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Abstract. The purpose of this article is to deal with the uniqueness problems of meromorphic functions
partially sharing values. It is showed that two entire functions f and 1with ρ2( f ) < 1 and periodic restriction
must be identically if E(0, f (z)) = E(0, 1(z)) except for a possible set G1 and E(1, f (z)) = E(1, 1(z)) except for a
possible set G2 with N(r,Gi) = O(rλ), (i = 1, 2), where λ(< 1) is a fixed constant. This result is a generalization
of some previous works of Chen in [5] and Cai and Chen in [7].

1. Introduction and main results

The paper mainly concerns the uniqueness problem of the periodic meromorphic function partially shar-
ing “1CM + 1IM” with another meromorphic function. This problem was originated from the well-known
Nevanlinna five theorem in 1920s (see, e.g., [17]-[21]), which states that two non-constant meromorphic
functions must be identically if they share five values IM. Here, we say two meromorphic functions f and
1 share a IM if f − a and 1 − a have the same zeros or E(a, f ) = E(a, 1). And the notation E(a, f ) denotes the
set of all the zeros of f (z) − a, where a zero is counted one time. In addition, we say f and 1 share a CM if
f − a and 1 − a has the same zeros with multiplicities or E(a, f ) = E(a, 1). And the notation E(a, f ) denotes
the set of all the zeros of f (z)− a, where a zero with multiplicity m is counted m times. Later on, Nevanlinna
gave the famous four values theorem. Since then, the uniqueness theory of meromorphic functions has
become an extensive subfield of the value distribution theory. Many researchers focused their efforts on the
aspect (see, e.g., [9, 10]). In 1989, in his Ph.D thesis, Brosch considered the uniqueness problem in another
direction. He firstly studied the periodicity relationship of two meromorphic functions if they shared three
values CM. In fact, Brosch derived that if a periodic meromorphic function f shares three values CM with
another meromorphic function 1, then 1 is also periodic. In Brosch’s work, the forms of f and 1 were not
given. So, it becomes an interesting work to seek the forms of f and 1. The work has been done by Zheng
in [23]. More precisely, Zheng derived the following result.

Theorem A. (see [23]) Let f (z) and 1(z) be two non-constant meromorphic functions with the same period
c(, 0). Suppose that µ2( f ) < 1. If f (z) and 1(z) share 0, 1, ∞ CM, then f (z) ≡ 1(z) or f (z) and 1(z) assume
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the following form f (z) = ea1z+b1−1
ea2z+b2−1

, 1(z) = e−a1z−b1−1
e−a2z−b2−1

, where a1 = 2mπi
c , a2 = 2kπi

c , b1, b2 are constants, and m, k are
integers.

Recently, the difference analogues to Nevanlinna’s theory was established by Halburd and Korhonen
[14, 15], Chiang and Feng [8], independently, and improved by Halburd, Korhonen, and Tohge [16] from
finite order of meromorphic functions to infinite order (hyper-order strictly less than 1). And it becomes a
powerful theoretical tool to study the uniqueness problems of meromorphic functions taking into account
their shifts (see, e.g., [3, 12, 13]) or difference operators (see, e.g., [18, 22]), and so on. Due to the difference
analogues to Nevanlinna’s theory, Chen and his co-worker further discussed the above uniqueness problem
in [4]. And the follow-up work was also due to Chen. In 2017, he derived the following theorem.

Theorem B. (see [5, Theorem 1.3]) Let f (z) and 1(z) be two non-constant meromorphic functions with the
same period c(, 0). Suppose that ρ2( f ) < 1. If f (z) and 1(z) share 0,∞CM and 1 IM, then either (i) f (z) ≡ 1(z)
; or (ii) f (z) = eaz+b1(z) and µ( f ) = µ(1) = 1, where a = 2kπi

c , b are constants, and k is some integer.

It is pointed out that for entire functions, Chen in [6] weakened the shared values condition “2CM +
1IM” to that of “1CM + 2IM” in his PhD thesis. Later, Cai and Chen further improved Chen’s result by
weakening the condition “1CM + 2IM” to that of “1CM + 1IM” as follows.

