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Abstract. In this paper we discuss the existence of solution of infinite systems of fractional differential
equations with the help of Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in
the tempered sequence spaces. We provide examples to established the applicability of our results.

1. Introduction and Definitions

The fractional differential equations describe many phenomena in the fields of engineering, physics,
biophysics, chemistry, biology, economics, control theory, signal and image processing, aerodynamics,
viscoelasticity, electromagnetic and rheology etc. The fractional differential equations have important tool
for the description of hereditary properties of various materials and processes than the corresponding
integer order differential equations. For different types of applications of fractional differential equations
we refer [2, 3, 12] and references therein.

The theory of infinite systems of ordinary differential equations is a very important branch of the theory
of differential equations in Banach spaces. Infinite systems of ordinary differential equations describes
many real life problems which can found in the theory of neural nets, the theory of branching processes
and mechanics etc (see [9, 11, 19]).

In functional analysis the measure of noncompactness play important role which was introduced by
Kuratowski [13]. The idea of measure of noncompactness has been used by many authors in obtaining the
existence of solutions of infinite systems of integral equations and differential equations (see [8]). Mursaleen
and Mohiuddine [16] proved existence theorems for the infinite systems of differential equations in the
space `p.On the other hand, existence theorems for the infinite systems of linear equations in `1 and `p was
discussed by Alotaibi et al. [5]. Mursaleen and Alotaibi [18] proved existence theorems for the infinite
systems of differential equations in some BK-spaces. Mursaleen et al. [15] proved the existence of infinite
systems of fractional differential equations in the spaces c0 and `p. Srivastava et al. [20] studied the existence
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of solutions of infinite systems of nth order differential equations in the spaces c0 and `1 via the measure of
noncompactness.

Definition 1.1. [13] Let (X, d) be a metric space and Q a bounded subset of X. Then the Kuratowski measure of
noncompactness (α-measure or set measure of non-compactness) of Q, denoted by α(Q), is the infimum of the set of
all numbers ε > 0 such that Q can be covered by a finite number of sets with diameters ε > 0, that is,

α(Q) = inf
{
ε > 0 : Q ⊂ ∪n

i=1Si,Si ⊂ X, diam(Si) < ε (i = 1, 2, ...,n) ,n ∈N
}

The function α is called Kuratowski measure of noncompactness. It was introduced by Kuratowski [13].

Clearly

α(Q) ≤ diam(Q) for each bounded subset Q of X.

Suppose E is a real Banach space with the norm ‖ . ‖ . Let B(x0, r) be a closed ball in E centered at x0 and with
radius r. If X is a nonempty subset of E then by X̄ and Conv(X) we denote the closure and convex closure
of X. Moreover letME denote the family of all nonempty and bounded subsets of E and NE its subfamily
consisting of all relatively compact sets.

Definition 1.2. [8] A function µ : ME → [0,∞) is called a measure of noncompactness if it satisfies the following
conditions:

(i) the family ker µ =
{
X ∈ ME : µ (X) = 0

}
is nonempty and ker µ ⊂ NE.

(ii) X ⊂ Y =⇒ µ (X) ≤ µ (Y) .
(iii) µ

(
X̄
)

= µ (X) .
(iv) µ (ConvX) = µ (X) .
(v) µ (λX + (1 − λ) Y) ≤ λµ (X) + (1 − λ)µ (Y) for λ ∈ [0, 1] .

(vi) if Xn ∈ ME, Xn = X̄n, Xn+1 ⊂ Xn for n = 1, 2, 3, ... and lim
n→∞

µ (Xn) = 0 then
⋂
∞

n=1 Xn , φ.

The family kerµ is said to be the kernel of measure µ. A measure µ is said to be the sublinear if it satisfies the
following conditions:

(1) µ (λX) = |λ|µ (X) for λ ∈ R.
(2) µ (X + Y) ≤ µ (Y) + µ (Y) .

A sublinear measure of noncompactness µ satisfying the condition:

µ (X ∪ Y) = max
{
µ (X) , µ (Y)

}
and kerµ = NE is said to be regular.

