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Abstract. In this paper, we study the existence and other properties of the solution of nonlinear mixed
fractional integro—differential equations with constant coefficient. Also with the help of integral inequality
of mixed type, we prove the continuous dependence of the solutions on the initial conditions.

1. Introduction

Fractional differential equations have been recently used as effective tools in the modeling of many phe-
nomena in various fields of applied sciences and engineering such as acoustic control, signal processing,
porous media, electrochemistry, viscoelasticity, rheology, polymer physics, proteins, electromagnetics, op-
tics, medicine, economics, astrophysics, chemical engineering, chaotic dynamics, statistical physics and so
on (see [1],[3],[5],[6],19],[13],[22],[23],[30],[35] and the references therein). Many problems can be modeled
by fractional integro—differential equations from various sciences and engineering applications.

Recently, many researchers have studied the Cauchy problem and long time behavior for nonlinear
fractional differential and integro—differential equations and obtained many interesting results by using all
kinds of fixed point theorems, for example, by Aghajani et al. [2], Balachandran and Park [4], Barbagallo et
al. [7], Cabrera et al. [8], Dong et al. [11], Furati and Tatar [12], Jagtap and Kharat [14], Kharat [15], Kharat
et al. [16], Kendre and Kharat [19], Kendre et al. [18, 20, 21], Liang et al. [24], N'Guérékata [26, 27], Pierri
and O’Regan [29], Ragusa and Scapellato [31], Ren et al. [32], Ruggieri et al. [33], Tate et al.[37], Turmetov
[40], Wang and Li [41], Zhou et al. [42, 43], Zhou and Jiao [44] and the references therein.

In [36], by using generalized Banach fixed point theorem, Tate and Dinde discussed the existence and
interval of existence of solutions, uniqueness, continuous dependence of solutions on initial conditions,
estimates on solutions and continuous dependence on parameters and functions involved in the nonlinear
fractional differential equation with constant coefficient A > 0 of the type:

‘D (t) = Ax(t) + f(t,x(t)), t €[0,T], T >0,
x(0)=x9 € R,
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where °D%(0 < a < 1) denotes the Caputo fractional derivative, f : | X R — R is a continuous function.

In [38], by using Banach fixed point theorem coupled with Bielecki type norm and the integral inequality,
Tidke investigated the existence, uniqueness and other properties of solutions of fractional semilinear
evolution equation of the type:

{D‘?x(t) = A(Dx(t) + f(t, x(t)), t € ] = [0,b],

x(0) = xo,

where 0 < g < 1, D7 denotes the Caputo fractional derivative of order g, the unknown x(.) takes the values
in the Banach space X; f € C(J x X, X), and A(t) is a bounded linear operator on X and xg is a given element
of X.

Fractional differential equations with constant coefficients are used to describe many physical and
chemical problems [30] such as the motion of a large thin plate in a Newtonian fluid, the process of
cooling a semi-infinite body by radiation, the phenomena in electromagnetic, acoustic, viscoelasticity,
electrochemistry and material science and so on. Therefore, it is worth to study a nonlinear fractional
differential equations with constant coefficient.

In [39], Tidke studied the non—fractional mixed Volterra—Fredholm integro—differential equations with
nonlocal conditions via Leray - Schauder theorem. These type of equations play a vital position for abstract
formulation of many boundary , initial value problems of perturbed differential equations, partial differ-
ential equations and integro—differential equations which take place in varied applications like population
dynamics, chemical reaction kinetics, viscoelastic, heat-flow in material with memory and reaction diffusion
problems.

Motivated by the above-mentioned work, in this paper, we investigate the existence and interval of
existence, uniqueness, continuous dependence of solutions on initial conditions of a nonlinear mixed
fractional integro—differential equations with constant coefficient A > 0 of the type:

‘Dex(t) = Ax(t) + f(t, x(t), f(f h(t, s)x(s)ds, fOT k(t,s)x(s)ds), te]=[0,T], T>0,
x(0) =xp € R,

1)

where °D* denotes the Caputo fractional derivative of order0 < a <1, f: X RXRXR =R, h: Jx] = R
and k : ] X ] = R are given continuous functions.