Theorem C. (see[7, Theorem 1.6.]) Let f (z) and 1(z) be two non-constant entire functions. Let c ∈ C\{0}, and
let a1, a2 be two distinct finite complex numbers. Suppose that µ( f ) , 1, ρ2( f ) < 1, and f (z) = f (z + c) for all
z ∈ C. If f (z) and 1(z) share a1 CM, a2 IM, then f (z) ≡ 1(z).

By studying the above theorem, one may ask whether the conclusion of Theorem C still holds or not if
the condition E(a1, f ) = E(a1, 1) is weakened to E(a1, f )\G = E(a1, 1)\G, where G ⊆ E(a1, f ) ∪ E(a1, 1) is a set
such that div f−a1 (z) , div1−a1 (z) for z ∈ G. Here we will use div f (z) to denote the multiplicity of a zero z of f .
(It is pointed out div f (z) may be zero, which implies that z is not a zero of f ). We emphasize that the point
z in G is counted max{div f−a1 (z), div1−a1 (z)} times. Below, we also need the notation E(a1, f )\G = E(a1, 1)\G1,
where G1 ⊆ E(a1, f )∪ E(a1, 1) is a set such that either div f−a1 (z) = 0 or div1−a1 (z) = 0 for z ∈ G1. And the point
z in G1 is also counted max{div f−a1 (z), div1−a1 (z)} times.

We agree to say E(a1, f ) = E(a1, 1) (resp E(a1, f ) = E(a1, 1)) allowed the exceptional set G (resp. G1) if
E(a1, f )\G = E(a1, 1)\G (resp. E(a1, f )\G = E(a1, 1)\G1) holds. The size of the set G is measured by the
function n(r,G), the number of these points in G ∩ {z : |z| < r} counted with multiplicities. And denote by
N(r,G) (resp. N(r,G)) the counting function (resp. the reduced counting function) of the set G. In the paper,
we pay attention to the above problem and give an affirmative answer to it. More specifically, we prove
the following.

Theorem 1. Let f (z) and 1(z) be two non-constant entire functions, and let c ∈ C\{0}. Suppose that
µ( f ) , 1, ρ2( f ) < 1, and f (z) = f (z + c) for all z ∈ C. If f (z) and 1(z) satisfy E(0, f (z)) = E(0, 1(z)) except for
a possible set G1 and E(1, f (z)) = E(1, 1(z)) except for a possible set G2, where N(r,Gi) = O(rλ), (i = 1, 2) and
λ(< 1) is a constant, then f (z) ≡ 1(z).

As a matter of fact, we get a more general result, and Theorem 1 is a special case of it.

Theorem 2. Let f (z) and 1(z) be two non-constant meromorphic functions such that N(r, f ) = O(rλ), N(r, 1) =
O(rλ), where λ(< 1) is a constant, and let c ∈ C\{0}. Suppose that µ( f ) , 1, ρ2( f ) < 1, and f (z) = f (z + c) for
all z ∈ C. If f (z) and 1(z) satisfy E(0, f (z)) = E(0, 1(z)) except for a possible set G1 and E(1, f (z)) = E(1, 1(z))
except for a possible set G2, where N(r,Gi) = O(rλ), (i = 1, 2), then f (z) ≡ 1(z).

Clearly, Theorem 1 and 2 are generalizations of Theorem C. In order to prove the above theorems, we
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need the following theorem, which is of its own interest.

Theorem 3. Let f (z) and f (z+c) be two non-constant meromorphic functions ofρ2( f ) < 1 and N(r, f ) = S(r, f ).
If f (z) and f (z + c) satisfy E(0, f (z)) ⊆ E(0, f (z + c)) except for a possible set G1 and E(1, f (z)) ⊆ E(1, f (z + c))
except for a possible set G2, where N(r,Gi) = S(r, f ), (i = 1, 2), then f (z) = f (z + c).