Definition 1.3. [8] Let (X, d) be a metric space, Q be a bounded subset of X and B(x, r) =
{
y ∈ X : d(x, y) < r

}
. Then

the Hausdorff measure of noncompactness χ(Q) of Q is defined by

χ(Q) := inf

ε > 0 : Q ⊂
n⋃

i=1

B(xi, ri), xi ∈ X, ri < ε (i = 1, 2, . . . ,n),n ∈N

 .
The definition of the Hausdorff measure of noncompactness of the set Q it is not supposed that centers of
the balls that cover Q belong to Q. Hence it can equivalently be stated as follows:

χ(Q) = inf {ε > 0 : Q has a finite ε − net in X} .

Consider the following sequence spaces, which are Banach spaces with their respective norms

c0 =

{
x ∈ ω : lim

k→∞
xk = 0, ‖ x ‖c0= sup

k
|xk|

}
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the space of all null sequences and

c =

{
x ∈ ω : lim

k→∞
xk = l, l ∈ C , ‖ x ‖c= sup

k
|xk|

}
the space of all convergent sequences.
In [8], the Hausdorff measure of noncompactness χ in the Banach space

(
c0, ‖ . ‖c0

)
is defined by

χ (B) = lim
n→∞

[
sup
u∈B

(
max

k≥n
| uk |

)]
, where B ∈ Mc0 . (1)

In [17], the most convenient measure of noncompactness µ for the Banach space (c, ‖ . ‖c) is defined by

µ (B) = lim
p→∞

sup
u∈B

sup
k≥p
| uk − lim

m→∞
um |


 , (2)

where B ∈ Mc. The measure µ is regular.
Recently Banaś and Krajewska [7] have introduced tempering sequence and space of tempered sequences.
Let us fix a positive non increasing real sequence β =

(
βn

)∞
n=1 , such a sequence is called the tempering

sequence.
Let the set X consisting of all real (or complex) sequences x = (xn)∞n=1 such that βnxn → 0 as n → ∞. It is
obvious that X forms a linear space over the field of real (or complex ) numbers. We denote the space by cβ0.
It is easy to see that cβ0 is a Banach space with the norm

‖ x ‖cβ0
= sup

n∈N

{
βn |xn|

}
.

Similarly, let the set X consisting of all real (or complex) sequences x = (xn)∞n=1 such that
(
βnxn

)
converges

to a finite limit. It is obvious that X forms a linear space over the field of real (or complex) numbers. We
denote the space by cβ. It is easy to see that cβ is a Banach space with the norm

‖ x ‖cβ= sup
n∈N

{
βn |xn|

}
.

Also there is a isometry between the spaces cβ0 and c0 and between the spaces cβ and c.
In [7], the Hausdorff measure of noncompactness χ(B) for B ∈ Mcβ0

is defined by

χ(B) = lim
n→∞

{
sup
x∈B

[
sup
k≥n

(
βk |xk|

)]}
.

Similarly the analogue of the measure of noncompactness µ on cβ defined by formula (2) has the form

µcβ (B) = lim
p→∞

sup
x∈B

sup
k≥p
| βkxk − lim

m→∞

(
βmxm

)
|


 , where B ∈ Mcβ .

Let us consider the function spaces C(I, cβ0) and C(I, cβ) where I = [0,T],T > 0 the spaces of all continuous
functions on I with values in cβ0 and the spaces of all continuous functions on I with values in cβ respectively.
Then C(I, cβ0) and C(I, cβ) are Banach spaces with respect to the norm

‖ u ‖C(I,cβ0)= max
{
‖ u(t) ‖cβ0

: t ∈ I
}
, u ∈ C(I, cβ0)
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and

‖ u ‖C(I,cβ)= max {‖ u(t) ‖cβ : t ∈ I} , u ∈ C(I, cβ)

respectively.
For any non-empty, closed, bounded and convex subset X of C(I, cβ0) or C(I, cβ) and t ∈ I, let

X(t) = {x(t) : x ∈ X} ,

χC(I,cβ0)(X) = sup {χ(X(t)) : t ∈ I}

and

µC(I,cβ)(X) = sup
{
µcβ (X(t)) : t ∈ I

}
.

It was proved in [6] that for a bounded closed and convex X ⊂ C(I,E) where E is a Banach space the
measure of noncompactness is given by

µC(I,E)(X) = sup
t∈I

µE {X(t)} .

Thus χC(I,cβ0) and µC(I,cβ) will satisfy all the axioms of measure of noncompactness on C(I, cβ0) and C(I, cβ)
respectively.

