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Abstract. This paper is devoted to the study of a nonlinear Kirchhoff-Carrier wave equation in an annular
associated with nonhomogeneous Dirichlet conditions. At first, by applying the Faedo-Galerkin, we prove
existence and uniqueness of the solution of the problem considered. Next, by constructing Lyapunov
functional, we prove a blow-up result for solutions with a negative initial energy and establish a sufficient
condition to obtain the exponential decay of weak solutions.

1. Introduction

In this paper, we are concerned with the following nonlinear Kirchhoff-Carrier wave equation in the
annular

= 41 (0 R, i OIB) (e + ) = F (58,0, 10, BOIR I OIR), p < x <1, 0 <6< T, (1)
associated with nonhomogeneous Dirichlet conditions

u(p,t) = go(t), u(1,t) = g1(¥), (1.2)
and initial conditions

u(x, 0) = fig(x), ui(x,0) = iy (x), (1.3)

where u, f, g0, g1, flo(x), fi1(x) are given functions; p € (0,1) is given constant. In Eq. (1.1), the nonlinear
. 1
terms g (£ (IR Iuee(OIR), f (1, 1,1, 1, eI, Iite(8)13), depend o the integrals (e} = [ xe(x, dx

and [l (A1 = [, ' i (x, .
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Eq. (1.1) herein is the bidimensional nonlinear wave equation describing nonlinear vibrations of the
annular membrane Q = {(x,y) : p?> < x> + y* < 1}. In the vibration processing, the area of the annular
membrane and the tension at various points change in time. The conditions u(p, t) = go(t) and u(1, t) = g1(¢)
on the boundaries T'1 = {(x, y) : x> + y* = p*} and > = {(x, y) : x> + y* = 1} describe vibrations of a membrane
which depends on gy and g; at the both boundaries of the annular membrane.

It is known that Kirchhoff [6] first investigated the following nonlinear vibration of an elastic string

En ("
phutt = (PO + i‘fov

where u = u(x, t) is the lateral displacement at the space coordinate x and the time t, p is the mass density, i
is the cross-section area, L is the length, E is the Young modulus, Py is the initial axial tension.

In [3], Carrier established the equation which models vibrations of an elastic string when changes in
tension are not small

2

ou

dy) U, (1.4)

EA (*
PUy — (1 + L_To j(; Mz(y, t)dy) Uy =0, (15)

where u(x, t) is the x—derivative of the deformation, Ty is the tension in the rest position, E is the Young
modulus, A is the cross - section of a string, L is the length of a string and p is the density of a material.
Clearly, if properties of a material depends on x and t, there is a hyperbolic equation of the type (Larkin [7])

1
Uy — B (x, t,f uz(y, t)dy) Uy = 0. (1.6)
0

The Kirchhoff - Carrier equations of the form Eq. (1.1) received much attention. We refer the reader
to, e.g., Cavalcanti et al. [1], [2], Ebihara, Medeiros and Miranda [4], Miranda et al. [15], Lasiecka and
Ong [8], Hosoya, Yamada [5], Larkin [7], Long et al. [10]-[12], Medeiros [14], Menzala [16], Messaoudi
[17], Ngoc et al. [18]-[22], Park et al. [23], [24], Rabello et al. [25], Santos et al. [26], Truong et al. [28],
for many interesting results and further references. In these works, the results concerning local existence,
global existence, asymptotic expansion, asymptotic behavior, decay and blow-up of solutions have been
examined.

Recently, Gongwei Liu [13] studied the damped wave equation of Kirchhoff type with initial and
Dirichlet boundary condition

g = M(IFu(®IP) Au + 1 = g(u) in Q x (0, 00),
u(x, 0) = Llo(X), ut(x/ 0) = ul(x)/ X € Q/ (17)
u(x, t) = 0on dQ x (0, ),

where Q is a bounded domain with smooth boundary dQ, g is a source term with exponential growth at
the infinity to be specified later. Here M(s) is a positive C' function on [0, c0) and M(s) > 1, |M’(s)| < s* for
all s > 1, @ > 0 and for suitably chosen initial data, (1.7) possesses a global weak solution which decays
exponentially. On the other hand, if conditions of M, g and initial data are suitable, the solution u of (1.7)
blows-up at a finite T".

In [15] Miranda and Jutuca dealt with the existence and uniqueness of solutions and exponential decay
of solutions of an initial-homogeneous boundary value problem for the Kirchhoff equation.

In [1], [2], Cavalcanti also studied the existence and uniform decay of solutions of the Kirchhoff-Carrier
equation.

In [28], the global existence and regularity of weak solutions for the linear wave equation

Uy — Uy + Ku+ Aup = f(x,1), 0<x<1,t>0 (1.8)

with the initial conditions as in (1.3) and two-point boundary conditions. The exponential decay of solutions
was given there by using Lyapunov method.



L. H. K. Son et al. / Filomat 33:17 (2019), 5561-5588 5563

Motivated by the above work, we intend to study the existence and uniqueness, the blow-up and
exponential decay of solutions for problem (1.1-1.3) under suitable conditions on f, p and initial data. Our
paper is organized as follows.

First, we present preliminaries in Section 2, with the notations, definitions, list of appropriate spaces
and required lemmas. We prove the existence and uniqueness a weak solution in Section 3 by using
Faedo-Galerkin method, the linearization method and the weak compact method. Next, in Section 4, Prob.
(1.1)-(1.3) is considered in case u = u (llux(t)llg), f=—Aug+ f(u), go(t) = g1(t) = 0, with A > 0 is constant. If
some auxiliary conditions are satisfied, we imply that the weak solution u of Prob. (1.1)-(1.3) blows-up at
finite time.

Finally, in Section 5 with the case u = y(||ux(t)||(2)), f = =Aus + f(u) + E(x,t), go(t) = g1(t) = 0, if

fonﬁm”o uzydz —p fp ! xdx an(x) f(z)dz > 0 and the initial energy and ||F(f)|lp are small enough, we verify that

the energy of the solution decays exponentially as t — +oco. In the proofs, to obtain the blow-up and the
exponential decay, we use the multiplier technique combined with a suitable Lyapunov functionals. Our
results can be regarded as an extension and improvement of the corresponding results of [7], [10]-[12],
[18]-[22], [28].

2. Preliminaries

First, we put Q = (p,1), Qr = Q% (0,T), T > 0, and denote the usual function spaces used throughout
the paper by the notations L = LP(Q), H™ = H"(Q)). We denote the usual norm in L? by || - || and we denote
Il - llx for the norm in the Banach space X. We call X’ the dual space of X. We denote LP(0,T;X),1 <p < o0
the Banach space of real functions u : (0, T) — X measurable, such that ||u|o,.x) < +0c0, with

T .
lilly om0 = { (fo (Bl dt) if 1<p<oo,

esssup,_, 7 llu®llxy ,if p=oco.

With f € C*([p, 1] X [0, T'T X R® X R2), f = f(x,t, y1, Y2, ¥, Ys, y5), we put Di f = %, Do f = %, Do f =
withi=1,...,5,and D*f =D{*... Dy f, a0 = (v, ..., a7) € Z, |0¢|—a1+ +0c7 k, D00 f = f.