Remark 1. The condition E(0, f (z)) ⊆ E(0, f (z + c)) except for a possible set G1 should be understood as
above, where G1 ⊆ E(0, f (z)) is a set such that div f (z) > div1(z) for z ∈ G1. And the point z in G1 is counted
div f (z) times. We emphasise that the conclusion of Theorem 3 is still valid if the values 0, 1 are replaced by
two distinct periodic functions a1 and a2 with a period of c and T(r, a j) = S(r, f ). In fact, we only need to
make the transformation F(z) =

f (z)−a1

a2−a1
.

Remark 2. There are many results which are related with Theorem 3. It was Heittokangas et. al. in
[13] who firstly studied the uniqueness problem of f (z) and f (z + c) when they shared three distinct func-
tions ai (i = 1, 2, 3) with period c, and T(r, a j) = S(r, f ). Later on, Heittokangas et. al. [12] improved the
uniqueness result by replacing the condition “3CM” with “2CM + 1IM”. Recently, Chen in [6] further
generalized the above theorems with the idea of partially sharing values. We say f (z) and f (z + c) partially
share 1 CM if E(1, f (z)) ⊆ E(1, f (z+c)). Clearly, Theorem 3 is an improvement of Chen’s result in some sense.

Before to proceed, we spare the reader for a moment and assume his/her familiarity with the basics of
Nevanlinna’s theory of meromorphic functions in C such as the first and second fundamental theorems, and
the usual notations such as the characteristic function T(r, f ), the proximity function m(r, f ) and the counting
function N(r, f ). S(r, f ) denotes any quantity satisfying S(r, f ) = o

(
T(r, f )

)
as r→∞, except possibly on a set

of finite logarithmic measure - not necessarily the same at each occurrence (see e.g. [17, 19, 21]). We also
need the following definition.

Definition 1.1 The order ρ( f ), hyper-order ρ2( f ), lower order µ( f ) and low hyper-order µ2( f ) of the mero-
morphic function f (z) are defined in turn as follows:

ρ( f ) = lim sup
r→∞

log T(r, f )
log r

, ρ2( f ) = lim sup
r→∞

log log T(r, f )
log r

,

µ( f ) = lim inf
r→∞

log T(r, f )
log r

, µ2( f ) = lim inf
r→∞

log log T(r, f )
log r

.

Proof of Theorem 3. The proof is based on the idea of Chen in [6]. For the convenience of the reader, we
present our proof in all detail. On the contrary, suppose that f (z+c) . f (z). We below derive a contradiction.
Set

f (z + c)
f (z)

= H. (1)

If H ≡ 1, then f (z + c) = f (z), a contradiction. So, H . 1. By the logarithmic derivative lemma, one has

m(r,H) = m(r,
f (z + c)

f (z)
) = S(r, f ). (2)

Moreover, by the condition that E(0, f (z)) ⊂ E(0, f (z + c)) except for a possible set G1, one has

N(r,H) ≤ N(r,G1) + N(r, f (z + c)) ≤ N(r,G1) + N(r, f (z)) + S(r, f ) = S(r, f ), (3)
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since N(r, f (z+c)) ≤ N(r, f (z))+S(r, f ) ifρ2( f ) < 1, which can be seen in [16, Lemma 8.3]. Therefore, combining
(2) and (3) yields that T(r,H) = m(r,H)+N(r,H) = S(r, f ). Further, the assumption that E(1, f (z)) ⊂ E(1, f (z+c))
except for a possible set G2 implies that

N(r,
1

f (z) − 1
) ≤ N(r,G2) + N(r,

1
H(z) − 1

) ≤ N(r,G2) + T(r,H) ≤ T(r,H(z)) + S(r, f ) = S(r, f ). (4)

By using the fact N(r, 1
f (z+c) ) ≤ N(r, 1

f (z) ) + S(r, f ) in [16, Lemma 8.3], we have

N(r,
1

f (z + c) − 1
) ≤ N(r,

1
f (z) − 1

) + S(r, f ) = S(r, f ). (5)

Rewrite (1) to

f (z + c) − 1 = H( f (z) −
1
H

).

This means

N(r,
1

f (z + c) − 1
) = N(r,

1
f (z) − 1

H

) + S(r, f ). (6)

Formulas (5) and (6) illustrate that

N(r,
1

f (z) − 1
H

) = S(r, f ).

