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Abstract. Let R be a commutative ring with unity. The notion of λ-rings, φ-λ-rings, and φ-∆-rings is
introduced which generalize the concept of λ-domains and ∆-domains. A ring R is said to be a λ-ring if the
set of all overrings of R is linearly ordered under inclusion. A ring R ∈ H is said to be a φ-λ-ring if φ(R)
is a λ-ring, and a φ-∆-ring if φ(R) is a ∆-ring, where H is the set of all rings such that Nil(R) is a divided
prime ideal of R and φ : T(R) → RNil(R) is a ring homomorphism defined as φ(x) = x for all x ∈ T(R). The
equivalence of φ-λ-rings, φ-∆-rings with the latest trending rings in the literature, namely, φ-chained rings
andφ-Prüfer rings is established under some conditions. Using the idealization theory of Nagata, examples
are also given to strengthen the concept.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity; all ring extensions
and ring homomorphisms are unital. By an overring of R, we mean a subring of the total quotient ring
of R containing R. By a local ring, we mean a ring with a unique maximal ideal. We use T(R) to denote
the total quotient ring of R, R′ to denote the integral closure of a ring R in T(R), Nil(R) to denote the set of
nilpotent elements of R, and Z(R) to denote the set of zero-divisors of R. All the elements of R \ Z(R) are
said to be regular elements of R and an ideal is said to be regular if it contains a regular element. A divided
prime ideal [14] is a prime ideal Q of a ring R such that QRQ = Q. Badawi characterized the divided prime
ideal of R in [3], as a prime ideal which is comparable to every ideal of R. In [4], Badawi introduced the
class H = {R | R is a commutative ring and Nil(R) is a divided prime ideal}. In [1], Anderson and Badawi
defined H0 to denote the subset of H such that Nil(R) = Z(R). These classes of rings were studied in [1],
[2], [4], [5], [6], [7], [8], [9], [12]. The further study of φ-rings is given in [10], [11], [13].

For R ∈ H , Badawi [4] considered the ring homomorphism φ from T(R) to RNil(R) given by φ(r/s) = r/s
for r ∈ R and s ∈ R\Z(R). Note that the restriction ofφ to R is also a ring homomorphism given byφ(r) = r/1
for r ∈ R. A ring R is said to be φ-integrally closed [2] if φ(R) is integrally closed. Griffin [23] introduced
Prüfer rings as the rings in which each finitely generated regular ideal is invertible. A ring R ∈ H is said to
be a φ-Prüfer ring [1] if φ(R) is a Prüfer ring. Recall from [18] that a ring R is said to be a quasi-valuation rin1
if either x divides y or y divides x in R for all x, y ∈ R \ Z(R).

Recall from [6] that a ring R ∈ H is said to be a φ-chained ring if for each x ∈ RNil(R) \ φ(R), we have
x−1
∈ φ(R). An integral domain R is called a Dedekind domain if every nonzero ideal of R is invertible, that
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is, if I is a nonzero ideal of R, then II−1 = R, where I−1 = {x ∈ T(R) | xI ⊆ R}. Recall from [17] that an integral
domain R is a Krull-domain if R = ∩Vi, where each Vi is a discrete valuation overring of R, and every
nonzero element of R is a unit in all but finitely many Vi. An ideal I of a ring R is said to be a non-nil ideal
if I * Nil(R). A non-nil ideal I of R is φ-invertible [2] if φ(I) is an invertible ideal of φ(R). If every non-nil
ideal of R is φ-invertible, then R is said to be a φ-Dedekind ring [2]. Also, a ring R is said to be a φ-Krull
ring [2] if φ(R) = ∩Vi, where each Vi is a discrete φ-chained overring of φ(R), and for every non-nilpotent
element x ∈ R, φ(x) is a unit in all but finitely many Vi.

In this paper, we generalize and study the concept of λ-domains to the rings in H . A ring extension
R ⊆ S is said to be a λ-extension [22] if the set of all subrings of S containing R is linearly ordered under
inclusion. Note that an integral domain R is said to be a λ-domain [22] if the set of all overrings of R is
linearly ordered under inclusion. Motivated by this, we define two new classes of rings, namely, λ-rings
and φ-λ-rings. A ring R is said to be a λ-ring if the set of all overrings of R is linearly ordered under
inclusion. We study λ-rings in class H0. A ring R ∈ H is said to be a φ-λ-ring if φ(R) is a λ-ring. We
explore φ-λ-rings in H . Recall that a ring extension R ⊆ S is said to be a ∆-extension [20] if sum of any
two subrings of S which contains R is again a ring. Moreover, R is a ∆-ring if sum of any two overrings of
R is again an overring of R. In this paper, we introduce another new class of rings, namely, φ-∆-ring. A
ring R ∈ H is said to be a φ-∆-ring if φ(R) is a ∆-ring. We study the properties of φ-λ-rings, φ-∆-rings and
characterize the same. In section 2, we study λ-rings and establish the equivalence of an integrally closed
λ-ring and a quasi-valuation rin1. We discuss φ-λ-rings and φ-∆-rings in Section 3 and 4, respectively. The
equivalence of φ-λ-rings and φ-∆-rings with the latest trending rings in the literature, namely, φ-chained
rings and φ-Prüfer rings is established under some conditions. Using the idealization theory of Nagata,
examples are also given to strengthen the concept.