We further derive an estimate on solutions and continuous dependence on parameters and functions
involved in the right hand side of Eq.(1). Finally, one illustrative example is given to demonstrate the
theoretical results.

2. Preliminaries

Here we present some definitions, notations and results from ([9],[25],[30],[34]) which are used through-
out this paper.
Let C(J, R) be the Banach space of continuous functions from | into R with the supremum norm ||.||.

Definition 2.1. A real valued function f(t) (t > 0) is said to be in space C,(u € R) if there exists a real number
p > wsuch that f(t) = t’g(t), where g € C[0, c0).
Definition 2.2. A real valued function f(t) (t > 0) is said to be in the space Cj,n € N U {0}, if f" € C,,.

Definition 2.3. Let f € C, (u = —1), then the (left-sided) Riemann—Liouville fractional integral of order a > 0 of
the function f is given by

t
*f(t) = ﬁ fo (t—9)" f(s)ds, t > 0and I°f(t) = f(),

where I'(.) is Euler’s Gamma function.
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Definition 2.4. The (left-sided) Caputo fractional derivative of order a > 0 of the function f € C", (n € N U {0}),
is given by:

ey [0, e
Df(t)_{ln—afn(t), ifn—1<0(<n/n€N

where n = [a] + 1 denotes the integer part of the real number .
Note that 1 <D f(t) = f(t) = Y- L n—1<a<n, neN.

Definition 2.5. The (left-sided) Riemann—Liouville fractional derivative of order a > 0 of the function f € C"| (n €
{0}), is given by:

D“f(t)— I”“f(t)n—1<a<n n € IN.
Following relation holds between Caputo and Riemann—Liouville fractional derivatives:

fk +)

) n—-1l<a<n nelN.

D ft) = D) - Z

Definition 2.6. The function E, (a > 0) defined by E,(z) = Y1 r(#kﬂ), is called Mittag—Leffler function of order
a.

Lemma 2.7. Let a, € (0, 00). Then

o _ 1 T(@)I(B)
a—1 1 _ ja+p-1
j;s (t—s)flds = to*F T@rp)

The following inequality (see [17]) plays an important role in obtaining our main results.

Theorem 2.8. ([17]) Let u(t), f(t), g(t), h(t) € C([a, B], R4) and ¢ > O be a constant. If

t S B
W) < c+ f h(s)[m(s)+ f Flo)u (o) do + f g(o)u”(c)da]ds,

fort €[a,B], then

¢ ¢
uP(t) < cexp(f n1A(o) da)+f n,B(s) exp(f

where

A(H) = h(t)[l + f t F(o)do + nil f ' 4(0) da],

t

n1A(0) do),

B(t) = h(t)[l ; f t (o) do ,

wherep >q>0,p#0,k>0m = qu and ny = p;qu.
We will use the generalized Banach fixed point theorem to prove the existence results.

Theorem 2.9. ([10]) Let U be a nonempty closed subset of a Banach space E, and let a, > 0, n € N U {0}, be a
sequence such that },;" a, converges. Moreover, let the mapping A : U — U satisfy the inequality

lA"u = A"l < ay [ju —ol|

for every n € IN U {0}, and every u,v € U Then, A has a uniquely defined fixed point u*. Furthermore, the sequence
{A"ug}> | converges to this fixed point u* for every ug € U
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3. Existence Results and Interval of Existence

The following lemma deals with the equivalence of a nonlinear mixed fractional integro-differential
equation (1).

Lemma 3.1. If the function f : | X R X R xR — R is a continuous function, then a nonlinear mixed fractional
integro—differential equation (1) is equivalent to the integral equation,

t t S T
% j(; (t — )" x(s)ds + ﬁ i (t—s)*'f (s, x(s),j(; h(t, T)x(’f)d’c,j(; k(t, T)x(T)dT) ds,

te] (2)
Proof. Let x(f) be a solution of Eq. (1). Define

x(t) = xg +

¢ T
z(t) = Ax(t) + f (t, x(t), j(; h(t, s)x(s)ds, fo k(t,s)x(s)ds).