With i € C¥([0, '] X R2), 1 = pi(t, y,2), we put Dy = %, Doy = %, D = % and Dfp = D' ... D}y,
B=1,....03) €Z,Bl=P1+... + B3 =k DO-Opu = p.

On H!, H?, we use the following norms

ay,

1
ol = (Il + lol?)* @.1)
and
1
ollee = (Il + lloxl? + o) 22)
respectively.

We remark that L2, H', H? are the Hilbert spaces with respect to the corresponding scalar products
1
(u,0) = f xu(x)o(x)dx, (u,v) + (ibz, Ux), (U, V) + (ihy, V) + Uy, Usxx)- (2.3)
P

The norms in L2, H' and H? induced by the corresponding scalar products (2.3) are denoted by || - [lo,
-1l and || - [l
We then have the following lemmas.

Lemma 2.1. The following inequalities are fulfilled
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(i) ~plloll < llollo < o]l for all v € 12,
(i) pllollg < ol < vl for all v € H'.

Lemma 2.2. The embedding Hj — C° (5) is compact and for all v € H}, we have

(i) lollcoggy < T = plosll
(ii) [loll < ol

-
(iii) llollo < 7§||Ux||0-

Proofs of Lemma 2.1 and Lemma 2.2 are straightforward, so we omit the details.

Remark 2.3. On L2, two norms v v+ ||v|| and v — |[v||y are equivalent. So are two norms v — |[v||y and v — ||v|ly
on HY, and four norms v & |[o|lgr, v > |[oll1, v > |[oxll, and v > [[oyllo on H(l).

Lemma 2.4. We have

||U||Co(§) < apllvllg forall v e H! (2.4)

where oy = \/2(11__0) \/1 + /1 +16(1 - p)2

Proof of Lemma 2.4. Tt is well known that the embedding H' < C° (5) is compact. Since C! (5) is dense
in H!, we only show that (2.4) holds for all v € C! (5) Forallv e C! (5), and x, y € Q, we have

v (x) = vz(y) +2 f v(z)vy(z)dz.
y
Integrating over y from p to 1 to get

1= p)P@ =lolP+2 [ dy [ 0@z
= [joll* + 2 fpl dy fpx v(z)vx(z)dz — 2 fpl dy fpy v(z)vx(2)dz
< lolP +2(1 - p) [} o@)ou(@ldz +2 [ (1 = Dlo(E)or(z)ldz
< lolP +4(1 - p) [ (1 - Do@)ox(2)ldz.

b 1+ V1+16(1-p)2
Note that Oy = —5a—

i, satisfies 1+4(1 - p)== = (1-p)aj, applying the inequality 2ab < Za? + %(z’bz,
0 0
for alla, b € IR, we deduce from (2.5), that

2.5)

(=) < lolP +201 - p) (2 lolP + F)
= (1+40 - 2 )IolP + (1 - pralonl?
= (1- p)a2lol?,.
Hence (2.4) holds. Lemma 2.4 is complete. O

Now, we define the following bilinear form

1
a(u,v) = f Xy (x)vy(x)dx, for allu, v € Hé. (2.6)
p
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Lemma 2.5. The symmetric bilinear form a(-,-) defined by (2.6) is continuous on Hy x Hj, and coercive on H}, i.e.,
(i) la(u, v)] < lluxllollvxllo,
(ii) a(v,0) 2 |loxl5,

forallu,v € H(l).

Lemma 2.6. There exists the Hilbert orthonormal base {w;} of the space L? consisting of eigenfunctions w; corre-
sponding to eigenvalues A such that

(D) 0<A <A <--- S)\]‘S/\]q.l <--- /hmj—>+oo)\j = +00,
(ii) a(wj,v) = Aw;,v) forallve H}, j=1,2,...

Furthermore, the sequence {w;/ /A;} is also the Hilbert orthonormal base of H} with respect to the scalar product
a('l )

On the other hand, we also have w; satisfying the following boundary value problem

w](p) = ZU]'(l) = 0, w]- (S Cm([Pr 1])

The proof of Lemma 2.6 can be found in [[27], p.87, Theorem 7.7], with H = 12, and a(-,-) as defined by
(2.6). O

We also note that the operator A : Hj — (H})’ in (2.7) is uniquely defined by the Lax-Milgram’s lemma,
ie.

a(u,v) = (Au,v)forallu, v e H(l). (2.8)

Lemma 2.7. On Hy N H?, two norms v + ||U||HémH2 = JI0:3 + [k} and v = o]l = Jlloxll3 + |A0]3 are

equivalent and
C1p||v||HéﬂHz < ol < CzpllvllHémHzfor allv e H(l) N H?, (2.9)

where

[ ’ 2

Proof of Lemma 2.7. For all v € Hé N HZ, we have

1AVl < lloxello + || 2ox|
< lloxello + Lo,

Hence
2
oI5, = lloxll} + 1A
< loxllf + 2llvslf + %”Z]x”g
2 2
< CZP”U”H})mHZ'
On the other hand
) , 1 |2 1
lAVllg = lloxdly + ] s 2f U2 (X)0xx (x)dx

0 p

1
2 2
> [[oxell3 + l[oall3 +2 f 02 ()0 ().
P
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Therefore
1
l[oxcllg + lloxl§ < 1A — 2f 03 (X) 0 (x)dx
p

2
2
< |lAvlly + o l[oxllo [loxxllo

1(1
< l|Avlf§ + o (? l[oll§ + p? ||Uxx“(2))/

this implies that

1 1-p*
mm%+mm%_TjEOmm%+ =

2
IIUxIIo)

1 2
< = Il
1p

Lemma 2.7 is complete. O

3. The existence and uniqueness theorem
First, we make the following assumptions:
(Hi1) : go, 1 € C* ([0, T°]);
(F) : g € H?, i1 € H', fio(p) — 90(0) = fio(1) — 1(0) = O;
(Hs): € C' ([0, T'IX R2), i (t,y,2) 2 p. > 0,V (t,,2) € [0, '] x R2;
(Hy): feCl ([p, 1] x [0, T*] x R® x ]R%r) , satisfying the following conditions

f (P/ £ Y1,Y2,Y3, Y, Z) = f (1/ £ Y1,Y2,Y3, Y, Z) = O/

Y (t v, Y2, ¥3,4,2) € [0, T X R® X R3.
Put

P00 = 72 (1920 =90 O]+ 90 (0~ g O).