Recall from [25, cf. Nagata, 1962, p.2] that if R is a ring and M is an R-module, then the idealization
R(+)M is the ring defined as follows: Its additive structure is that of the abelian group R ⊕ M, and its
multiplication is defined by (r1, x1) (r2, x2) := (r1r2, r1x2 + r2x1) for all r1, r2 ∈ R and x1, x2 ∈ M. Given rings
R ⊆ S, the conductor (R : S) := {s ∈ S | sS ⊆ R}. Also, dimension(al) refers to Krull dimension.

We now list some results on φ-rings which are already in literature and are frequently used in this paper.
Note that the first five results are proved in [4] whereas the last one is proved in [2]. Let R ∈ H . Then

(a) φ(R) ∈ H0.
(b) Ker(φ) ⊆ Nil(R).
(c) Nil(T(R)) = Nil(R).
(d) Nil(RNil(R)) = φ(Nil(R)) = Nil(φ(R)) = Z(φ(R)).
(e) T(φ(R)) = RNil(R) is a local ring with maximal ideal Nil(φ(R)), and RNil(R)/Nil(φ(R)) = T(φ(R))/Nil(φ(R)) =

T(φ(R)/Nil(φ(R))).
(f) (R/Nil(R))′ = R′/Nil(R) provided R ∈ H0.

2. λ-rings

In this section, we introduce the concept of λ-rings which can be seen as a generalization of λ-domains
[22]. First, we define λ-rings formally.

Definition 2.1. A ring R is said to be a λ-ring if the set of all overrings of R is linearly ordered under inclusion.

In Proposition 2.3, we show that theλ-rings inH0 are precisely the rings for which R/Nil(R) is aλ-domain
with quotient field T(R)/Nil(R). First, we observe the following lemma whose proof is routine.

Lemma 2.2. Let R ⊆ S be a ring extension such that Nil(R) = Nil(S). Then R ⊆ S is a λ-extension if and only if
R/Nil(R) ⊆ S/Nil(R) is a λ-extension.

Proposition 2.3. Let R ∈ H0. Then the following are equivalent:

(i) R is a λ-ring;
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(ii) R/Nil(R) is a λ-domain with quotient field T(R)/Nil(R).

Proof. First, suppose that R is a λ-ring. As R ∈ H0, Nil(T(R)) = Nil(R), by (c). It follows that R/Nil(R) ⊆
T(R)/Nil(R) is a λ-extension, by Lemma 2.2. Note that T(R/Nil(R)) = T(R)/Nil(R), by (e) as φ(R) = R. Thus,
R/Nil(R) is a λ-domain with quotient field T(R)/Nil(R). Converse follows by Lemma 2.2.

In our first theorem, we show that everyλ-ring inH0 is local and its integral closure is a quasi-valuation rin1.
Moreover, this can be seen as a generalization of [22, Proposition 1.3].

Theorem 2.4. Let R ∈ H0. If R is a λ-ring, then R is local and R′ is a quasi-valuation rin1.

Proof. Note that R/Nil(R) is a λ-domain with quotient field T(R)/Nil(R), by Proposition 2.3. It follows that
by [22, Proposition 1.3], either R/Nil(R) is a field or R/Nil(R) is local with (R/Nil(R))′ is a valuation domain.
If former holds, then R is local, R = T(R) and so R′ = T(R) is quasi-valuation. If later holds, then R is local.
Also, by ( f ), we have (R/Nil(R))′ = R′/Nil(R). Now, to show that R′ is quasi-valuation, let x, y be regular
elements in R′. Then x/y ∈ T(R). Since R′/Nil(R) is a valuation domain, we have either x/y ∈ R′ or y/x ∈ R′

and hence R′ is a quasi-valuation rin1.

In [22, Corollary 1.5], it was shown that an integrally closed domain is a λ-domain if and only if it is a
valuation domain. The next corollary generalize this to rings inH0.

Corollary 2.5. Let R ∈ H0. Then R is an integrally closed λ-ring if and only if R is a quasi-valuation rin1.

Proof. If R is an integrally closed λ-ring, then R is a quasi-valuation rin1, by Theorem 2.4. Conversely, assume
that R is a quasi-valuation rin1. Let x = r/s ∈ T(R) \ R. If r ∈ Nil(R), then x ∈ Nil(T(R)) = Nil(R), by (c), a
contradiction. Therefore, r < Nil(R). Thus, x−1

∈ R and hence R is an integrally closed λ-ring.