Definition 1.4. [4] Let E1 and E2 be two Banach spaces and let µ1 and µ2 be arbitrary measure of noncompactness
on E1 and E2, respectively. An operator f from E1 to E2 is called a

(
µ1, µ2

)
-condensing operator if it is continuous

and µ2
(

f (D)
)
< µ1(D) for every set D ⊂ E1 with compact closure.

Remark 1.5. If E1 = E2 and µ1 = µ2 = µ, then f is called a µ-condensing operator.

Theorem 1.6. [10] Let Ω be a nonempty, closed, bounded and convex subset of a Banach space E and let f : Ω→ Ω
be a continuous mapping such that there exists a constant k ∈ [0, 1) with the property µ2

(
f (Ω)

)
< kµ1(Ω). Then f

has a fixed point in Ω.

Definition 1.7. [14] Let (X, d) be a metric space. Then a mapping T on X is said to be a Meir–Keeler contraction if
for any ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ =⇒ d
(
Tx,Ty

)
< ε,∀x, y ∈ X.

Theorem 1.8. [14] Let (X, d) be a complete metric space. If T : X → X is a Meir-Keeler contraction, then T has a
unique fixed point.

Definition 1.9. [1] Let C be a nonempty subset of a Banach space E and let µ be an arbitrary measure of noncom-
pactness on E. We say that an operator T : C→ C is a Meir–Keeler condensing operator if for any ε > 0, there exists
δ > 0 such that

ε ≤ µ (X) < ε + δ =⇒ µ (T (X)) < ε

for any bounded subset X of C.

Theorem 1.10. [1] Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let µ be an
arbitrary measure of noncompactness on E. If T : C→ C is a continuous and Meir–Keeler condensing operator, then
T has at least one fixed point and the set of all fixed points of T in C is compact.
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2. Main Results

For a function f : (0,∞)→ R, the fractional integral of order α is defined as follows

Iα f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

where α > 0, provided the integral exists. Similarly the fractional derivative of order α for a function f is
defined by

Dα f (t) =
1

Γ(n − α)

(
d
dt

)n ∫ t

0

1
(t − s)α−n+1 f (s)ds,

where n = [α] + 1 = N + 1.
We mention the following properties of the operator I and D for α, β > 0

Iα+β f (t) = IαIβ f (t), DαIα f (t) = f (t).

For α > 0, the general solution of the fractional differential equation Dαy(t) = 0 with y(t) ∈ C(0,T)∩L1
loc(0,∞)

is given by

y(t) = C1tα−1 + C2tα−2 + ... + CNtα−N,

where Ci ∈ R, i = 1, 2, . . . ,N.
We discuss the infinite systems of fractional differential equations by transforming the system into an
infinite systems of integral equations with the help of Green’s function.
Consider the infinite systems of fractional differential equations

Dαyi(t) + hi
(
t, y(t)

)
= 0, 0 < t < T, hi ∈ C[0,T] (3)

with yi(0) = yi(T) = 0, where y(t) =
(
yi(t)

)∞
i=1 ∈ R

∞ and i = 1, 2, 3, . . . .
If yi(t) ∈ C[0,T] and 1 < α < 2, the unique solution of (3) is given by

yi(t) =

∫ T

0
G(t, s)hi(s, y(s))ds, (4)

where i = 1, 2, 3, ... and t ∈ I and the Green’s function associated to (3) is given by

G(t, s) =

 1
Tα−1Γ(α)

[
tα−1 (T − s)α−1

− Tα−1 (t − s)α−1
]
, 0 ≤ s ≤ t ≤ T,

1
Tα−1Γ(α) t

α−1 (T − s)α−1 , 0 ≤ t ≤ s ≤ T.
(5)

In this article we establish the existence of solution of the infinite systems (3) for the sequence spaces C(I, cβ0)
and C(I, cβ).

3. Solvability of infinite systems of fractional differential equations in C(I, cβ
0
)

Suppose that

(i) The functions hi are defined on the set I × R∞, where I = [0,T] and take real values. The operator h
defined on the space I × cβ0 into cβ0 as(

t, y(t)
)
→

(
hy

)
(t) =

(
hi(t, y(t))

)∞
i=1

is the class of all functions
((

hy
)

(t)
)

t∈I which is equicontinuous at every point of the space cβ0.
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(ii) For every y(t) ∈ cβ0, t ∈ I, i ∈Nwe have∣∣∣hi
(
t, y(t)

)∣∣∣ ≤ ai(t) + bi(t)
∣∣∣yi(t)

∣∣∣ ,
where for all i ∈N and both ai(t), bi(t) are real continuous functions defined on I such that the sequence(
βiai(t)

)
converges uniformly to zero on I and the sequence (bi(t)) is equibounded on I.