By the transformation v (x, ) = u (x,t) — ¢ (x,t), Prob. (1.1)-(1.3) reduces to the following problem with
the homogeneous boundary conditions

vy + ulv](HAv = flvl(x,t), p<x <1, 0<t<T,
v(p,t)=0v(1,t) =0, 3.1)
v (x,0) = 9o (x), vt (x,0) = 71 (x),

in which

lol) = 1,

2
0’

2
o+l Jlox + ]},
flol(x, t) = f(x, LU+ @0+ Qx, U + @,

2
0’

2
o+l lox + i)

— Pt i(ﬁ () ulol®), (32)

~ t)—go(t
() = oo (x, 1) = 2920,

7o (x) = 1o (¥) = ¢ (x,0), 71 (x) = 1 (x) — ¢ (x,0),
(Do, 271) S (H(l) N HZ) X H(l)
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Consider T* > 0 fixed, let M > 0, we put

7

K1 () = flleiny = WHlosin * Loy 1Pl

i 3

K (u) = ”#”cl(AM) - Zi:l ||Diy||C°(AM) ’
“f”Co(AM) = SuP{'f(xr t, Y1, Y2, Y3, y,Z)} : (x’ 2 Yv Y2, ys’y'z) € AM}’
lelleogay = sup fut v

t,y,z) €eAm

7

where

h _
Ay = {(x, t,y1,v2,Y3,1,2) € [p, 11 X [0, T'T X R* X R? : |y1( < WPM + M,

ao
< —= M+ M,
)yz|<c1p =M+

lya| < 1/1_TPM+M*,

2
. 1-pM  [1-p?
A =1{(ty2)e[0,T']xR2:0<y< L-p) + pM* ,
N/ZP.U*Clp 2

2
M [1-p?
0<z< + M]3,
z [\/[J*Cm 2

Now, foreach M > 0and T € (0, T*], we consider the sets

M = o] (@xo11)

W(M,T)=foeL(0,T;Hy nH?): 0" € L~ (0, T; H}), v” € L*(Qr),
”v“L""(O,T;H(l)mHZ) < m/ ”v,”L“(O,T;Hé) < M/ ”U”“LZ(QT) < M}r
Wi (M, T) = {u eEWM,T): uy € L™ (0, T; LZ)},

and we establish the linear recurrent sequence {v,,} as follows.
We shall choose as first initial term vy = Gy, suppose that

Um—1 € W1 (Mr T)/

and associate with the problem (3.1) the following variational problem:
Find v,, € W1 (M, T) (m > 1) so that

(), W) + i () a0(t), w) = (Fi (£), w), Yw € Hy,
o (0) = Do, vy, (0) = 71,

where

{ fi ) = plon-110) = g 1|

(2)/ V-1 + (Px”(z))/

Om-1 (8) + ¢ ()

F (t) = f[vm—ll(x/ t)-

5567

(3.3)

(3.4)

(3.5)

3.6)

(3.7)

(3.8)
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The existence of a sequence {v,,} defined by (3.6) - (3.8) is established by our following theorem.

Theorem 3.1. Let the assumptions (Hi) — (Hy) hold. Then there exist positive constants M, T such that the
problem (3.7), (3.8) has a solution v,, € W1 (M, T).

Proof of Theorem 3.1. The proof consists of three steps.

Step 1. The Faedo - Galerkin approximation (introduced by Lions [9]). Consider the basis {w;} for Hj as in
Lemma 2.6. Put

O =V O
Z]m (t) - Zj:l ij(t)w], (39)
where the coefficients cgz satisfy the system of linear differential equations
(000 (8),w;) + i (D230, ) = (Fur (), ;) 6.10)
2 (0) = Dok, 0,(0) = Ok, j = 1,...k,
with
Vo = Z’;Zl ai.k)wj — @ strongly in H(lJ N H?, 211
Vg = Z’szl ‘B;k)w]- — ¥ strongly in Hé (3.11)
The system (3.10) can be rewritten in form
En() + Ajn (B 1(E) = Fof(8),
o) = 4® D) = g : (3.12)
ij(o) =a;, ij(o) = ﬁ]. ,1<j<k,
in which
ij(t) = <Fm(t)/wj>/ 1< ] <k (313)

Note that by (3.6), it is not difficult to prove that the system (3.12) has a unique solution ng(t), 1<j<k

on interval [0, T], so let us omit the details.
Step 2. A priori estimates.
We put

s9 = oo + ool (3.14)

t
+ 1 0 [0+ [JAol o) + fo [CHOT N
and

Olm(t) = Hil(f) - @ (t) /Jm(t)/ Gpm(t) = —P%'(f) + (ﬁ (t) .Um(t)- (3-15)
Then, it follows from (3.10), (3.14), (3.15), that

t
5B = sB(0) + f i (s) [“vfj;;(s)ni+||Av;’?(s)||§]ds (3.16)
0

t t
#2 [ (0 @), o0 ds+2 [ (), 60209 s

t t
+2 f o1m(5)00(1, 5)ds + 2 f Tom(8)05(p, 5)ds

0 0

t
o [ el o
=sPO+Y, I
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In order to estimate the terms I; we need the following lemma
Lemma 3.2. We have the following estimates

() |, )] < v ae te©,1),
(i) |Fw (x, )| < Fi(M), ae. (x,1) € Qr = (p,1) X (0, T),

(iii) [|Fmx®lly < F2(M), ace. t € (0,T),

(iv) [0}, ()] < Fum, ae. t€ (0, T),

V) |0 < 5o, ae. t € (0, T),
where

) 1-p? 1- p?
pM:KM(y)[1+4[\/;¥C1P+ 2p M*](M+ Zp MH
Km(ﬂ))
pl-p))’

Fy(M) = Ku (f) + (”90”@([0,?]) + ”91”0([0,?])) (1 +

1+M M 1-p?
+ +
2 \/[J*Cm 2
) 1 1-p°
10l cago (1 + ;KM (#)) 5

(pl

Ma(—

F>(M) = 2Ky (f)[

CO([O,T*]) KM ([u) + ”(p”CO([O,T*]) laM’
(ﬁ" ooy K (1) + ”95”@([0,?]) finm-

oM = Hgill|)c0([0,T*]) + |

Som = p |95

Co([0,T%]) + ‘

Proof of Lemma 3.2.
Proof (i). Note that

U (8) = D1pa[0—11(t) + 2D p[0y—1 [(){0m-1(t) + @ (t) , v;,_,(t) + @ (£))
+ 2D3u[v 1 ]V (t) + @2 (1), Vo, (£) + @5 (),

with Dip[v-1](t) = Dju(t, (2) Vou1(t) + i (1)

Hm

Z]m—l(t) + Y (t)

Proof (ii). By (3.2), and (3.8),, we have

(5,1 < Kut () + ] + 1 I 0] Kot ()

Lo ®[ +]or @) .

< Ku () + P ()

< Fi(M).

70 ()] +

77 ()] +

Proof (iii). Note that

Fux(t) = le[vm—l] )+ D3f[vm—1] ) (vvm—l(t) + (Px)
+ D, fT0110) (Ao (1) + ) + Ds o116 (700, () + )

~ 9" ()= PO pnt),

2
0’

where D;f[vy-1] = Dif (x, Loma + @, Voua + @x, 0, + @, |[On-1 + @

3),1’ =1,2,3,itimplies from (3.6) that

Vo1 + @i, ),i: 1,

5569

(3.17)

w, ()| <
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It implies from (3.6) that

1-p*
+{Wmm V M] me[M+ ’ Mﬂ
1
Co([0,T]) 2||q0”C0([0T] M(‘u)) 2p

||me(t)||0 < KM (f) 1

+(1

~//

¢
1+ M M 1-
< 2Ky (f){ st P }
) 1 1-p?
+ ”(P”CZ([O,T*]) (1 + ?KM (Au)) 2
< F,(M).