Now, we observe the following result that classifies the integral closure of any λ-ring R inH0 as a Prüfer
ring.

Proposition 2.6. Let R ∈ H0. If R is a λ-ring, then R′ is a Prüfer ring. In particular, an integrally closed λ-ring in
H0 is a Prüfer ring.

Proof. By [22, Lemma 1.1] and [12, Theorem 2.2], we get the desired conclusion.

In the following example, we observe that the converse of above proposition does not hold.

Example 2.7. Let D be a non-local Prüfer domain of dimension n. Take R = D(+)q f (D). Then R ∈ H and is a
φ-Prüfer ring of dimension n, by [1, Example 2.18]. It follows that R is a Prüfer ring, by [1, Theorem 2.14]. Also,
Z(R) = Nil(R) = {0}(+)q f (D) and so R ∈ H0. As D is not local, we conclude that R is not local and hence R is not a
λ-ring, by Theorem 2.4.

In the next theorem, we present a characterization of a λ-ring inH0 which generalizes [22, Theorem 1.9].

Theorem 2.8. Let R ∈ H0. Then R is a λ-ring if and only if the following hold:

(i) R is a local ring and R′ is a quasi-valuation rin1.
(ii) All the overrings of R are comparable to R′ under inclusion.

(iii) The set of rings between R and R′ is linearly ordered by inclusion.

Proof. If R is a λ-ring, then (ii), (iii) hold trivially and (i) holds by Theorem 2.4. The proof of sufficient part,
follows mutatis mutandis from the proof of [22, Theorem 1.9].

Remark 2.9. It is natural to think if any of the conditions (i), (ii), and (iii) in Theorem 2.8 is redundant. Unfortunately,
we could not find any ring satisfying (i) and (iii) but not (ii). Note that the question of finding domain [22,
Remarks 1.14] satisfying (i) and (iii) but not (ii) is still open. However, for the other cases we have the following
examples:
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(i) Take R to be an integrally closed ring which is not quasi-valuation, then (ii) and (iii) hold trivially but (i) does
not hold.

(ii) Let K be a field and Dn = K +XnK[[X]] for all non negative integers n. Take Rn = Dn(+)q f (Dn). Then Z(Rn) =
Nil(Rn) = {0}(+)q f (Dn) is a divided prime ideal of Rn. For if we take (0, r) ∈ Nil(Rn) and (a, s) ∈ Rn \Nil(Rn),
then (0, r) = (a, s)(0, r/a). So, Rn ∈ H0. Now, by [22, Remarks 1.14], for all n ≥ 4, Dn is not a λ-domain and
Dn satisfies (∗) and (∗∗) conditions of [22, Theorem 1.9] but do not satisfy (∗ ∗ ∗). Note that Rn/Nil(Rn) � Dn
and by (e), ( f ) we have T(Rn/Nil(Rn)) = T(Rn)/Nil(Rn), (Rn/Nil(Rn))′ = (Rn)′/Nil(Rn), respectively. It is
trivial to see that for all n ≥ 4, Rn satisfies (ii) but not (iii). Now, by the same argument as in Theorem 2.4, we
conclude that Rn satisfies (i).

In [19, Theorem 2.4], Gilmer and Heinzer proved that for a local domain R, if R ⊆ R′ has no intermediate
ring and R′ is a Prüfer domain, then R′ is contained in every proper overring of R. In Proposition 2.11, we
generalize this for rings inH0. First, we need the following lemma.

Lemma 2.10. If R ∈ H0, then T(R) ∈ H0.

Proof. Note that R = φ(R) as R ∈ H0. Thus, by (e) and (c), we have Nil(T(R)) (= Nil(R)) is the unique
maximal ideal of T(R) and hence the result follows.

Proposition 2.11. Let R ∈ H0 be a local ring. If R ⊆ R′ has no intermediate ring and R′ is a Prüfer ring, then R′ is
contained in every proper overring of R.

Proof. Note that Nil(R′) = Nil(R) by (c). So, R/Nil(R) ⊆ R′/Nil(R) has no intermediate ring. On the other
hand, since φ(R) = R as R ∈ H0, we conclude that Nil(R) is a prime ideal of R′, by (e). Now, by Lemma
2.10, R′ ∈ H0 and hence by [1, Theorem 2.16], R′ is a φ-Prüfer ring. Thus, R′/Nil(R) is a Prüfer domain, by
[1, Theorem 2.6]. But (R/Nil(R))′ = R′/Nil(R), by ( f ). Hence, by [19, Theorem 2.4], R′/Nil(R) is contained in
every proper overring of R/Nil(R). Since T(R/Nil(R)) = T(R)/Nil(R) by (e), R′ is contained in every proper
overring of R.

For the sufficiency of a ring R ∈ H0 to be a λ-ring, the conditions (ii) and (iii) of Theorem 2.8 can be
replaced by the condition that R ⊆ R′ has no intermediate ring. This we show in the next corollary which
generalizes [22, Corollary 1.12].