According to the second fundamental theorem, one has that

T(r, f (z)) ≤ N(r, f (z)) + N(r,
1

f (z) − 1
) + N(r,

1
f (z) − 1

H

) + S(r, f ) ≤ S(r, f ),

which is impossible. So f (z + c) ≡ f (z).

Thus, the proof is finished.

To end this section, we give another proof of Theorem 3, which may be a little complicated. But, it has
its own interest. We firstly introduce the following auxiliary function, which can be found in [7].

φ = [ f (z) − f (z + c)][
f ′(z)

f (z)( f (z) − 1)
−

f ′(z + c)
f (z + c)( f (z + c) − 1)

]. (7)

Suppose that φ . 0. By the logarithmic derivative lemma again, we can obtain

m(r, φ) = m(r, ( f (z) − f (z + c))(
f ′(z)

f (z)( f (z) − 1)
−

f ′(z + c)
f (z + c)( f (z + c) − 1)

))

≤ m(r,
( f (z) − f (z + c)) f ′(z)

f (z)( f (z) − 1)
) + m(r,

( f (z) − f (z + c)) f ′(z + c)
f (z + c)( f (z + c) − 1)

) + O(1)

≤ m(r,
f (z) − f (z + c)

f (z)
) + m(r,

f ′(z)
f (z) − 1

)

+ m(r,
f (z) − f (z + c)

f (z + c)
) + m(r,

f ′(z + c)
f (z + c) − 1

) + O(1) = S(r, f ).

(8)

According to (7), we can get two properties of φ by simple calculation, which can be found in [7].
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Property 1. For η0 ∈ C, if η0 is a zero of both f (z) and f (z + c) with multiplicity p, then η0 is a zero of φ with
multiplicity at least p;

Property 2. For η1 ∈ C, if f (η1) = f (η1 + c) = 1, then φ(η1) , ∞.

Now, we define some sets as follows.

E1 = {z : f (z) = 0, z < G1}, E2 = {z : f (z) = 0, z ∈ G1},

E3 = E(0, f (z + c))\E1, counting multiplicities.

By [Lemma 8.3] in [16] again and the condition that E(0, f (z)) ⊂ E(0, f (z + c)) except for a possible set G1,
we have

N(r,
1

f (z + c)
) = N(r,E1) + N(r,E3)

≤ N(r,
1

f (z)
) + S(r, f ) = N(r,E1) + N(r,E2) + S(r, f )

≤ N(r,E1) + N(r,G1) + S(r, f ) = N(r,E1) + S(r, f ),

which implies that N(r,E3) = S(r, f ). Set

α1 = {z : f (z) = 1, z < G2} α2 = {z : f (z) = 1, z ∈ G2},

α3 = E(1, f (z + c))\α1, ignoring multiplicities.

The similar proceed leads that N(r, α3) = S(r, f ). Therefore, all the above discussions yields that

N(r, φ) ≤ N(r, f ) + N(r, f (z + c)) + N(r,G1) + N(r,G2)

+ N(r, α3) + N(r,E3) = S(r, f ).
(9)

From (8) and (9), we can get T(r, φ) = m(r, φ) + N(r, φ) = S(r, f ).
Moreover, the property 1 shows that

N(r,
1

f (z)
) ≤ N(r,G1) + N(r,

1
φ

) ≤ T(r, φ) + S(r, f ) = S(r, f ). (10)

From (4), (10) and N(r, f ) = S(r, f ), we can deduced by the second fundamental theorem that

T(r, f (z)) ≤ N(r,
1

f (z) − 1
) + N(r,

1
f (z)

) + N(r, f (z)) + S(r, f ) = S(r, f ),

which is a contradiction. Therefore, φ ≡ 0 and

f ′(z)
f (z)( f (z) − 1)

=
f ′(z + c)

f (z + c)( f (z + c) − 1)
. (11)

We next prove that f (z) and f (z + c) share 0 CM. Suppose that η0 is a zero of f (z) of multiplicity p. The
above equation yields that η0 must be a zero of f (z + c) or f (z + c) − 1. Suppose η0 is a zero of f (z + c) − 1 of
multiplicity q. Then, the Laurent expansions of f (z) and f (z + c) − 1 at η0 are as follows.

