, Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations, Appl.
Math. Model. 35 (2011)3285-3300.
[3] Z.H. He, Structure, properties and applications of some simultaneous decompositions for quaternion matrices involving ¢-skew-
Hermicity, Adv. Appl. Clifford Algebras 29 (2019) Article 6.
[4] Z.H. He, Pure PSVD approach to Sylvester-type quaternion matrix equations, Electron. J. Linear Algebra 35 (2019) 266-284.
[5] Z.H. He, The general solution to a system of coupled Sylvester-type quaternion tensor equations involving n-Hermicity, Bull.
Iranian Math. Soc. 45 (2019) 1407-1430.
[6] Z.H. He, A system of coupled quaternion matrix equations with seven unknowns and its applications, Adv. Appl. Clifford
Algebras 29 (2019) Article 38.
[7] Z.H. He, ]. Liu, T.Y. Tam, The general ¢-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations, Electron. J.
Linear Algebra 32 (2017) 475-499.
[8] Z.H. He, Q.W. Wang, Y. Zhang, Simultaneous decomposition of quaternion matrices involving n-Hermicity with applications,
Appl. Math. Comput. 298 (2017) 13-35.
[9] Z.H.He, Q.W. Wang, The n-bihermitian solution to a system of real quaternion matrix equations, Linear and Multilinear Algebra
62 (2014) 1509-1528.
[10] Z.H.He, Q.W. Wang, Y. Zhang, A simultaneous decomposition for seven matrices with applications, ]. Comput. Appl. Math. 349
(2019) 93-113.
[11] Z.Jia, M.K. Ng, G.J. Song, Robust quaternion matrix completion with applications to image inpainting, Numer. Linear Algebra
Appl. (2019) e2245.
[12] I Kyrchei, Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations,
Linear Algebra Appl. 438 (2013) 136-152.
[13] R. Pereira, P. Vettori, Stability of quaternionic linear systems, IEEE Trans. on Automatic Control. 51 (2006) 518-523.
[14] L. Rodman, Topics in quaternion linear algebra, Princeton University Press, 2014.

[15] C.Song, G. Chen, On solutions of matrix equation XF — AX = C and XF — AX = C over quaternion field, J. Appl. Math. Comput.
37 (2011) 57-68.

[16] G.J. Song, C.Z. Dong, New results on condensed Cramers rule for the general solution to some restricted quaternion matrix
equations, J. Appl. Math. Comput. 53 (2017) 321-341

[17] C.C. Took, D.P. Mandic, Augmented second-order statistics of quaternion random signals, Signal Processing 91 (2011) 214-224.

[18] C.C. Took, D.P. Mandic, The quaternion LMS algorithm for adaptive filtering of hypercomplex real world processes, IEEE Trans.
Signal Process. 57 (2009) 1316-1327.



[19]
[20]
[21]
[22]
[23]
[24]

[25]

Z. H. He/Filomat 33:16 (2019), 5097-5112 5112

C.C. Took, D.P. Mandic, F.Z. Zhang, On the unitary diagonalization of a special class of quaternion matrices, Appl. Math. Lett.
24 (2011) 1806-1809.

Q.W.Wang, Z.H. He, Y. Zhang, Constrained two-sided coupled Sylvester-type quaternion matrix equations, Automatica 101(2019)
207-213.

Q.W. Wang, ] W. van der Woude, H.X. Chang, A system of real quaternion matrix equations with applications, Linear Algebra
Appl. 431 (2009) 2291-2303.

Q.W. Wang, ].W. van der Woude, S.W. Yu, An equivalence canonical form of a matrix triplet over an arbitrary division ring with
applications, Sci. China Math. 54 (2011) 907-924.

S.F. Yuan, Q.W. Wang, Two special kinds of least squares solutions for the quaternion matrix equation AXB + CXD = E, Electron.
J. Linear Algebra. 23 (2012) 257-274.

S.E. Yuan, Q.W. Wang, L-structured quaternion matrices and quaternion linear matrix equations, Linear and Multilinear Algebra
64 (2016) 321-339.

Y. Zhang, R.H. Wang, The exact solution of a system of quaternion matrix equations involving n-Hermicity, Appl. Math. Comput.
222 (2013) 201-209.