Proof (iv). We have

Olm(t) = W( ) — §5' (t) [Jm(t) -¢ t) (u;n(t)/

SO

’ (t)| ,”(t))

Proof (v). It is similarly to the proof of (iv).

The proof of Lemma 3.2 is complete. O

Applying Lemma 3.2, we now estimate the terms I; on the right - hand side of (3.16) as follows. By
Lemma 3.2 (i)-(iii) and the following inequality

oo + 4ol

()] < T

¢ ()| um(®) + |

520 2 [o O[] + o]l +

we obtain

t
= [ @ leol] + ool < 22 [ st (.19)
+ Jo

1= 2 B t
L=2 f (Fu(s),8()) ds < P e + f S¥(s)ds,
0 2 0
t t
=2 f (Fue (5), 850(5)) ds < TFA(M) + f SB(s)ds.
0 0

Using integration by parts leads to

t
L=2 f T1m(s)0®.(1, 5)ds (3.19)

0

t
= —2010(0)B0kx(1) + 201, (0001, £) + 20021, 1) f o}, (s)ds
0

£
~2 [ o, o0l s
= ~201(0)Toke(1) + IV + 1P + 1

By Lemma 3.2 (iv) and the following inequality
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a
o1, = b ®llcoey < o llehia®ln = == NS'E),

it is not difficult to estimate the following terms I, o Iff), If’)

7] = [201,(0)0f(1, 1)
2|01m(0)|0f0 ® 1. 0 a3,,(0)
< VSm (8) < 2S5,/ (H) + ,
VPECy, 8 puCl

1?] = 2|0, 1) f a’ (s)ds
0
2007wt [ < Loty , BT 0%
< 2 TM 5By < Zs® (1) + — M0
VPG, T8 puCt

t
, k
)| = ‘_2 f 07 ()0hk(1, 5)ds

251ma0_ f [ k) f (k)
S, (s)ds < S,/ (s)ds.
= VPrCip uCi,  Jo

Hence, we deduce from (3.19) and (3.20) that
O 1m(0)

2
ey,

0620'2 t
S(k)(t)+T(1+8T) 0 M f S® (s)ds.
P *Clp

Iy < 2101:(0)Torx (1) +

Similarly, by using integration by parts

t
Is=2 f Tom(8)05k(p, 8)ds
0
= ~20 ,m(0)Boke(P) + 20, (0)0 (0, 1)

+268200,) [ oputis =2 [ oo,
from Lemma 3.2 (v) and the following inequality

[, D] < Jom®ll oy < o o],
<20 Js®p,
< o NGO

we also have
022,(0)
Gt
252 t
+2 S(k)(t)+T(1+8T) p" o fo 5¥(s)ds.

;<2 Iopm<0>60kx(p>|

2
*1p

5571

(3.20)

(3.21)

(3.22)
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Eq. (3.10); can be rewritten as follows
(@), w0;) + () (A0 (), ;) = (Fu (t),07), j=1,--+ k. (3.23)
Hence, it follows after replacing w; with 5%(#), that
[ Ol = =0 (0 (400, 50 0) + (Fu @), 5 0) (3.24)
< (1w (&) |4 )| + 1w Ollo) |85 ),
< (i ) [ 4020, + 1Ew O)ll)
< 242, ()| ) + 21Fw 13
< 2Ry (1) SP () + (1 - p?) 2 (M).
Integrating in £ to get

t t
I = f Hz’jﬁ’;)(s)”g ds < T(1 - p?) F(M) + 2Ky () f S®(s)ds. (3.25)
0 0

It follows from (3.16), (3.18), (3.21), (3.22) and (3.25), that

t
SW(t) < S + TDy(M) + Do(M) f S®(s)ds, (3.26)
0
where
St = 258(0) + 4 (11m(0)okr ()] + |7 (0)F0k(0))]) (3.27)

. 1602 (ogm(O) +02,(0)
puCl,

2
- _ (04
Dy(M) =3 (1 — p?) F3(M) + 2F3(M) + 2 (1 + 8T") % (5% + %)
* 1P

D,(M) = 2(4 + *;M + 2Ky (p)).
It remains to estimate the term ggizl

Notice that p,,(0) = u(0, ’z”)o +¢(0)
also independent of m, because of

5, Tox + Px (0)“5) is independent of m, so ng)(O), 01u(0), 0pm(0) are
(k) T 2 ~ 2 ~ 2 ~ 2

S(0) = 118143 + 1B1ielly + 20 (0) (11B0kel§ + ATkl

o1m(0) = 91’(0) -¢ (0) [Jm(o)/

Gpm(o) = _P%’(O) +¢ (0) [Jm(o)

By means of the convergences in (3.11), we can deduce the existence of a constant M > 0, itis independent
of k and m such that

Soor = 251(0) + 4 (|51(0)30rs (1)1 + [0 (0)B0kc(p)) (3.28)
16a2 (02, (0) + 02,,(0))
+

ppC3,

< =M?, for all m and k.

N —
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Therefore, we can choose T € (0, T*], such that

(%M2 + TDl(M)) exp (TD2(M)) < M, (3.29)
and

kr = (1 + \/1”_) \/T (/s + F2,) 75 <1, (3.30)
where

2
8 M 1-p% | 0o
#M—E[ \/ﬁclf\/ 5 M ]MKM(#), (3.31)

Fi = (1+ V2)Ku (f)

- p? Plleogory — p?

Combining (3.26), (3.28) and (3.29), we get

t
s®t) < M2 TP-M 4 D, (M) f ¥ (s)ds. (3.32)
0

By using Gronwall’s Lemma, (3.32) yields
SOty < M2e TP2MID(M) < pp2) (3.33)

for all t € [0, T], for all m and k. It implies that
o® € WM, T), for all m and k. (3.34)

Step 3. Limiting process. From (3.34), there exists a subsequence of {u®), still so denoted, such that

A, in L0, T; H} N H?) weakly*,

o in  L*(0,T; H}) weakly*, (3.35)
o in  L*(Qr) weakly, |
om € W(M, T).

Passing to limit in (3.10), we have v,, satisfying (3.7), (3.8) in L?(0, T). On the other hand, it follows from
(3.7)1 and (3.35)s that v/} = —u, (t) Avy, + Fy € L¥(0, T; L?), hence v,, € W1(M, T) and the proof of Theorem
3.1is complete. O

In order to get the existence and uniqueness, we shall use the following Banach space (see [9])

Wi(T) = {v € L™(0, T; Hy) : v’ € L™(0, T; L?)},

with respect to the norm [[v||y, (1) = IIUIILN(OIT;Hé) + 10" Iz 0,7:12) -

By the result given in Theorem 3.1 and by the compact imbedding theorems, we now prove the main
results in this section as follows.