Then
2() = ‘D x(t).

Since
D*x(t) = D*(x(t) — xo)-

where D” is Riemann-Liouville fractional derivative of order a with lower limit 0, then we get

() = D) - 0) = £ Gl0) - )
This gives
I'z(t) = I'"%(x(t) — xo) + k.

where k is any constant. since z(t) and x(t) — x¢ are both continuous functions, for t = 0 we get k = 0. This
gives

I'z(t) = I'%(x(t) — xo).
Operating Riemann-Liouville fractional differential operator D'~ on both sides, we obtain

x(t) — xg = DT z(b)
= D'I*I'z(t)
— D111+”‘z(t)
= I"z(t)

Using the definition of z(t), we obtain Eq. (2).
Conversely, suppose that x(f) is the solution of the Eq. (2). Then it can be written as

x(f) = xg + I°z(t). 3)

where

¢ T
z(t) = Ax(t) + f (t, x(t), fo h(t, s)x(s)ds, jo‘ k(t,s)x(s)ds).



S. Tate et al. / Filomat 33:17 (2019), 5623-5638 5627

Since z(t) is continuous and xj is constant, operating the Caputo fractional differential operator °D* on both
sides of Eq. (3) we obtain

‘D%x(t) =° D% +° D*T%z(t) = z(t).

This gives

¢ T
‘D¥x(t) = Ax(t) + f (t, x(t), f h(t, s)x(s)ds, f k(t, s)x(s)ds) .
0 0
From (3), we get x(0) = xo. This proves that x(f) is the solution of Eq. (1). O
Theorem 3.2. Let T > 0 and let £ > 0 be a constant such that 0 € [xg — &, xo + &]. Assume that f : ] X [xo— &, x0 +

El X [xo = &, x0 + E] X [x0 = &, x0 + E] — R satisfies the following condition:
(H1): There exists a constant L > 0 such that

|ft,x,y,2) = f(t,%,9,2)| <L(x -z + |y - 9| + ]z - 2))

Let

RI=

- T(a+1)&
x = min{T [(5 + oD +L(1 + Thr +Tkr)) + al

}

where hy = sup{|h(t, )0 < s < t < T}, kr = sup{k(t,s)||0 < s < t < T}, M = sup,; | f(£,0,0,0)| . Then the Eq. (1)
has a unique solution x : [0, x] = R.

Proof. Define the set U = {x € C([0, x], R) : x(0) = xo, |lx — xol| < &}. Since x¢ € U, U is nonempty. Also, U is a
closed, bounded and convex subset of Banach space C([0, x], R). On U we define an operator A by

t t S T
Ax(t) = xp + % fo (t—9)*x(s)ds + ﬁ ](; (t—s)*'f (s, x(s),‘f0 h(s, T)x(T)dT’[) k(s, T)x(T)dT) ds
€[0,x].

Now, we prove that A maps the set U to itself. Let’s take any x € U and f € [0, x]. Then

(s x(s), f h(s, T)x(T)de k(s, T)X(T)d’l’)
i _ o\a-1 - a1
Sl"(a) f t=9)""" Ix(s)l dS+F( ) fo (t—9)|f (s,x(s), fo h(s, T)x(t)dT, fo k(S,T)x(T)dT)
¢

1 N
ds+r() (t— )" |f(5,0,0,0)| ds

|Axt)—xolémf(t—s)“1|x(s)|ds+—f(t—s)“1

~ £(5,0,0,0)

Using (H1) and the definition of U, for any ¢ € [0, x],

lx(t)] < |x() — xol + |xo| < & + |xol (4)

s T
<L [Ix(t)l + j(; |h(s, )| |x(7)| dT + L [k(s, )| |x(7)| d’l’]
< L(E + |xo)(X + Thr + Tkr). (5)

s T
‘f(s,x(s),AfO h(s, T)X(T)d”[,fo k(S,T)x(T)dT)—f(S,0,0,0)
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Therefore