f (z) = sp(z − η0)p + sp+1(z − η0)p+1 + sp+2(z − η0)p+2 + · · · , (12)

f (z + c) − 1 = tq(z − η0)q + tq+1(z − η0)q+1 + tq+2(z − η0)q+2 + · · · , (13)

where si (i = p, p + 1, · · · ) and ti (i = q, q + 1, · · · ) are finite complex numbers with sp , 0 and tq , 0. Further,
we get

f ′(z) = psp(z − η0)p−1 + (p + 1)sp+1(z − η0)p + (p + 2)sp+2(z − η0)p+1 + · · · , (14)
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f ′(z + c) = qtq(z − η0)q−1 + (q + 1)tq+1(z − η0)q + (q + 2)tq+2(z − η0)q+1 + · · · , (15)

Combining (12) and (14) yields that

f ′(z)
f (z)( f (z) − 1)

=
1

(0 − 1)
·

psp(z − η0)p−1 + (p + 1)sp+1(z − η0)p + (p + 2)sp+2(z − η0)p+1 + · · ·

sp(z − η0)p + sp+1(z − η0)p+1 + sp+2(z − η0)p+2 + · · ·

=
p

(0 − 1)(z − η0)
+

sp+1

sp(0 − 1)
+ O(z − η0).

(16)

On the other hand, by (13) and (15) we get

f ′(z + c)
f (z + c)( f (z + c) − 1)

=
1

(1 − 0)
·

qtq(z − η0)q−1 + (q + 1)tq+1(z − η0)q + (q + 2)tq+2(z − η0)q+1 + · · ·

tq(z − η0)q + tq+1(z − η0)q+1 + tq+2(z − η0)q+2 + · · ·

=
q

(1 − 0)(z − η0)
+

tq+1

tq(1 − 0)
+ O(z − η0).

(17)

Combining (16) and (17) yields −p = q, which is impossible. So, η0 must be a zero of f (z + c). Then,
repeating the above argument can show that the multiplicity of f (z + c) at the point η0 is p, which implies
that E(0, f (z)) ⊆ E(0, f (z + c)). Similarly, one can obtain E(0, f (z + c)) ⊆ E(0, f (z)). Therefore, f (z) and f (z + c)
share 0 CM. Furthermore, we can derive that f (z) and f (z + c) share 1,∞ CM. We omit the proof here. Then,
from [13, Theorem 2.1], we can show that f (z) ≡ f (z + c), a contradiction.

Thus, we finish the proof of Theorem 3.

2. Proof of Theorem 2

In this section, we shall prove the theorem 2. Before to its proof, we first give the following results,
where the first one is Theorem 5.1 of Halburd-Korhonen-Tohge in [16], the second one is Lemma 3.3 of
Bergweiler and Langley in [2].

Lemma 1. Let f (z) be a meromorphic function of of hyper order ρ2 < 1, and η ∈ C. Then for each ε > 0, we
have

m(r,
f (z + η)

f (z)
) = o(

T(r, f )
r1−ρ2−ε

) = S(r, f ),

for all r outside of a set of finite logarithmic measure.

Lemma 2. Let 1(z) be a non-constant meromorphic function in the plane of order less than 1, and let h > 0.
Then there exists an ε-set E such that

1(z + η)
1(z)

→ 1, as z→∞ in C\E,

uniformly in η for |η| < h.

Proof of Theorem 2 The proof is based on the ideas in [5, 7]. On the contrary, suppose that f (z) . 1(z).
We below derive a contradiction. Note that f (z) is a non-constant periodic meromorphic function. Then
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µ( f ) ≥ 1. The fact can be found in [21, Lemma 5.1]. Together with N(r, f ) = O(rλ), one has N(r, f ) = S(r, f ).
By the second fundamental theorem and the assumptions of Theorem 2, we have

T(r, f ) ≤ N(r,
1
f

) + N(r,
1

f − 1
) + N(r, f ) + S(r, f )

= N(r,
1
1

) + N(r,
1
1 − 1

) + N(r,G1) + N(r,G2) + S(r, f )

≤ T(r,
1
1

) + T(r,
1
1 − 1

) + S(r, f )

= 2T(r, 1) + S(r, f ) (r→∞, r < E0, mesE0 < ∞).