Let us assume

b(t) = sup
i∈N
{bi(t)}

B = sup
t∈I
{b(t)}

A = sup
i∈N,t∈I

{
βiai(t)

}
and 2BTα

Γ(α) < 1.

Theorem 3.1. Under the hypothesis (i)-(ii), infinite systems (3) has at least one solution y(t) = (yi(t)) ∈ C(I, cβ0) for
all t ∈ I.

Proof. We have sup
i∈N

{
βi | yi(t) |

}
≤ L for all y(t) = (yi(t))∞i=1 ∈ C(I, cβ0) and t ∈ I, where L is a finite positive real

number.
By using (4) and (ii), for arbitrary fixed t ∈ I, we have

‖ y(t) ‖cβ0
= sup

i≥1

[
βi

∣∣∣∣∣∣
∫ T

0
G(t, s)hi(s, y(s))ds

∣∣∣∣∣∣
]

≤ sup
i≥1

[
βi

∫ T

0
|G(t, s)|

∣∣∣hi(s, y(s))
∣∣∣ ds

]
≤

2Tα−1

Γ(α)
sup
i≥1

[
βi

∫ T

0

{
ai(s) + bi(s) | yi(s) |

}
ds

]
≤

2Tα−1

Γ(α)
sup
i≥1

[∫ T

0
(A + BL)ds

]
=

2(A + BL)Tα

Γ(α)
= d(say)

i.e. ‖ y(t) ‖cβ0
≤ d.

Thus

max
t∈I
‖ y(t) ‖cβ0

≤ d =⇒ ‖ y ‖C(I,cβ0)≤ d.

Let y0(t) =
(
y0

i (t)
)∞

i=1
, where y0

i (t) = 0 ∀ t ∈ I, i ∈N.

Consider B = B
(
y0(t), d

)
the closed ball centered at y0(t) and radius d, thus B is a non-empty, bounded,

closed and convex subset of C(I, cβ0).

For arbitrary fixed t ∈ I, define the operator S = (Si)
∞

i=1 on from C(I, cβ0) to C(I, cβ0) defined as follows

(
Sy

)
(t) =

{(
Siy

)
(t)

}∞
i=1 =

{∫ T

0
G(t, s)hi(s, y(s))ds

}∞
i=1
,
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where y(t) =
(
yi(t)

)∞
i=1 ∈ C(I, cβ0) and yi(t) ∈ C(I,R).

As
(
hi

(
t, y(t)

))
∈ cβ0 for each t ∈ I, we have

lim
i→∞

[
βi

(
Siy

)
(t)

]
= lim

i→∞

[
βi

∫ T

0
G(t, s)hi(s, y(s))ds

]
=

∫ T

0
G(t, s) lim

i→∞

[
βihi(s, y(s))

]
= 0.

Hence
(
Sy

)
(t) ∈ C(I, cβ0).

Also
(
Siy

)
(t) satisfies boundary conditions i.e.

(
Siy

)
(0) =

∫ T

0
G(0, s)hi(s, y(s))ds =

∫ T

0
0. fi(s, y(s))ds = 0,

(
Siy

)
(T) =

∫ T

0
G(T, s)hi(s, y(s))ds =

∫ T

0
0. fi(s, y(s))ds = 0.

For fixed t ∈ I and y(t) ∈ B we have ‖
(
Sy

)
(t) − y0(t) ‖cβ0

≤ d gives maxt∈I ‖
(
Sy

)
(t) − y0(t) ‖cβ0

≤ d =⇒ ‖(
Sy

)
(t) − y0(t) ‖C(I,cβ0)≤ d thus S is self mapping on B.

By assumption (i) we can assume z(t) = (zi(t))∞i=1 ∈ B and there exists ε > 0 for each δ > 0 such that
‖ (hy)(t) − (hz)(t) ‖cβ0

< εΓ(α)
2Tα for each y(t), z(t) ∈ B, whenever ‖ y(t) − z(t) ‖≤ δ, where t ∈ I.