Theorem 3.3. Let (H1) — (Hy) hold. Then, there exist positive constants M, T satisfying (3.28)-(3.30) such that
Prob. (3.1) - (3.2) has a unique weak solution v € W1(M, T). Furthermore, the linear recurrent sequence {v,,} defined
by (3.7), (3.8) converges to the solution v strongly in the space W1(T) with the estimate

2
[0m — Vllw, () < %k}", forallm e IN. (3.36)
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Proof of Theorem 3.3.
(a) The existence. First, we shall prove that {v,,} is a Cauchy sequence in W1(T). Let w;, = 011 — V. Then
wy, satisfies the variational problem

<w;y,1(t)/ w) + HUm+1 (t) a(wm(t)r w) = [Hm+1 (t - Hm (t)] (Avm(t)/ w)
+(Fus1(t) = Fu(t), w) , Yw € Hy, (3.37)
wm(o) = w;,n(o) =0,

where

2 [Vou + (px||§), (3.38)

b ) = ilon1) = (8 o () + 0 ()
Fou (8) = flom-l(x, ).
Taking w = wj, in (3.37)1, after integrating in f, we get

f f
Zut) = f o ) o R ds -2 f [ttt 5) = i (5)] (A (S), Wl (5))ds (3.39)
0 0
f
2 f (Fursa(5) = Fun(s), ), (5)) ds
0
=h++]s
where
Zu®) = [, DI + s @) I = [ + st leoma IR (3.40)

All integrals on the right - hand side of (3.39) will be estimated as below.
The integral ;. By (3.40), we have

t = t
e f 0 Ol < 22 [7, s, (3.41)
0 * JO

where [iy as in Lemma 3.2 (i).
The integral |,. By (H3), it is clear to see that

[IORITO] (3.42)
_ M 1-p?
szKM(y)[ N V- M*J(||wm_1<t>||o+||Vwm_1(t>||o>

_ M [1-p* |
<2V2Ky (y)( JECn + > M ]me—l”wlm-

Hence

t
2l =2 ’ fo [pm1 () = i (5)] (A (S), w7, (5))ds (3.43)

w;ﬂ(s)”0 ds

<2 fo 1 ) = 1 )] 140l |

N M 1_p2 M t
<4V2K + M -1l f w' (s)|| ds
M(H)(\/Eclp Vs ]\/H_ e | [T

t
<Tiym ||wm—1||%/\/1m + me(S)dS,
0
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2
8| M [1-p? _
where fiy = — + M| M?K? .
Um T [ '_H*Clp > ] M (xu)
The integral [3. By (Hy) it yields

IFya1(8) = En(®)lly
< Kt (f) (lloma ()l + [IVeom -1 (B)llg + |

w:nfl(t)“())

1- 2 1- 2
+21<M(f)( Wﬁfclpﬂ/ - M]\/ S5 (s (Ol + V01 ()

1. [1-p?
+ E ”(P”CO([O,T*]) T ‘[Jm+1(t) - Hm(t)|

< Kut (F) (V2 lwna ()l + |,y 8)]],)

[1=p2 [1—p?
+2\/§KM(f) L 2p [\/Hi\fclp + ! zp M*J”wm—l(t)lll

1. 1-p* ) 5o M 1-p*
+ 2 Iellosgory \/szfiKM(y)[ @Clpn/ 5 M- [l

< Fm llwm-1llw,(r) »

where Fy as in (3.31). Hence

IJ3sl =2

f (Farsn(5) = F(s), 0/, (6)) ds
0

t
SHMWM%M+IZNW'
0
Combining (3.39), (3.41), (3.43) and (3.45), we obtain

- ¢
@mST@M+ﬁmme%m+@+%QJ)%@@
* 0

Using Gronwall’s Lemma, we deduce from (3.46) that
wmllw,(ry < kr llwm-1llw,y Ym €N,

where k7 as in (3.30).
It implies that

([0 = Vsl vy < 180 = 01llwyy (1 = k) 'k7

2M
< 1_kaT VYm,p € N.

It follows that {v,,} is a Cauchy sequence in W1(T). Then there exists v € W1 (T) such that

vy, — v strongly in Wy(T).

Note that v,, € W1(M, T), then there exists a subsequence {v,;} of {v,,} such that

Up; = 0 in  L*(0, T; Hy N H?) weakly*,
v, = U in L%*0,T; Hé) weakly*,
v — v in  L?(Qr) weakly,

ve WM,T).

5575

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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We also note that

_ 1-p?
|u,,1<t>—u[v]<t>|32«/§1<M(u>[\/$4c1 Ty Zp M*]uvm_l—vnwlm. (3.51)
*~1p

Hence, it follows from (3.49) and (3.51) that

Um — pfo] strongly in L*(0, T). (3.52)
On the other hand, we have

[Fon = F10U| o 2y < Pra lomes = Dllw,cry - (3.53)
Hence, from (3.49) and (3.53), we obtain

F,, — flo] strongly in L*(0, T; L?). (3.54)

Finally, passing to limit in (3.7), (3.8) as m = m; — oo, it implies from (3.49), (3.50)1 3 (3.52) and (3.54) that
there exists u € W(M, T) satisfying the equation

@"(t), w) + ulol(Ba(o(t), w) = (flol(t), w), (3.55)
for all w € Hj and the initial conditions
v(0) = By, v’ (0) = 7. (3.56)
Furthermore, from the assumptions (H3), (Hs) we obtain from (3.50)4, (3.52), (3.54) and (3.55), that
v” = —uv] () Av(t) + f [0] (t) € L=(0, T; L?), (3.57)

thus we have v € W1(M, T). The existence of a weak solution of Prob. (3.1) - (3.2) is proved.
(b) The uniqueness. Let v1, vo € W1(M, T) be two weak solutions of Prob. (3.1) - (3.2). Thenv = v, — v,
satisfies the variational problem
" (1), w) + p1 (B a(o(t), w) = = [p1 () — p2 (D] (Ava(b), w)
+(F1(t) — Fo(t), w) ,Yw € H(l), (3.58)
v(0) =v’(0) =0,

where Fi(x, ) = f[v;](H), i () = plo](t), i = 1,2.
We take w = v in (3.58); and integrate in ¢ to get

t t
Z(t) = fo 1} () I[ox(s)llg ds — 2 fo [11(5) = p2 ()] (Ava(s), 0’ (5))ds (3.59)

t
+ 2[) (F1(s) = Fa(s),v'(s)) ds,

. 1 2M
with Z(t) = [lo'()I§ + 1 () lox (DI - Put K3, = ‘:l M+ WTRMKM () + 2Kp(f, 1), where

* *

2 (M [1-p% [1—P ]
Ry = + M +1],

Ku(f, 1) = Ku () [(1_—\/2_5 +1]% +RM+1}

1. 1-p%
+ E “(P”CO([O,T*]) \ TKM (1) Raa,
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it follows from (3.59) that
¢
Z(t) < K;wf Z(s)ds, forall t € [0, T].
0

Using Gronwall’s Lemma, it follows that Z(f) = 0, ie., v1 = v;.
Therefore, Theorem 3.3 is proved. O

4. Blow-up result

In this section, Prob. (1.1) - (1.3) is considered with f = —Au;+ f(u), u = y(llux(t)llé), goH)=g1 1) =0,
as follows

g = p(lluxB)3) thay + Lu) + Ay = f(u), p<x<1,0<t<T,
u(p,t) =u(l,t) =0, 4.1)
u(x, 0) = ilg(x), u(x,0) = i1 (x),

where A > 0,0 < p < 1are given constants and 7y, fi, i, f are given functions satisfying conditions specified
later. First, we assume that

(H;) peC'(Ry)and there exists the constant y1, > 0
such that u(y) > u. > 0,Vy € Ry;

(H;) feC(R), f(0)=0.
Then we obtain the following theorem about the existence of a weak solution.
Theorem 4.1. Suppose that (H1), (H;) and (H}) hold. Then Prob. (4.1) has a unique local solution

ue C([0, T.J;Hy) N C* ([0, T.J; L) n L™ (0, T.; Hy N H?), 4.2)
w € L*(0,T;Hy), u” € L*(0,T.;L2),

for T. > 0 small enough.