Corollary 2.12. Let R ∈ H0. If R is a local ring, R ⊆ R′ has no intermediate ring, and R′ is a quasi-valuation rin1,
then R is a λ-ring.

Proof. Note that R′ ∈ H0, by Lemma 2.10. It follows that by Corollary 2.5 and Proposition 2.6, R′ is a Prüfer
ring. Now, by Proposition 2.11, we have R′ is contained in every proper overring of R. Thus, R is a λ-ring,
by Theorem 2.8.

The next proposition is a generalization of [22, Proposition 1.15] to rings inH0.

Proposition 2.13. Let R ∈ H0 be such that R , R′. If all the overrings of R are comparable to R′ under inclusion,
then any overring of R which is properly contained in R′ is local.

Proof. First observe that (R/Nil(R))′ = R′/Nil(R) by ( f ). Moreover, by (e), T(R/Nil(R)) = T(R)/Nil(R). Con-
sequently, by hypothesis, we have R/Nil(R) , (R/Nil(R))′ and all the overrings of R/Nil(R) are comparable
to R′/Nil(R) under inclusion. Thus, any overring of R/Nil(R) which is properly contained in R′/Nil(R) is
local, by [22, Proposition 1.15]. Since R ∈ H0, Nil(T(R)) = Nil(R) by (c) and hence any overring of R which
is properly contained in R′ is local.

We end this section with the generalization of [22, Proposition 4.3]. Though the arguments in the
proof can be followed mutatis mutandis from the proof of [22, Proposition 4.3], but is given for the sake
of completeness. First, we need to recall some necessary definitions. A ring extension R ⊆ S is called a
P-extension [21] if each s ∈ S is a root of some f (X) ∈ R[X] such that at least one of coefficients of f is a unit
of R. A ring extension R ⊆ S is said to be an INC-pair [24] if for any two distinct prime ideals Q1,Q2 of S
such that Q1 ∩ R = Q2 ∩ R, we have Q1,Q2 are incomparable.
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Theorem 2.14. Let R ∈ H0. If R ⊆ S is a λ-extension such that R is integrally closed in S, then S is an overring of
R.

Proof. Let u ∈ S. Then R ⊆ R[u] is a P-extension, by [22, Lemma 1.1]. Therefore, R ⊆ R[u] is an INC-pair,
by [15, Corollary 4]. Now, if Q is any prime ideal of R[u] and P = Q ∩ R, then there exists s ∈ R \ P such
that R[u]s = Rs, by Zariski’s main theorem in [16]. As s < Nil(R), it follows that R[u]s = Rs ⊆ T(R). Thus,
u ∈ T(R) and hence S ⊆ T(R).

3. φ-λ-rings

In this section, we define a new class of rings, namely, φ-λ-rings and explore its properties.

Definition 3.1. Let R ∈ H . Then R is said to be a φ-λ-ring if φ(R) is a λ-ring.

We start this section with a necessary and sufficient condition for a ring inH to be a φ-λ-ring.

Proposition 3.2. Let R ∈ H . Then the following are equivalent:

(i) R is a φ-λ-ring;
(ii) R/Nil(R) is a λ-domain.

Proof. Let R be a φ-λ-ring. Then φ(R) is a λ-ring. As by (a), φ(R) ∈ H0, it follows that by Proposition 2.3,
φ(R)/Nil(φ(R)) is aλ-domain. Now, by (d),φ(Nil(R)) = Nil(φ(R)). Therefore, by [1, Lemma 2.5], we conclude
that φ(R)/Nil(φ(R)) is isomorphic to R/Nil(R) and hence R/Nil(R) is a λ-domain. Conversely, assume that
R/Nil(R) is a λ-domain. Then φ(R)/Nil(φ(R)) is a λ-domain, by [1, Lemma 2.5]. Thus, by Proposition 2.3,
φ(R) is a λ-ring and hence R is a φ-λ-ring.

We now discuss an example that gives a class of φ-λ-rings.

Example 3.3. Consider R = A(+)q f (A), where A is a λ-domain. Note that Nil(R) = {0}(+)q f (A). We claim that
Nil(R) is a divided prime ideal of R. Let (0, x) ∈ Nil(R) and (a, y) ∈ R \ Nil(R). Then (0, x) = (a, y)(0, x/a). This
settles the claim and hence R ∈ H . Now, as R/Nil(R) � A is a λ-domain, we conclude that R is a φ-λ-ring, by
Proposition 3.2.

In Proposition 3.5, we show that a ring is a φ-integrally closed φ-λ-ring if and only if it is local φ-Prüfer.
First, we need the following lemma.

Lemma 3.4. Let R be a φ-λ-ring. Then R is local and φ(R)′ is a Prüfer ring.