For arbitrary fixed t ∈ I

‖ (Sy)(t) − (Sz)(t) ‖cβ0
= sup

i≥1

{
βi

∣∣∣(Siy)(t) − (Siz)(t)
∣∣∣}

≤ sup
i≥1

{
βi

∫ T

0
|G(t, s)|

∣∣∣hi(s, y(s)) − hi(s, z(s))
∣∣∣ ds

}
≤

2Tα−1

Γ(α)
sup
i≥1

{∫ T

0
βi

∣∣∣hi(s, y(s)) − hi(s, z(s))
∣∣∣ ds

}
<

2Tα−1

Γ(α)
.
εΓ(α)
2Tα

.T < ε.

Thus S is continuous on B ⊂ C(I, cβ0). Since t is arbitrarily fixed therefore S is continuous on B for all t ∈ I.
We have

χ (SB) = lim
i→∞

 sup
y(t)∈B

sup
k≥i

{
βk

∣∣∣∣∣∣
∫ T

0
G(t, s)hk(s, y(s))ds

∣∣∣∣∣∣
}

≤
2Tα−1

Γ(α)
lim
i→∞

 sup
y(t)∈B

sup
k≥i

{∫ T

0

(
βkak(s) + βkbk(s)

∣∣∣yk(s)
∣∣∣)}

≤
2BTα

Γ(α)
χ(B)

i.e. χ (SB) ≤ 2BTα
Γ(α) χ(B).

Thus supt∈I χ (SB) ≤ 2BTα
Γ(α) supt∈I χ(B) =⇒ χC(I,cβ0) (SB) ≤ 2BTα

Γ(α) χC(I,cβ0)(B).

Hence χC(I,cβ0) (SB) ≤ 2BTα
Γ(α) χC(I,cβ0)(B) < ε =⇒ χC(I,cβ0)(B) < εΓ(α)

2BTα .

Taking δ = ε
2BTα (Γ(α) − 2BTα) we get ε ≤ χC(I,cβ0) (B) < ε+δ. Therefore S is a Meir–Keeler condensing operator

defined on the set B ⊂ C(I, cβ0). Since t is arbitrarily fixed, thus for all t ∈ I, S satisfies all the conditions of
Theorem 3 which implies S has a fixed point in B. Thus the systems (3) has a solution in C(I, cβ0).
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4. Examples

Let us consider the following systems of differential equations

D
3
2 yi(t) = −

e−it2

i2
−

∞∑
j=i

yi(t)
4 j2

(6)

with yi(0) = yi(1) = 0, where hi
(
t, y(t)

)
= e−it2

i2 +
∑
∞

j=i
yi(t)
4 j2 , ∀ i ∈N, t ∈ (0, 1) .

Here T = 1, α = 3
2 . Let βi = 1

i2 for all i ∈N.
If y(t) ∈ C(I, cβ0) then for any t ∈ [0, 1] we have

lim
i→∞

βihi
(
t, y(t)

)
= lim

i→∞

 e−it2

i4
+

1
i2

∞∑
j=i

yi(t)
4 j2

 = 0.

Thus if y(t) =
(
yi(t)

)
∈ C(I, cβ0) i.e.

(
hi

(
t, y(t)

))
∈ cβ0.

Let t ∈ [0, 1] and z(t) ∈ C(I, cβ0) be arbitrary, where z(t) = (zi(t))∞i=1 . For ε > 0, we have

‖ (hy)(t) − (hz)(t) ‖cβ0
= sup

i≥1

{
βi

∣∣∣hi(t, y(t)) − hi(t, z(t))
∣∣∣}

= sup
i≥1

 1
i2

∣∣∣∣∣∣∣∣
∞∑
j=i

{
yi(t)
4 j2
−

zi(t)
4 j2

}∣∣∣∣∣∣∣∣


≤ sup
i≥1

 1
4i2

∣∣∣yi(t) − zi(t)
∣∣∣ ∞∑

j=i

1
j2


≤
π2

24
‖ y(t) − z(t) ‖cβ0

< ε

whenever ‖ y(t) − z(t) ‖cβ0
< δ = 24ε

π2 , which implies the equicontinuity of
(
(hy)(t)

)
t∈I on cβ0, where I = [0, 1].