Proof of Theorem 4.1. The proof is similar to the Theorem 3.1 and Theorem 3.3. O
Next, in order to obtain a blow-up result in Theorem 4.2 below, we make more the following assumptions.

(I:I;) TS C' (R,), and there exist the constants U« >0, fi1 > 0 such that
@ py) = p.> O,y Yy 20,

(ii) yu(y) < i fo p(z)dz, Yy 2 0;

(I:I; fe C(R), f(0) = 0 and there exist the constants p > 2, d; > 2,
d1 > 0 such that

Y
O v [ e vy R,
Y
i gz d
) [ foz=dly
(H)  di > 2[y, with dy, iy as in (H)(id), (H3)(0).

Note that we can give an example of two following functions f and u which satisfy (H;) and (Hg).
Example. Consider the function u € C! (R;) with

p,VyE]R;

p(z) = p.+21, ¥z 2 0,
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where u. > 0 and g > 1 are constants. It is obvious that (H;)(i) holds. On the other hand, we have

jw<w ‘fﬂ d ( W)
z)dz = A2 dz =yl + ——
O‘U ) u ylu g+1

1
Z T (), Yy = 0.

Hence, (I:I;)(i) holds with fi; =g + 1.
Let > 0,p > 2 and k > 1, we define the function f € C' (R) with

f@) =Bl zIn* (22 +e), ¥z € R.
It is clearly that f (0) = 0. By integration by parts, we obtain

fyf(z)dz = 1yf(y)— % y%lnk_1 (zz+e)dz
0 p

p Jo e+z2?

1
< ;;yf(y), Yy eR,

y p
since f L (22 + e) dz>0forally € R.
0

e+z?

Thus, (I:Ig)(i) and (I:Ijl) hold whend; =p>2(g+1) > 2.
4 Y Y _

Fory>0: f f(z)dz = ﬁ_f IzP~2 z In* (zz + e)dz > Bf 2lP~2 zdz = f-] Mp.

oy B Py B oy
Fory<0: f f(z)dz = ﬁf 2’2 z In* <22 + e)dz = ﬁf 2P 2 z In* (22 + e)dz

0 0, ) Jo

> Bf(; 1zlP~2 zdz = 5 |—y|p = g |y|p.

Therefore

y
f f@dz > dy |yl forally e R,
0

where d; = é > 0. Thus, (H3)(ii) is true.
Put

1 5 litox 15 1 il (x)
H(0) = 7 llilly - Ef 1(z)dz + f xdx f(2)dz. 4.3)
0 p 0

Theorem 4.2. Let (H;) — (H}) hold. Then, for any (ilo, #11) € (H} N H?) x H} such that H(0) > 0, the weak
solution u = u(x, t) of Prob. (4.1) blows-up in finite time.

Proof of Theorem 4.2. It consists of two steps, in which the Lyapunov functional L(t) is constructed in step
1 and then the blow-up is proved in step 2.

Step 1. We define the energy associated with (4.1) by

1 , 1 (O 1 u(xt)
Elt)==|lu'®llg+ —f w(z)dz —f xdxf f(2)dz, (4.4)
2 2J, , ;

and we put H(t) = —E(t), Vt € [0, T.). Multiplying (4.1); by xu’(x, t) and integrating the resulting equation
over (p, 1), we have

H'(t) = M’ (D5 = 0. (4.5)
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Hence, we can deduce from (4.5) and H(0) > 0 that
H(t) > H(0) > 0, VYt € [0, T.),
SO
1 u(x,t)
0<H@O)<H(t) < f xdx f(z)dz;
p 0

llux (B 1 1(x,t)
I (D113 + f w(z)dz <2 f xdx f(2)dz, Yt e [0,T.).
0 p 0

We define the functional
L(t) = H7(t) + eW(t),
where
W(e) = (a0, u(6) + 5 o),
for ¢ small enough and
0<2n<1,2/1-2n) <p.
In what follows, we show that there exists a constant A; > 0 such that
L'(t) 2 Ay [H®) + I OIF + @I, + e (B)15]
Multiplying (4.1)1 by xu(x, t) and integrating over [p, 1], it leads to
W (t) = |/ BIF = NG 1 (e (BIF) + (f (), u(t)).
Therefore
L'(t)y= 1 -mH (tHH'(t) + eW'(t) > eW'(t).

By (I:IE), (I:IE), we obtain

H”x(t)”%
s 61 1 ) < i [ et
1 u(x,t)
qwmammmjkw )iz,
P 0

1 u(x,t) B
f xdx f(z)dz > dip ||M(t)||ip .
p 0

5579

(4.6)

4.7)

(4.8)

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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Hence, combining (4.4), (4.12) and (4.14) give

W) = Il () — NI o (s OIR) + CF (a(8)), ) (4.15)

) llux (DI 1 u(x,t)
> ' ®)lly — g f w(z)dz + dq f xdx f(z)dz
0 p 0

U 2 U(X,
o , [l (B)llg 1 (xt)
=|lu' By — 1 w(z)dz + di161 xdx f(z)dz
0 p 0

1 u(x,t)
+di(1 - 61)f xdxf f(z)dz
p 0

) llux (B 1 1(x,t)
= [’ (B)llp — i f w(z)dz + d161 f xdx f(z)dz
0 p 0
1 , 1 (O
+di(1-061) [H(t) + 5 [’ ()l + 3 f y(z)dz]
0

= di(1 - o)H(H) + (1 + - 61)) I ()13

1 u(x f) 1 lliez (DI
+dq101 f xdxf f(Z)dZ + E [dl - 2[,_11 - 61d1] f [.l(Z)dZ
p 0 0

> (1= 00H( + 1+ 51 - 0 I O

] 1 e
+diovdip llu@II], + 3 [d1 — 21 — 51d1]£ p(z)dz.

By di > 2f11, we can choose 01 € (0, 1) such that
dy — 2[._11 —61d; > 0. (4.16)

By using the inequalities (4.13), (4.15), (4.16), we obtain (4.11) with choosing A; > 0 small enough.
From the formula of L(t) and (4.6), we can choose ¢ small enough such that

L(t) > L(0) > 0, ¥t € [0, T.). (4.17)

Using the inequality (Z?zlxi)r < 3”12?213(;, for all > 1 and x4, ..., x3 > 0, we deduce from (4.8) - (4.10)
that

LY (#) < Const (H(#) + [u(t), w (DI + [lu(p)l 7). (4.18)
Using Young’s inequality, we have
Kuu(t), ' (I < Const (el + ' B)1G), (419)
where s = 2/(1 — 2) < p by (4.10).