Proof. By Proposition 3.2, we have R/Nil(R) is a λ-domain. It follows that R/Nil(R) is local, by [22, Propo-
sition 1.3]. Thus, R is local. As φ(R) ∈ H0 by (a), we conclude that φ(R)′ is a Prüfer ring, by Proposition
2.6.

Proposition 3.5. Let R be a ring. Then R is a φ-integrally closed φ-λ ring if and only if R is a local φ-Prüfer ring.

Proof. The “only if” assertion is clear from Lemma 3.4. We turn to converse. Assume that R is localφ-Prüfer.
Then φ(R) is a Prüfer ring and hence is integrally closed. Thus, R is φ-integrally closed. Also, R/Nil(R) is
a Prüfer domain, by [1, Theorem 2.6] and so it is a valuation domain as R/Nil(R) is local. It follows that
R/Nil(R) is a λ-domain, by [22, Corollary 1.5]. Thus, by Proposition 3.2, R is a φ-λ ring.

In the above proposition, the condition that R is local is necessary for R to be a φ-integrally closed φ-λ
ring as we have the following example in support.

Example 3.6. Let D be a non-local Prüfer domain of dimension n and E = q f (D)/D. Set R = D(+)E. Then
Nil(R) = {0}(+)E. To show that R ∈ H , let (0, x̄) ∈ Nil(R) and (y, z̄) ∈ R \ Nil(R). Then (0, x̄) = (y, z̄)(0, x/y) and
so R ∈ H . As R/Nil(R) � D, we conclude that R is a φ-Prüfer ring of dimension n, by [1, Theorem 2.6]. Since D is
not local, R is not local and hence R is not a φ-λ-ring, by Lemma 3.4.
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In the following theorem, we show the equivalence of a φ-integrally closed φ-λ-ring and a φ-chained
ring.

Theorem 3.7. Let R be a ring. Then R is a φ-integrally closed φ-λ-ring if and only if R is a φ-chained ring.

Proof. Let R be a φ-integrally closed φ-λ-ring. Then φ(R) is an integrally closed λ-ring. Let a, b ∈ R \Nil(R).
Then x = a/b is a unit in RNil(R). As by (e), RNil(R) = T(φ(R)), we conclude that either x ∈ φ(R) or x−1

∈ φ(R),
by [22, Lemma 1.2]. Thus, R is a φ-chained ring, by [6, Proposition 2.2].

Conversely, assume that R is a φ-chained ring. Then R is φ-integrally closed, by [6, Proposition 2.10].
Also, R/Nil(R) is a valuation domain, by [1, Theorem 2.7]. Thus, R/Nil(R) is aλ-domain, by [22, Corollary 1.5]
and hence R is a φ-λ-ring, by Proposition 3.2.

The next proposition gives a necessary and sufficient condition for a ring R ∈ H to be a φ-λ-ring.

Proposition 3.8. Let R ∈ H . Then R is a φ-λ-ring if and only if the following hold:

(i) R is a local ring and φ(R)′ is a quasi-valuation rin1.
(ii) All the overrings of φ(R) are comparable to φ(R)′ under inclusion.

(iii) The set of all rings between φ(R) and φ(R)′ is linearly ordered by inclusion.

Proof. Note that φ(R) ∈ H0, by (a). Let R be a φ-λ-ring. Then R is local, by Lemma 3.4. Now, the necessity
follows from Theorem 2.8. Conversely, assume that (i), (ii) and (iii) holds. Then φ(R) is local, by [1,
Lemma 2.5]. Now, the sufficiency follows from Theorem 2.8.

Remark 3.9. Note that if R ∈ H , then φ(R) ∈ H0, by (a). Now, one can apply Remark 2.9 to discuss irredundancy
of conditions (i), (ii), and (iii) in the above proposition.

In the next two propositions, we continue our discussion on φ-λ-rings and φ-rings.

Proposition 3.10. Let R ∈ H be a local ring such that φ(R) ⊆ φ(R)′ has no intermediate ring. Then the following
hold:

(i) If R′ is a φ-Prüfer ring, then φ(R)′ is contained in every proper overring of φ(R).
(ii) If R′ is a quasi-valuation rin1, then R is a φ-λ-ring.

Proof. Note that φ(R) ∈ H0 by (a), and φ(R) is local by [1, Lemma 2.5]. Also, φ(R′) ⊆ φ(R)′. Thus, (i)
and (ii) follows from Proposition 2.11 and Corollary 2.12, respectively, as every overring of Prüfer (resp.,
quasi-valuation) is Prüfer (resp., quasi-valuation).

Proposition 3.11. Let R be a φ-integrally closed φ-λ-ring. If S is an overring of R, then there exists a prime ideal P
of R containing Z(R) such that S = RP.

Proof. By Theorem 3.7, R is a φ-chained ring and hence S is a φ-chained ring. Also, R is a φ-Prüfer ring, by
Proposition 3.5. Thus, by [1, Theorem 2.11], the result follows.

Now, we show that every φ-λ-ring is a λ-ring.