Moreover for all i ∈N and t ∈ I, we have

∣∣∣hi(t, y(t))
∣∣∣ ≤ e−it2

i2
+

∣∣∣yi(t)
∣∣∣ ∞∑

j=i

1
4 j2
≤

e−it2

i2
+
π2

24

∣∣∣yi(t)
∣∣∣ ,

where ai(t) = e−it2

i2 , bi(t) = π2

24 are real continuous functions on I and B = π2

24 . We observe that
(
βiai(t)

)
=

(
e−it2

i4

)
converges uniformly to zero on I and the sequence {bi(t)} is equibounded on I.Also 2BTα

Γ(α) = 2.π
2

24 .
2
√
π
≈

9.86
10.63 < 1.

Thus by Theorem 3.1 the systems (6) has unique solution in C(I, cβ0).

5. Solvability of infinite systems of fractional differential equations in C(I, cβ)

Suppose that

(i) The functions hi are defined on the set I × R∞, where I = [0,T] and take real values. The operator h
defined on the space I × cβ into cβ as(

t, y(t)
)
→

(
hy

)
(t) =

(
hi(t, y(t))

)∞
i=1

is the class of all functions
((

hy
)

(t)
)

t∈I which is equicontinuous at every point of the space cβ.
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(ii) For every y(t) ∈ cβ, t ∈ I, i ∈Nwe have

hi
(
t, y(t)

)
= âi(t) + b̂i(t)yi(t),

where for all i ∈N and both âi(t), b̂i(t) are nonnegative continuous functions defined on I, the sequence(
βiâi(t)

)
converges uniformly to zero on I and the sequence

(
b̂i(t)

)
is convergent on I.

Let us consider

b̂(t) = sup
i∈N

{
b̂i(t)

}
,

B̂ = sup
t∈I

{
b̂(t)

}
,

Â = sup
i∈N,t∈I

{
βiâi(t)

}
and 2B̂Tα

Γ(α) < 1.

Theorem 5.1. Under the hypothesis (i)-(ii), infinite systems (3) has at least one solution y(t) = (yi(t))∞i=1 ∈ C(I, cβ)
for all t ∈ I.

Proof. We have sup
i∈N

{
βi | yi(t) |

}
≤ L1 for all y(t) = (yi(t))∞i=1 ∈ C(I, cβ) and t ∈ I,where L1 is a finite positive real

number.
By using (4) and (ii), we have for arbitrary fixed t ∈ I,

‖ y(t) ‖cβ = sup
i≥1

[
βi

∣∣∣∣∣∣
∫ T

0
G(t, s)hi(s, y(s))ds

∣∣∣∣∣∣
]

≤ sup
i≥1

[
βi

∫ T

0
|G(t, s)|

∣∣∣hi(s, y(s))
∣∣∣ ds

]
≤

2Tα−1

Γ(α)
sup
i≥1

[
βi

∫ T

0

{
âi(s) + b̂i(s) | yi(s) |

}
ds

]
≤

2Tα−1

Γ(α)
sup
i≥1

[∫ T

0
(Â + B̂L1)ds

]
=

2(Â + B̂L1)Tα

Γ(α)
= d1(say)

i.e. ‖ y(t) ‖cβ≤ d1.

Thus

max
t∈I
‖ y(t) ‖cβ≤ d1 =⇒ ‖ y ‖C(I,cβ)≤ d1.

Let y0(t) =
(
y0

i (t)
)∞

i=1
, where y0

i (t) = 0 ∀ t ∈ I, i ∈N.

Consider B1 = B1

(
y0(t), d1

)
, the closed ball centered at y0(t) and radius d1, thus B1 is a non-empty, bounded,

closed and convex subset of C(I, cβ).
For arbitrarily fixed t ∈ I, define the operator S = (Si)

∞

i=1 from C(I, cβ) to C(I, cβ) as follows

(
Sy

)
(t) =

{(
Siy

)
(t)

}∞
i=1 =

{∫ T

0
G(t, s)hi(s, y(s))ds

}∞
i=1
,
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where y(t) =
(
yi(t)

)∞
i=1 ∈ C(I, cβ) and yi(t) ∈ C(I,R).