¢ t
|Ax(t) — xo| < m f (t = 8)* (& + |xo|) ds + % f(; (t = s)* L1 + Thr + Tkr)(& + |xo) ds

a)f(t s)*1ds

{ (A + L + Thr + Tk7))(& + |xol) + M}

T'la+1)
< {(A + L(1 + Thy + Tkr))(& + |xo]) + M}X“
- Tla+1)
{(A + L(1 + Thy + Tkr))(& + |xo]) + M}{ T'(a+1)& }
Ia+1) (& + |xol)(A + L(L + Thr + Tkr)) + M

<&
We note that, for0 < t; <t, <y,

|Ax(t1) — Ax(t2)l

t1 £ s T
< ﬁ A (t1 — 5)¥ Lx(s) ds + f (b =) f (s, x(s),f h(s, T)x(T)dT,f k(s, T)x(T)dT) ds

tr 53
/\f (tr — 5)* Lx(s)ds —f (tp —5)*~ 1f(s x(s), h(s T)x(t)dT, f k(s, T)X(T)d’[) ds

AT, a-1
_F( )' f (t1 —9) —8)* " x(s)ds

S T
- —5)* 1 7 7 h 7 d 7 k 7 d d
fo {(t1 —9)* = (fr—9) f(s x(s)jo‘ (s, )x(1) Tfo (s, T)x(1) T) s
15}

tr T
- /\f (tr — 5)¥ 1x(s) ds — f (t, — s)“‘lf(s,x(s), f h(s, T)x(’[)dl’,f k(s, T)x(T)dT) ds
t t 0 0

1

< ﬁA {(t1 = )" = (2 = 8)* "} (Ix(s) — X0l + Ixol) ds

f
I,(l ) {(t1 = 8)*t = (b — 5)* 7Y} {‘f(s x(s), f h(s, T)x(T)dT, f k(s, T)x(7) d’l’) f(s,0,0, 0)‘

1)

+1f(s,0,0, 0)‘ ds + —A (t2 —5)%7Y(|x(s) = xo| + |xol)ds

I'(a)
r(l ) (2 g 1{ (S x(s), f (s, T)x(1)dr, f k(s, 7)x( T)d’L') £(5,0,0,0)[ +|£(s,0,0, 0)|} s
Using (4) and (5), we get

|Ax(t1) Ax(t2)|
(A+ LA + Thr + Tk7))(& + |x0]) + M a1 el
< o [ = - -
(A + L(1 + Thr + Tkr))(& + |x0]) + M a1
+ { o f (t — 51 ds
A+ LA + Thr + Tkr))(& + |xo]) + M
{ Ia+1)

}{2(t2 C ) £,
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This shows that Ax is continuous.
Thus for any x € U, we have Ax € C([0, x], R), Ax(0) = xo and ||[Ax — xo|]| < &. This proves that Ax € U
whenever x € U i.e A maps the set U into itself.

The next step is to prove that, for every n € IN U {0}, and every x, y € U, we have

[

HA”x - A”y” <

, t€[0,x]. (6)

I'(na+1)

This can be seen by induction. For n = 0, the inequality (6) is trivially true. We assume that (6) is true for
n =m — 1 and prove it for n = m. By using definition of operator A and hypothesis (H1), we have

A" x(t) = A"y(1)] = [AA"x(1) — A"y ()]

t t S T
_ a1 pm=-1 _ a1 m—1 m-1 m—1
< @ A fo (t—s) """ A" x(s)ds + ](; (t=s)*""f (s,A x(s),f0 h(s, T)A x(T)dT,jO‘ k(s, T)A x(’l’)d’f) ds

t t S T
-2 f (t—8)"TA™ y(s)ds — f (t—s)*! f(s,A"’ly(s), f h(s, T) A" 1y(1)dx, f k(S,T)Amly(T)dT)ds
0 0 0 0

lAmx(t) — Amy(p)| < %A f (t =) A" x(s) - A" y(s)| ds

r()f(t "

—f(s,A’"‘ly(s),f h(S,T)Am_ly(T)dT,f k(S,T)Am_ly(T)dT) ds
0 0

f( A" x(s), f h(s, T)A™ 1x('c)d'c,f k(s, ) A" x(1)d )