Proposition 3.12. Let R be a φ-λ-ring. Then R is a λ-ring.

Proof. Let S and T be any overrings of R. Then either φ(S) ⊆ φ(T) or φ(T) ⊆ φ(S). If S ⊆ T, then we are done.
Now, assume that S * T. We assert that φ(S) * φ(T). Choose x ∈ S \ T. If φ(x) ∈ φ(T), then φ(x) = φ(y) for
some y ∈ T. It follows that x− y ∈ Ker(φ). But Ker(φ) ⊆ Nil(R), by (b). Consequently, x− y ∈ T and so x ∈ T,
which is a contradiction. This proves our assertion. Similarly, if T * S, then φ(T) * φ(S). Thus, we have
either S ⊆ T or T ⊆ S and hence R is a λ-ring.

Note that a λ-ring is not necessarily a φ-λ-ring as can be seen in the following example.
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Example 3.13. Consider R = A(+)E, where A is a non λ-domain and E = q f (A)/A. Then by the same argument
as in Example 3.6, we have R ∈ H . As every nonunit of R is a zero-divisor in R, we have R = T(R). Thus, R is a
λ-ring. Note that R/Nil(R) � A as Nil(R) = {0}(+)E. It follows that R/Nil(R) is not a λ-domain. Consequently, R
is not a φ-λ-ring, by Proposition 3.2.

Next we present a class of φ-λ-rings. Note that it is also a class of λ-rings, by Proposition 3.12.

Example 3.14. Let R be same as in last example, where A is aλ-domain. Then R/Nil(R) is aλ-domain. Consequently,
R is a φ-λ-ring, by Proposition 3.2.

In the next theorem, we show that a ring R is a φ-λ-ring if and only if φ(R) is a pullback of a λ-domain
(up to isomorphism).

Theorem 3.15. Let R ∈ H . Then R is a φ-λ-ring if and only if φ(R) is isomorphic to a ring A obtained from the
following pullback diagram:

A A/M

T T/M

where T is a zero-dimensional local ring with maximal ideal M, A/M is a λ-subring of T/M, the vertical arrows are
the usual inclusion maps, and the horizontal arrows are the usual surjective maps.

Proof. Let R be a φ-λ-ring. Take T = RNil(R) and A = φ(R). Then by (e), M = Nil(A) and T/M is the quotient
field of A/M. Thus, we get the desired pullback diagram.

Conversely, assume thatφ(R) is isomorphic to a ring A obtained from the above pullback diagram. Then
A ∈ H0, by (a). Note that, by hypothesis, Nil(A) is the prime ideal of T. It follows that M = Nil(A). Since
A/M is a λ-domain, A is a λ-ring, by Proposition 2.3. Thus, R is a φ-λ-ring.

4. φ-∆-rings

In this section, we introduce a new class of rings, namely,φ-∆-rings and analyze the same. The definition
is as follows.

Definition 4.1. Let R ∈ H be a ring. Then R is said to be a φ-∆-ring if φ(R) is a ∆-ring.

In the end of [19, Section 3], Gilmer and Huckaba admitted his inability to produce an example of an
integrally closed ∆-ring that is not a Prüfer ring. If such a ring exists, then that can not be inH0 as we have
the next proposition that follows directly from [22, Lemma 1.1] and [12, Theorem 2.2].

Proposition 4.2. Let R ∈ H0. If R is a ∆-ring, then R′ is a Prüfer ring. In particular, an integrally closed ∆-ring in
H0 is a Prüfer ring.

A direct companion to above proposition is the next two corollaries.

Corollary 4.3. Let R ∈ H0 be an integrally closed ring. Then R is a ∆-ring if and only if R is a Prüfer ring.

Proof. The result follows from Proposition 4.2 and [20, Theorem 4].

Corollary 4.4. Let R be a ring. Then the following hold:

(i) If R is a φ-∆-ring, then φ(R)′ is a Prüfer ring. In particular, a φ-integrally closed φ-∆-ring inH is a φ-Prüfer
ring.

(ii) R is a φ-integrally closed φ-∆-ring if and only if R is a φ-Prüfer ring.
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Proof. Note that if R ∈ H , then φ(R) ∈ H0, by (a). Now, (i) follows from Proposition 4.2 and (ii) follows from
Corollary 4.3.

Let R ⊆ S be a ring extension such that Nil(R) = Nil(S). Then it is easy to verify that R ⊆ S is a
∆-extension if and only if R/Nil(R) ⊆ S/Nil(R) is a ∆-extension. Now, the proof of next proposition follows
mutatis mutandis from the proof of Proposition 2.3.

Proposition 4.5. Let R ∈ H0. Then the following are equivalent:

(i) R is a ∆-ring;
(ii) R/Nil(R) is a ∆-domain with quotient field T(R)/Nil(R).

Also, the proof of next proposition follows mutatis mutandis from the proof of Proposition 3.2.