Now let j ∈N and

∣∣∣βi(Siy)(t) − β j(Siy)(t)
∣∣∣ =

∣∣∣∣∣∣βi

∫ T

0
G(t, s)hi(s, y(s))ds − β j

∫ T

0
G(t, s)h j(s, y(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣βi

∫ T

0
G(t, s)

(
âi(s) + b̂i(s)yi(s)

)
ds − β j

∫ T

0
G(t, s)

(
â j(s) + b̂ j(s)y j(s)

)
ds

∣∣∣∣∣∣
≤

∫ T

0
|G(t, s)|

∣∣∣βiâi(s) − β jâ j(s)
∣∣∣ ds +

∫ T

0
|G(t, s)|

∣∣∣βib̂i(s)yi(s) − β jb̂ j(s)y j(s)
∣∣∣ ds.

Also ∣∣∣βib̂i(s)yi(s) − β jb̂ j(s)y j(s)
∣∣∣ ≤ βi

∣∣∣yi(s)
∣∣∣ ∣∣∣b̂i(s) − b̂ j(s)

∣∣∣ +
∣∣∣b̂ j(s)

∣∣∣ ∣∣∣βi(s)yi(s) − β j(s)y j(s)
∣∣∣ .

As i, j → ∞ we get
∣∣∣b̂i(s) − b̂ j(s)

∣∣∣ → 0,
∣∣∣βi(s)yi(s) − β j(s)y j(s)

∣∣∣ → 0 and
∣∣∣βiâi(s) − β jâ j(s)

∣∣∣ → 0 because(
βiâi(t)

)
,
(
b̂i(t)

)
are convergent on I and y(t) ∈ C(I, cβ) for all t ∈ I.

Thus as i, j→∞we get

∣∣∣βi(Siy)(t) − β j(Siy)(t)
∣∣∣→ 0.

Hence (Sy)(t) ∈ C(I, cβ).
For fixed t ∈ I and y(t) ∈ B1 we have ‖

(
Sy

)
(t) − y0(t) ‖cβ≤ d1 gives maxt∈I ‖

(
Sy

)
(t) − y0(t) ‖cβ≤ d1 =⇒ ‖(

Sy
)

(t) − y0(t) ‖C(I,cβ)≤ d1 thus S is self mapping on B1. Also
(
Siy

)
(t) satisfies boundary conditions i.e.

(
Siy

)
(0) =

∫ T

0
G(0, s)hi(s, y(s))ds =

∫ T

0
0. fi(s, y(s))ds = 0,

(
Siy

)
(T) =

∫ T

0
G(T, s)hi(s, y(s))ds =

∫ T

0
0. fi(s, y(s))ds = 0.

By assumption (i) we can assume z̄(t) = (z̄i(t))∞i=1 ∈ B1 and there exists ε > 0 for each δ > 0 such that
‖ (hy)(t) − (hz̄)(t) ‖cβ<

εΓ(α)
2Tα for each y(t), z(t) ∈ B1, whenever ‖ y(t) − z̄(t) ‖cβ≤ δ, where t ∈ I.

For arbitrarily fixed t ∈ I,

‖ (Sy)(t) − (Sz̄)(t) ‖cβ = sup
i≥1

{
βi

∣∣∣(Siy)(t) − (Siz̄)(t)
∣∣∣}

≤ sup
i≥1

{
βi

∫ T

0
|G(t, s)|

∣∣∣hi(s, y(s)) − hi(s, z̄(s))
∣∣∣ ds

}
≤

2Tα−1

Γ(α)
sup
i≥1

{∫ T

0
βi

∣∣∣hi(s, y(s)) − hi(s, z̄(s))
∣∣∣ ds

}
<

2Tα−1

Γ(α)
.
εΓ(α)
2Tα

.T < ε.

Thus S is continuous on B1 ⊂ C(I, cβ). Since t is arbitrarily fixed therefore S is continuous on B1 for all t ∈ I.



A. Das et al. / Filomat 33:17 (2019), 5519–5530 5529

We have for arbitrarily fixed t ∈ I,

µcβ (SB1)

= lim
i→∞

 sup
y(t)∈B1

sup
k≥i

{∣∣∣∣∣∣βk

∫ T

0
G(t, s)hk(s, y(s))ds − lim

m→∞

(
βm

∫ T

0
G(t, s)hm(s, y(s))ds

)∣∣∣∣∣∣
}

= lim
i→∞

 sup
y(t)∈B1

sup
k≥i

{∣∣∣∣∣∣
∫ T

0
G(t, s)

(
βkb̂k(s)yk(s) − lim

m→∞
βmb̂m(s)ym(s)