By using hypothesis (H1) and (6) in (7) for n = m — 1, we get

(A + L(1 + Thy + Tkr))" ! !
r( ) T(m-Da+1) el f

t S
I _ o1 m=1 _ Am-1 =1 _am-1
+F(0c) fo (t—s) {|A x(s) — A y(s)|+ fo (s, 7)| |A x(1) - A ]/(T)| dr

|Am H - Amy(t)| < (t —5)* 1s¥m s

T
; f Ik(s, 7)) 1Am*1x(f)—Am*1y(T)|dT}ds
0

(A +L(1 + Thy + Tkr)) (A + L(1 + Thr + Tkr))" ! f‘ o1 ama
: (@) n—narn vl s
[(A +L(Q + Thr + Tkr))t*]"
= T(ma +1) =l
which is our desired inequality (6). Hence, we have

[(A+ LA + Thy + Tkr))x*]" ”
IFna+1)

-4y =

{0}.

By definition 2.6, we have

Z [(A+L1 +ThT+TkT)))( 1"

ot D = Eo((A + L(1 + Thr + Tkr))x%).

We have proved that the operator A satisfies all the conditions of Theorem 2.9 and hence A has a unique
fixed point x : [0, x] = R which is the solution of Eq. (1). O

Remark 3.3. Hereafter, to study the other properties of solutions of Eq. (1), we take f : [ X RX R xR — R and
C(J, R)- the Banach space endowed with the supremum norm ||.|| .
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4. Estimates on the solutions

The following theorem contains the estimate on the solution of Eq. (1).

Theorem 4.1. Suppose that the function f : ] X R x R X R — R satisfies the hypothesis (H1). If x(t), t € ] is any
solution of Eq. (1) then

0 = (fol + s s fo tA(T)dT),

A+ LY(T - ! LhT
where A(t) = —F(a) [1 + ()\ L) f (/\ L)

M:supt€]|f ,0,0, {Ih(t S):0<s<t<T} andkT—sup{lk(t S):0<s<t<T}

Proof. Let x(t) be any solution of Eq. (1) then

t T
‘D (t) = )\x(t)+f(t,x(t),f h(t,s)x(s)ds,f k(t,s)x(s)ds),
0 0
x(0) = xo

T
= x(f) = xp + @ f (t =) x(s)ds + m f (t—s)*! (s x(s), f h(s, T)x(T)dT,fo k(s, T)X(T)d’[) ds.

Therefore
s T
f (s,x(s), j(; h(s, T)x(1)dT, L k(S,T)X(T)dT)

a— 1 ' a—
<O <l + s [0 o dos s [(@- o

- £(5,0,0,0) ds+mf(t )7 |£(5,0,0,0)| ds

Using hypothesis (H1), for any ¢ € ], we get

t
_ a1 a-1
<O <l + o [ o dos s [ 0o o s
t

e f @=9( [ mes onionde s f ks D)+ s [

Mt* (/\ +L) . o
< |xo| + F( " 1) (@) f(t—s) Lix(s)| ds + m[(t s) 1 f |X(T)|d’lf ds
o L —s)“‘l f |x(¢)|d¢ ds

1"(01)
< x| + F(Mzal) (AF(J“ L) f (t — 51 |x(s)| ds
rLZ) )= 1 f |x(7)| dt ds+L—ka(t )%~ 1f |X(T)|d’l' ds

MT? "(A+1L) o
Slx0|+1"(a+1)+  T@ (T -5s) 1|xs)|+f e L)lx(7)|d7+f o+ L |x(7)|dt|ds (8)
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Applying inequality given in the Theorem 2.8 to the inequality (8) with

MT® _(+D) g

Lkr
Ta+D "= T ¢

A+L)

—5)", f(1) =

w(t) = x(t), ¢ = xol + 3 s GE

p=qg=1m=1n=0

we obtain

o) < (ol + r(]\(fjjl))exp( fo tA(T)dT),

where

A+ L)(T-t)? ' Lhy T Lky
Al = e — [1+f0 (A+L)d’(+j(; (A+L)d’(].