Now, we shall need the following lemma
Lemma 4.3. Let s = 2/(1 — 2n) < p, we obtain

2/(1-n) _ 2
ol + ol < ; (||vx||§ + ||v||’L’,,), for any v € Hj. (4.20)

Proof of Lemma 4.3 is straightforward, so we omit the details.
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Step 2. Blow-up.
It follows from (4.18) - (4.20) that

LYt < Const (H(E) + 1w/ (DIF + lux(B)I5 + lu(IE, ), ¥t € [0, T.). (4.21)
Using (4.11), (4.21) it yields
L'(t) = ALY, vt € [0, T.), (4.22)

where A, is a positive constant. By integrating (4.22) over (0, t), it gives
1

LD > _
- . _ Aan ’
L-1/0-0(0) — 121t

0<t< L (1 =) L=7A=1(0). (4.23)
/\27]

Therefore, L(f) blows-up in a finite time given by T. = 7 (=L 1/A=0(0).
Theorem 4.2 is proved completely. O

5. Exponential decay of solutions

This section investigates the decay of the solution of Prob. (1.1) — (1.3) corresponding to f =
—Aug + f(u) + F(x, t), p = y(llux(t)né) and go (t) = g1 (t) = 0, as follows

uy — w(lx (B (e + 21) + Ay = f(u) + F(x, 1), p<x <1, £>0,
u(p,t) =u(l,t) =0, (5.1)
M(.X, 0) = 110(9(), ut(x/ 0) = ﬂ](?(),

where y, f, F, 1y, i1 are given functions and A > 0, 0 < p < 1 are the given constants.

We prove that if fOH ol w(z)ydz—p f xdx ”O()

then the energy of the solution decays exponentially as t — +oo. For this purpose, we make the following
assumptions

(_1713) f € CH(R), f(0) = 0 and there exist the constants a, > 2; dy,
d> > 0, such that

@) yf(y) <da [} f()dz forally € R,
(ii) foy f(z)dz < d, (|y)a + |y|ﬁ), forally € R;

(Hy) Fe L (Ry;L*) N L' (Ry;12), F' € 2 (R,;L?) and there exist two
constants Cy > 0, o > 0 such that [[F(#)||, < Coe 7!, for all t > 0.

f(z)dz > 0 and if the initial energy, ||F(t)||, are small enough,

We will show that the example of f in Section 4 also satisfies (H3). Let § > 0, p > 2k and k > 1, we set
f@) =Bl zIn* <22 + e) ,VzeR.
We know that f € C! (R) and £(0) = 0. For y > 0,

1 2kB
[r@e=tww-=F [T E
yllp

1 2kB zlP z
];yf(y)—Tln“(y“e)fo -

+ 22

(22 + e) dz

dz

%yf(y)— ﬁlylpln" "2 +e)

%yf(y)— ﬁlyl”ln (2 +e)="
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Note that
i 14 Y 4
f |z z k-1 (Zz + e) dz = f 'z Inf1 (ZZ + e) dz>0forally € R.
0 e+z? o e+z

By same argument in case y > 0, we also have

4 -2k
j(; f(z)dz > ppz yf (y) fory <O0.

2

Hence, (H3) (i) holds when d, = pf—Zk > 0.

By the inequality In (1 + x) < x forall x > 0,
v 1 1
[ r@dz< )= Sl (2 +o)

=%)y}p[1+ln(1+y) s%|y|p(1+y )

e e

Using the inquality (a2 + b)" <2 (a" + b"), for all r > 1 and a, b > 0, we deduce that
Y 2\F ok 2k
[ res Hyr’(“ y_) < Z—)y)p(l+ y_k)
0 p € p e
k-1
< 27 (|y|p + |y)p+2k) forally € R.
Thus, (Eg)holdswhena =p>2,=p+2k> Zandaz = zk% > 0.
First, we construct the following Lyapunov functional

L(t) = E(t) + 6W(h), (5.2)

where 6 > 0 is chosen later and

1 , 1 (e 1 u(x, )
E®) =z lv'®lly + —f w(z)dz —f xdxf f(z)dz (5.3)
2 2 0 p 0

1 ) 1 1 ””x(t)”é 1
=—||M't||+(———)f 2)dz + —1(t),
sO+(5-5) [ w0

Wit) = (), u(0) + SR, 64
where
llx (B 1 1(x,t)
I(t) = I(u(t)) = j(; u(z)dz - pj’: xdx | f(z)dz. (5.5)

Then we have the following theorem.

Theorem 5.1. Assume that (H;), (Hz), (Ha) hold. Let (il, i) € (H) N H?) x H} such that 1(0) > 0 and the
initial energy E(0) satisfy

_ 1-p\* 1-p\ 4
M= u*—pdz(l—p)l\/(Tp) R2 + \/(Tp) R

>0, (5.6)
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where

PO L E—-(Eo+1 ) = |IF
\e-2up) T (0) 7P+ )€XP (p), P = IFllar, 12 -

Let uf,, = max p(z) < ’% + 1", with ., da as in (Hy), (H3)(i).
0<z<R? 2
Then, there exist positive constants C, y such that
Il (DI + llux ()l < Cexp(=yt), forall t > 0.

Proof of Theorem 5.1.
First, we need the following lemmas.

Lemma 5.2. The energy functional E(t) defined by (5.3) satisfies

@) E' () < 3 IF Ol + 5 IF Ol i G,
(i) E') < - (1= 3 )i OF + 5 1EOIR,

forall &1 > 0.
Proof of Lemma 5.2. Multiplying (5.1) by xu’(x, t) and integrating over [p, 1], we get

E' () = Al (Il + (F(b), ' (1))
On the other hand
(Ft),u'(t) < 5 IIF(t)Ilo + 5 IIF(t)IIollu Olls -

It follows from (5.9) and (5.10) that (5.8); holds.
Similarly,

1 .
CF(®), 1) < 5~ IFOIF + 5 I (1, for all &, > 0.
1

It follows from (5.9) and (5.11) that (5.8);; holds.
Lemma 5.2 is proved completely. O

Lemma 5.3. Assume that (Hj), (Hs), (Hs) hold. Let 1(0) > 0 and (5.6) hold. Then I(t) > 0, ¥t > 0.

Proof of Lemma 5.3. By the continuity of I(t) and I(0) > 0, there exists T; > 0 such that
I(t) = I(u(t)) 2 0, Vt € [0, T1],

this implies

1 11\ leOR
B0z 30+ (53] [ wes
0

(p—2)p

2p|mw&WemﬂL

1
_ﬂwmh

Combining (5.8);, (5.13) and using Gronwall’s inequality to obtain

(Bl < =RZ, Vte[0,Ti],

2p E() < 2pE.
p-2p " p-2p.
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(.7)

(5.8)

(5.9

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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where E, as in (5.6).
Hence, it follows from (Hz)(if) and (5.14) that

1 u(x,t)
p f xdx f f(z)dz (5.15)

< pdy (Ilu(B)lige + (),

<pd>(1-p) \f ||ux(f)||o \f ||ux(t)||ﬁ]
<pdy(1-p) " R 24 ‘/ 1 p R‘B2

Therefore, I(t) > n* ||ux(t)||§ >0, ¥Vt € [0, T1], where 1" as in (5.6).