(18)

Similarly, one has that

T(r, 1) ≤ 2T(r, f ) + S(r, 1) (r→∞, r < E1, mesE1 < ∞). (19)

Combining (18) and (19) yields

1 < µ(1) = µ( f ) ≤ ρ(1) = ρ( f ), ρ2(1) = ρ2( f ) < 1. (20)

For convenience, we set S(r) := S(r, f ) = S(r, 1). By Hadamard factorization theorem, we can assume
that

f (z)
1(z)

= zkπ1(z)
π2(z)

eα(z) = P(z)eα(z), (21)

where k is an integer, α(z) is an entire function, and π1(z), π2(z) are the canonical products of f (z)
1(z) formed

with the non-null zeros and poles of f (z) and 1(z), respectively. Obviously, by (21), one has

f (z + c)
1(z + c)

= (z + c)kπ1(z + c)
π2(z + c)

eα(z+c) = P(z + c)eα(z+c). (22)

We claim that 1(z) ≡ 1(z + c), which implies that 1 is also a periodic function with period c. Observe that
E(0, f (z)) = E(0, 1(z)) except for a possible set G1 with N(r,G1) = O(rλ). So, there exists a set G3 such that
N(r,G3) = O(rλ) and E(0, f (z+ c)) = E(0, 1(z+ c)) except for a possible set G3. In view of the periodic function
f (z), one has E(0, f (z)) = E(0, f (z + c)). All the above discussion shows that E(0, 1(z)) = E(0, 1(z + c)) except
for a possible set G4 = G1∪G3. Clearly, N(r,G4) = O(rλ). Applying the same argument to the set of E(1, 1(z))
and E(1, 1(z + c)), one obtains that E(0, 1(z)) = E(0, 1(z + c)) except for a possible set G5 with N(r,G5) = O(rλ).
Plus the fact N(r, 1) = O(rλ), we see that the function 1(z) and 1(z + c) satisfy all the conditions of Theorem
3, which implies that 1(z) ≡ 1(z + c) and the claim is right. Furthermore, combining (21) and (22) yields that

eα(z)−α(z+c) =
P(z + c)

P(z)
.

By the well-know result due to Borel (see [21, Theorem 2.3]), we know that the order ρ(π j) of π j(z) ( j =
1, 2) is equal to the exponent of convergence λ(π j) of the zeros of π j(z) ( j = 1, 2). Again from (21), we see
that all the zeros of π1(resp. π2) come from the points of G1 and the poles of 1(z) (resp f (z)). Thus, we can
deduce that

ρ(π1) = λ(π1) = lim sup
r→∞

log N(r, 1
π1

)

log r
= lim sup

r→∞

log[N(r, 1) + N(r,G1)]
log r

≤ λ < 1,

ρ(π2) = λ(π2) = lim sup
r→∞

log N(r, 1
π2

)

log r
= lim sup

r→∞

log[N(r, f ) + N(r,G1)]
log r

≤ λ < 1.
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The form P(z) = zk π1(z)
π2(z) yields that ρ(P(z)) < 1. Together with Lemma 1, we get

T(r, eα(z)−α(z+c)) = m(r, eα(z)−α(z+c)) = m(r,
P(z + c)

P(z)
) = O(rρ(P)−1+ε) = O(rε),

which implies that α(z) − α(z + c) must be a constant. Let α(z) − α(z + c) ≡ h for some constant h ∈ C. Then

eh =
P(z + c)

P(z)
,

and α′(z) − α′(z + c) ≡ 0. Consequently α′(z) is a periodic function with period c. Suppose that α′(z) is not
constant. Then, ρ(α(z)) = ρ(α′(z)) ≥ 1. On the other hand, by (21), we have ρ(α(z)) = ρ(α′(z)) ≤ ρ2( f ) < 1, a
contradiction. Therefore, α′(z) is constant. Then, α(z) is a linear function, say α(z) = az + b with constants
a, b ∈ C. In view of ρ(P(z)) < 1 and Lemma 2, there exists a set E of finite logarithmic measure such that for
|z| = r < E,

eh =
P(z)

P(z + c)
→ 1, as |z| → ∞.