)
ds

∣∣∣∣∣∣
}

≤ lim
i→∞

 sup
y(t)∈B1

sup
k≥i

{∫ T

0
|G(t, s)|

∣∣∣∣βkb̂k(s)yk(s) − lim
m→∞

βmb̂m(s)ym(s)
∣∣∣∣ ds

}
≤

2Tα−1

Γ(α)
≤ lim

i→∞

 sup
y(t)∈B1

sup
k≥i

{∫ T

0

∣∣∣∣βkb̂k(s)yk(s) − lim
m→∞

βmb̂m(s)ym(s)
∣∣∣∣ ds

}
≤

2Tα−1

Γ(α)
lim
i→∞

 sup
y(t)∈B1

sup
k≥i

{∫ T

0

(∣∣∣b̂k(s)
∣∣∣ ∣∣∣∣βk(s)yk(s) − lim

m→∞
βmym(s)

∣∣∣∣ +
∣∣∣∣ lim
m→∞

βmym(s)
(
b̂k(s) − b̂m(s)

)∣∣∣∣) ds
}

≤
2TαB̂
Γ(α)

µcβ (B1)

i.e. µcβ (SB1) ≤ 2B̂Tα
Γ(α) µcβ (B1) =⇒ supt∈I µcβ (SB1) ≤ 2B̂Tα

Γ(α) supt∈I µcβ (B1).

Hence µC(I,cβ) (SB1) ≤ 2B̂Tα
Γ(α) µC(I,cβ)(B1) < ε =⇒ µC(I,cβ)(B1) < εΓ(α)

2B̂Tα
.

Taking δ = ε
2B̂Tα

(
Γ(α) − 2B̂Tα

)
we get ε ≤ µC(I,cβ)(B1) < ε+δ.Therefore S is a Meir–Keeler condensing operator

defined on the set B1 ⊂ C(I, cβ). Since t is arbitrarily fixed , thus for all t ∈ I, S satisfies all the conditions of
Theorem 3 which implies S has a fixed point in B1. Thus the systems (3) has a solution in C(I, cβ).

6. Examples

Let us consider the following systems of differential equations

D
3
2 yi(t) = −

t
i2
−

1 +

∞∑
j=i

1
4 j2

 yi(t) (7)

with yi(0) = yi( 1
4 ) = 0, where hi

(
t, y(t)

)
= t

i2 +
(
1 +

∑
∞

j=i
1

4 j2

)
yi(t),∀ i ∈N, t ∈

(
0, 1

4

)
.

Let βi = 1
i2 for all i ∈N.

Here T = 1
4 , α = 3

2 .

Also ai(t) = t
i2 , bi(t) = 1 +

∑
∞

j=i
1

4 j2 are real continuous functions on I =
[
0, 1

4

]
and B̂ = 1 + π2

24 . We observe that(
βiai(t)

)
=

(
t
i4

)
converges uniformly to zero on I and the sequence {bi(t)} is convergent on I.

Also 2B̂Tα
Γ(α) = 2.

(
1 + π2

24

)
. 18 .

1
Γ( 3

2 )
≈

1.41
3.55 < 1.

If y(t) ∈ C(I, cβ) then for any t ∈ [0, 1
4 ] we have

lim
i→∞

βihi
(
t, y(t)

)
= lim

i→∞

 t
i4

+
yi(t)

i2

1 +

∞∑
j=i

1
4 j2




is unique and finite science y(t) ∈ C(I, cβ) i.e.
(
hi

(
t, y(t)

))
∈ cβ.
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Let t ∈ I and z(t) ∈ C(I, cβ) be arbitrary, where z(t) = (zi(t))∞i=1 . For ε > 0, we have

‖ (hy)(t) − (hz)(t) ‖cβ = sup
i≥1

{
βi

∣∣∣hi(t, y(t)) − hi(t, z(t))
∣∣∣}

≤ sup
i≥1

 1
i2

∣∣∣yi(t) − zi(t)
∣∣∣ 1 +

∞∑
j=i

1
4 j2




≤

(
1 +

π2

24

)
‖ y(t) − z(t) ‖cβ< ε

whenever ‖ y(t) − z(t) ‖cβ0
< δ = ε

1+ π2
24

, which implies the equicontinuity of
(
(hy)(t)

)
t∈I on cβ.

Thus by Theorem 5.1, the systems (7) has unique solution in C(I, cβ).
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