Now, we put Teo = sup{T > 0:I(t) >0, Vt € [0, T]}. If Too < 400, then by thei continuity of I(t), we have
I(Tw) = 0. By the same arguments as above, we can deduce that there exists T, > Tw such that I(¥) > 0,
Yt € [0, T ]. Hence, we conclude that I(f) > 0, Yt > 0.

Lemma 5.3 is proved completely. O

[ENGIE

Lemma 5.4. Assume that (Hj), (Hs), (Hs) hold. Let 1(0) > 0 and (5.6) hold. Put

5 llez (1l
Ei(t) = lu' @®)llg + j(; u(z)dz + I(t). (5.16)

Then there exist the positive constants By, Ba such that
BiE1(t) < L(t) < BoEa(t), VE 20, (5.17)

for 6 is small enough.

Proof of Lemma 5.4. It is easy to see that
1, (101 e (B
2=+ (53] [ wws 619

1 , oA
+ DI + 54 (1) u(®) + = IOl
From the following inequalities

50 (6,u(0) < 251 O + 55 (o)l 5.19)

1
< 6l I + 6( o ’

(815,

lle (B3 )
fo @)z > s OIE,
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we deduce that

1 1

llex (£)llo
L(t) llw’ (B)II5 + (— - ’;)L u(z)dz + %I(t) + Ou’ (t), u(t)) (5.20)

\%

ﬁlb—‘ Nl—= N

2

(1 1) [l
||u(t>||0+(2 p) fo (@)=

2
a p" S ol

Lo(1 1) (o
llu' (DIl + (E - I;)f (z)dz
0

_ flo (1113
L - 5ol <t>||o—6( ”) f w2z

1-5 » 11 (1—p) ] f IOl 1
=— |l +]z—-=- z)dz + =I(t

v

I(t) - -6II W (Bl -6

\Y%
'3 = N

> B1E1(t),

where we choose f; = min{13?, 1 -

4 %
5 )’ 1}, with 6 is small enough, 0 < § < min{1; pH (% - rl_?)}'

1_
p dpu. 7 (1- p)2

<I

Similarly, we can prove that

()13
L) < %man%+(%—%)l: y&ﬂz+lﬂﬂ (5.21)
1-p) (1 —p)2
4p

e (B)II5 + 67 [ENGIk

1 + 6 2 1 1 |”x(t)Ho 1
< ——IW®l + (— - —)f (2)dz + ~1(t)
2 0 p) " p

1
+ S0/ (Ol +9

2

51+ A)(1-p) )
g Il

1+6 , (11 6a+A)(1-p) fuux(t)nﬁ 1
S ——W®lg+|5 -+ —F z)dz + =I(t)

< BZEl(t)/
s51+1)(1-p)°
where 8, = max{lf’, % - ’1] i
Lemma 5.4 is proved completely. O
Lemma 5.5. Assume that (H), (Hs3), (Hy) hold. Let I(0) > 0 and (5.6) hold. The functional \V(t) defined by (5.4)
satisfies

51d2

W) <l Bl = =210 + 5~ ||F(t)||0 (5.22)
O |da (pp- e )_ oidan’ 1-p)? f|ux<t>|§
[J:nax [p ( d2 17 Hmax p &2 4p . ,U(Z)dZ/

forall e > 0,01 € (0,1).
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Proof of Lemma 5.5. By multiplying (5.1) by xu(x, t) and integrating over [p, 1], we obtain

P (1) = [ O = e O 2 (e (BIF) + F@u(®)), u(®)) + CF(E), w(®)). (5.23)
By the following inequalities
e ()G g1 (It () < =g Noax (B, (5.24)

1 1u(x,t)
(e, wt) < da f e [ fo:
p

lle (B3
-2 [ [ e —1<t>],

It) > n* e (DII5,
(F(t),u(t)y < 2 ||u(t>||0 o ||F(t)||5

)2
Sé‘z( " ||ux<t>||§+2i€2||F<t>||é,Ve2>o,
we deduce that
W (8) =’ (G = s (OIS 1 (It ()IF) + CF(0e(8)), ut)) + CE(H), u(t)) (5.25)

llx (DI
<l (DI = e llux (B + %2 [ fo (z)dz - I(t)}

(1-p)*
4p

Y ()3
=|Iu’(t)ll(2)—(/u*—62( p))u w17 + ‘f; fo w2

61‘1"‘1@) a ‘S”d%m S IFOR

(1-p)> dy (MOl
suu'(t)uz—(*—e ||xt||+—f 2)dz
0 u 2 4P ()0 7 Jo /J()

le(t) =00 (B + ,||F<t>||§

_ _ 2
=|Iu’(t)llé—(#*+—(l L (1 D

1
+ & (Bl + 26, IECE)I

)II (Bl

Il (D)1l
+ ?2 f (z)dz — ‘51—’121(0 t 5 ||F(t)llo
0

1-8)d 1-p2\ 1 llux (B
suu/(t)né—(w%n*—ez( 4;’))#* fo u(2)dz

flx (£
L& f u(z)dz - —I(t) 45— ||P(t)||o

T S ) (PM* . )_ oy (- 0)? fllux(t)ng
= [lu’ ()l .u:nax [P A + 1" = Wrnax ; € " 0 w2z
01d;

-1+ o —IFO)E.
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Hence, the lemma 5.5 is proved by using some simple estimates. O
Now we continue to prove Theorem 5.1.
Then, we deduce from (5.2), (5.8)(ii)) and (5.22) that

001d,
p

1/1 0
It)+ - (—
()+2(€1+

Lo <-(A-2-5)w ol - JiFI;

&2

- H;nax p da - [max p 4P

forall 6, €1, e, > 0,01 € (0,1).
P«

Because of i}, < R n* and
2

dy (Pl ) Oy (1-p)?
61%O+,£2H0+|:p (dz +TI Umax p & 4P

dZ (pl'l* * * )
=2 (- >0,
p d2 T] lleaX

we can choose 61 € (0,1) and ¢, > 0 such that

04 0.

. S1don’* 1-p)?
:@(P# +17*—y;’nax)— 1da1] _52( P
p \d p 4p

Then, for ¢; small enough such that 0 < % < A and if 6 > 0 such that

4 *
0 =A-L-5>0,0<06<min{l; p”z(l_l)},
2 (1-p?\2 p

it follows from (5.17), (5.26)-(5.28) that
L'(t) < —psEa(t) + Coe ™!

< —%L(t) + Coe 20t < —y L (1) + Coe 2,
2

where 83 = min{@, 0y, 001>

On the other hand, we have

L(t) 2 prminf1, .} (I OI + (D)

1 0

&1 &

Combining (5.29) and (5.30) we get (5.7). Theorem 5.1 is proved completely. O

. S1dom* 1= p)2] [l
o [@(&m* w )_ el N p)“‘ u(2)dz
0

Y NV | -
Lo<y< mm{g—z, 270}, Co = 3 (— + —)Cé.
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(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
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