Thus eh = 1 and P(z) = P(z + c). The fact ρ(P(z)) < 1 forces that P is a constant, say A. We rewrite (21) as

f (z)
1(z)

= Aeα(z) = Aeaz+b. (23)

In the following, we will prove that

N(r,
1

f − 1
) = N(r,

1
1 − 1

) = O(r). (24)

We consider into two cases.

Case 1. a = 0.

Then, f (z)
1(z) = Aeb is a constant. If there exists a point z0 such that f (z0) = 1(z0) = 1, then substituting z0

into the above equation leads to f (z) ≡ 1(z), a contradiction. Thus, f − 1 and 1 − 1 has no common zeros.
Therefore, E(1, f ) ⊆ G2 and E(1, 1) ⊆ G2, which shows that

N(r,
1

f − 1
) ≤ N(r,G2) = O(rλ) = O(r), N(r,

1
1 − 1

) ≤ N(r,G2) = O(rλ) = O(r).

Case 2. a , 0.

In this case, we will employ a result of Chen in [5], which is stated as follows.

Proposition. Suppose that f (z) = f (z + c), 1(z) = 1(z + c) and f (z)
1(z) = Aeaz+b, where a , 0 and b are constant. If

the point a0 is common zero of f − 1 and 1 − 1 with multiplicities p and q, respectively, then there exists a positive
integer M (which is independent of a0) such that p, q ≤M.

Suppose that b0 is common zero of f − 1 and 1 − 1, then Aeaz+b
|b0 = 1. By the above proposition, one has

N(r,
1

f − 1
) ≤MN(r,E(1, f )\G2) + N(r,G2) ≤MN(r,

1
Aeaz+b − 1

) + O(rλ) = O(r).

Similarly, we can deduce N(r, 1
1−1 ) = O(r). From the cases 1 and 2, we prove the formula (24) holds. In

addition, we set

f (z) − 1
1(z) − 1

= znπ3(z)
π4(z)

eβ(z) = Q(z)eβ(z), (25)
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where n is an integer, β(z) is an entire function, and π3(z), π4(z) are the canonical products of f (z)−1
1(z)−1 formed

with the non-null zeros and poles of f (z) − 1 and 1(z) − 1, respectively.
It follows from (25) that

f (z + c) − 1
1(z + c) − 1

= (z + c)nπ3(z + c)
π4(z + c)

eβ(z+c) = Q(z + c)eβ(z+c). (26)

Combining (25) and (26) yields

eβ(z)−β(z+c) =
Q(z + c)

Q(z)
. (27)

Consequently, using the same argument as in the proof of ρ(P(z)) < 1, we have

ρ(π3) = λ(π3) = lim sup
r→∞

log N(r, 1
π3

)

log r
≤ lim sup

r→∞

log[N(r, 1) + N(r, 1
f−1 )]

log r
≤ 1,

ρ(π4) = λ(π4) = lim sup
r→∞

log N(r, 1
π4

)

log r
≤ lim sup

r→∞

log[N(r, f ) + N(r, 1
1−1 )]

log r
≤ 1.

The form Q(z) = zn π3(z)
π4(z) implies that ρ(Q(z)) ≤ 1. The same proceed as above can show that β(z) = c1z + d

with two constants c1, d. Further,

f (z) − 1
1(z) − 1

= Q(z)ec1z+d. (28)

Combining (23) and (28) gives that

f (z) =
−Q(z)ec1z+d + 1

1 −Q(z)A−1e(c1−a)z+d−b
. (29)

Then it follows from (29) that

ρ( f ) ≤ max{ρ(Q), ρ(ec1z+d), ρ(e(c1−a)z+d−b)} ≤ 1,

which contradicts the fact ρ( f ) ≥ µ( f ) > 1.

Thus, the proof is finished.
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