Proposition 4.6. Let R ∈ H . Then the following are equivalent:

(i) R is a φ-∆-ring;
(ii) R/Nil(R) is a ∆-domain.

In the next theorem, we show that every φ-∆-ring is a ∆-ring. However, not every ∆-ring is a φ-∆-ring
as shown in Example 4.8.

Theorem 4.7. Let R be a φ-∆-ring. Then R is a ∆-ring.

Proof. Let R1,R2 be overrings of R. Then φ(R1), φ(R2) are overrings of φ(R). Since φ(R) is a ∆-ring,
φ(R1) +φ(R2) is a ring. Consider a, b ∈ R1 + R2. Then a = r1 + r2, b = s1 + s2 for some r1, s1 ∈ R1 and r2, s2 ∈ R2
and so φ(r1s1 + r1s2 + r2s1 + r2s2) ∈ φ(R1) + φ(R2). It follows that φ(r1s1 + r1s2 + r2s1 + r2s2) = φ(t1) + φ(t2) for
some t1 ∈ R1 and t2 ∈ R2. Thus, r1s1 + r1s2 + r2s1 + r2s2 − t1 − t2 ∈ Ker(φ). As by (b), Ker(φ) ⊆ Nil(R), we have
r1s1 + r1s2 + r2s1 + r2s2 − t1 − t2 ∈ R ⊆ R1 + R2. Thus, we have ab = r1s1 + r1s2 + r2s1 + r2s2 ∈ R1 + R2 and hence
R1 + R2 is a ring. Since R1,R2 was arbitrary overrings of R, R is a ∆-ring.

Example 4.8. Consider R = A(+)E, where A is a non ∆-domain and E = q f (A)/A. Then by the same argument as
in Example 3.6, we conclude that R ∈ H . Note that R = T(R) as every nonunit of R is a zero-divisor in R. Thus, R
is a ∆-ring. Since R/Nil(R) � A, R/Nil(R) is not a ∆-domain. Thus, R is not a φ-∆-ring, by Proposition 4.6.

Now, we discuss some examples of a φ-∆-ring.

Example 4.9. (i) Let R be same as in the above example, where A is a ∆-domain. Then by another appeal to
Proposition 4.6, R is a φ-∆-ring.

(ii) Let R be same as in the Example 3.3, where A is a ∆-domain. Then by applying the same argument as in the
Example 3.3, we conclude that R is a φ-∆-ring.

The next theorem shows that a ring R ∈ H is a φ-∆-ring if and only if φ(R) is a pullback of a ∆-domain
(up to isomorphism). We omit the proof as it follows mutatis mutandis from the proof of Theorem 3.15.

Theorem 4.10. Let R ∈ H . Then R is a φ-∆-ring if and only if φ(R) is ring-isomorphic to a ring A obtained from
the following pullback diagram:

A A/M

T T/M

where T is a zero-dimensional local ring with maximal ideal M, A/M is an ∆-subring of T/M, the vertical arrows
are the usual inclusion maps, and the horizontal arrows are the usual surjective maps.

In the next theorem, we show that φ-∆ property is a local property for any ring R ∈ H .
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Theorem 4.11. Let R ∈ H . Then R is a φ-∆-ring if and only if RP is a φ-∆-ring for each prime ideal P of R.

Proof. Let R be a φ-∆-ring. Then R/Nil(R) is a ∆-domain, by Proposition 4.6. By [20, Theorem 3], it follows
that (R/Nil(R))P/Nil(R) is a ∆-domain for each prime ideal P of R. Note that (R/Nil(R))P/Nil(R) � RP/Nil(RP)
and RP ∈ H for all prime ideals P of R. Thus, by another appeal to Proposition 4.6, RP is a φ-∆-ring for all
prime ideals P of R.

Conversely, assume that RP is aφ-∆-ring for each prime ideal P of R. Then by Proposition 4.6, RP/Nil(RP)
is a ∆-domain for each prime ideal P of R. As (R/Nil(R))P/Nil(R) � RP/Nil(RP), we conclude that R/Nil(R) is a
∆-domain, by [20, Theorem 3]. Thus, by another application of Proposition 4.6, R is a φ-∆-ring.

In [20, Proposition 12], the equivalence of a Dedekind domain and a ∆-domain is established provided
the domain is a Krull domain. In the next theorem, the equivalence of a φ-Dedekind ring and a φ-∆-ring is
shown provided the ring is a φ-Krull ring. Note that this generalizes [20, Proposition 12].

Theorem 4.12. Let R be a φ-Krull ring. Then the following are equivalent:

(i) R is a φ-∆-ring;
(ii) R is a φ-Dedekind ring.

Proof. Note that R/Nil(R) is a Krull domain, by [2, Theorem 3.1]. First, assume that R is a φ-∆-ring.
Then R/Nil(R) is a ∆-domain, by Proposition 4.6. It follows that R/Nil(R) is a Dedekind domain, by [20,
Proposition 12]. Thus, by [2, Theorem 2.5], R is a φ-Dedekind ring.

Conversely, assume that R is a φ-Dedekind ring. Then R/Nil(R) is a Dedekind domain, by [2, Theo-
rem 2.5]. By [20, Proposition 12], it follows that R/Nil(R) is a ∆-domain. Hence, by Proposition 4.6, R is a
φ-∆-ring.

Note that by definition, every λ-ring is a ∆-ring. Similary, every φ-λ-ring is a φ-∆-ring. However, the
next two examples endorse that the converse is not true.

Example 4.13. Let K be a field and Dn = K+XnK[[X]] for all non negative integers n. Then by [20, Proposition 10,11],
Dn is not a λ-domain but a ∆-domain, for n = 4, 5. Now, consider Rn = Dn(+)q f (Dn). Then note that Z(Rn) =
Nil(Rn) = {0}(+)q f (Dn). Clearly, it is a divided prime ideal of Rn. For if (0, r) ∈ Nil(Rn) and (a, s) ∈ Rn \ Nil(Rn),
then (0, r) = (a, s)(0, r/a). So, Rn ∈ H0. As Rn/Nil(Rn) � Dn, we conclude that by Proposition 2.3 and Proposition
4.5, Rn is not a λ-ring but a ∆-ring, for n = 4, 5.

Example 4.14. Let D be a non-local Prüfer domain of dimension n. Take R = D(+)E where E = q f (D)/D. Then
R ∈ H and is not a φ-λ-ring, by Example 3.6. Also, R/Nil(R) � D and so R is a φ-Prüfer ring of dimension n, by
[1, Theorem 2.6]. It follows that R is a φ-∆-ring, by Corollary 4.4.

We now end this paper with generalization of some results of ∆-domains [20] to ∆-rings. First we
observe the following lemma whose proof is routine.

Lemma 4.15. Let R ⊆ S be a ring extension such that Nil(R) = Nil(S). Then Rad(R/Nil(R) : S/Nil(R)) = Rad(R :
S)/Nil(R).

The next lemma extends [20, Proposition 8] to rings inH0.

Lemma 4.16. Let R ∈ H0 be a local ring. If R′ is a quasi-valuation rin1 with maximal ideal M′ such that
M′ = Rad(R : R′), then each overring of R is comparable with R′ under inclusion.

Proof. Note that Nil(T(R)) = Nil(R), by (c). Since Rad(R : R′) = M′, Rad(R/Nil(R) : R′/Nil(R)) = M′/Nil(R),
by Lemma 4.15. Also, R′/Nil(R) is a valuation domain as R′ is a quasi-valuation rin1. Moreover, by ( f ),
(R/Nil(R))′ = R′/Nil(R) and so each overring of R/Nil(R) is comparable with R′/Nil(R) under inclusion, by
[20, Proposition 8]. Now, by (e), T(R/Nil(R)) = T(R)/Nil(R) and hence the result follows.
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The following proposition extends [20, Corollary 3] to ∆-rings.

Proposition 4.17. Let R ∈ H0 be a local ring, Rad(R : R′) = M′, and R′ be a quasi-valuation rin1 with maximal
ideal M′. Then R is a ∆-ring if and only if R ⊆ R′ is a ∆-extension.

Proof. Note that if R is a ∆-ring, then R ⊆ R′ is a ∆-extension. Conversely, assume that R ⊆ R′ is a
∆-extension. Let S,T be overrings of R. Now, by Lemma 4.16, the following three cases arise:

(i) S ⊆ R′,T ⊆ R′. Then by hypothesis, the result follows.
(ii) S ⊆ R′ ⊆ T or T ⊆ R′ ⊆ S. Clearly, S + T is a ring.

(iii) R′ ⊆ S,R′ ⊆ T. Now, by Lemma 2.10, R′ ∈ H0. It follows that R′ is a λ-ring, by Corollary 2.5. Thus,
S + T is a ring.

In the last proposition, we extend [20, Proposition 9] to rings inH0.

Proposition 4.18. Let R ∈ H0 be a local ring with maximal ideal M. Assume that R′ is a quasi-valuation rin1 with
maximal ideal M′. If M = M′, then the following are equivalent:

(i) R is a λ-ring;
(ii) R ⊆ R′ is a ∆-extension.

Proof. (i) ⇒ (ii) follows by definition. Now, assume that (ii) holds. Then R/Nil(R) ⊆ R′/Nil(R) is a ∆-
extension. Note that Nil(T(R)) = Nil(R), T(R/Nil(R)) = T(R)/Nil(R), and (R/Nil(R))′ = R′/Nil(R), by (c), (e),
and ( f ), respectively. Since R′/Nil(R) is a valuation domain with maximal ideal M/Nil(R), R/Nil(R) is a
λ-domain, by [20, Proposition 9]. Thus, R is a λ-ring, by Proposition 2.3.
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