O

5. Continuous Dependence and Uniqueness of Solutions

Theorem 5.1. Suppose that the function f : | x R X R X R — R satisfies the hypothesis (H1). Let x1(t) and x,(t)
be the solutions of equation

t T
D¥x(t) = Ax(t) + f (t,x(t), f h(t, s)x(s)ds, f k(t,s)x(s)ds), te] )
0 0
corresponding to x(0) = xo and x(0) = xj, respectively. Then
t
Iy — 2l < Jxo — )| exp( f A(T)d’f), (10)
0

_ (A+L)(T-t)*! Lh Lk
where A(t) = N Y [ fo (MTL dt +f0 (MTL)d ]

Proof. Let x1(t) and x,(t) be the solutions of Eq. (9) corresponding to x(0) = xo and x(0) = x{, respectively.
Therefore

T
D (t) = Ax1(H) + f (t, x1(1), L t h(t,s)x1(s)ds, f(; k(t, s)xl(s)ds),

x1(0) = xo
and
t T
‘D%, (t) = Axp(t) + f (t,xz(t), h(t, s)xz(s)ds, f k(t,s)xZ(s)ds),
0 0
x2(0) = x5
This implies
t S T
f) = x t—g)*t d t—s)*1fs, ,fht, d,fkt, d)d
x(t) r()f< 9@ ds+ s [ -9 f(s 6, | He @iy | k0@ ds
and

t t S T
xo(f) = xg + % fo (t = )" Ixp(s)ds + ﬁ fo (t—s)'f (s, xz(s),f0 h(t, T)xz('c)dt,fo k(t, T)Xz(’[)d’l?) ds
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Using the hypothesis (H1), for any ¢ € [0, T], we obtain

LA+l
T()

T
+% f (¢ 517 f Ih(s, ) 1 () = x2(0) e + f (s, )l () = xa (o) e s

1 (8) — xa(t)] < |0 —

f(t —5)% L xy(s) = x2(s)| ds

<ho-sil+ )L)f (t=5" ) = 9 ds+ o f =9 [ o) - mcorac s
LkT -
T@) f (t=5) 1 f i (7) = xz(T)Id"c)ds
Therefore
() =20 < o -1 U; )L)(T—sf‘ i) - xz(s)|+f0 (ALTD b1 () — xo(1)] d
T
(/\ -l:-TL) |X1(T) X2 T)ldT] ds (11)

Applying inequality given in the Theorem 2.8 to the inequality (11) with

(A+1L)
()

Lkt
(A+L)

5|, his) = (T-s)"", f(r) =

u(t) =l (t) = xa(t)l, ¢ = g9(1) =

L)'
p=qg=1,m=1n=0

we obtain

) - 0@ < |xo—x51exp( fo A(T)d’[),

where A(f) = (A+L¥£)t)frl[1 fo (ﬂTDd + fo (/%jL)dT] This gives the inequality (10). [

Remark 5.2. The inequality (10) shows continuous dependence of solution of Eq. (1) on initial conditions and also
it gives the uniqueness. The uniqueness follows by putting xo = xj in (10).

6. Continuous Dependence on Functions Involved and Parameters in nonlinear mixed fractional integro-
differential equation

This section deals with the study of continuous dependence of solution of a Eq. (1) on functions and
parameters involved therein.
Consider the Eq. (1) and

DUy(t) = Ay(t) + F (t, v, [ 1t 9yeds, [ K, s)y(s)ds),
yO0) =y R,

(12)

where F: [ X RXRXR — RR.
In the following theorem we prove continuous dependence of solutions of Eq. (1) on the functions
involved in right hand side of Eq. (1).
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Theorem 6.1. Suppose that f in Eq. (1) satisfies the hypothesis (H1). Let y(t) be a solution of Eq. (12) and suppose
that

£t (), 9, 5(1) = F(t, y(®), 5(8), ()| < &, t € Jand |xo - yo| <6, (13)

where €,0 > 0 are arbitrary small constants. Then the solution x(t) of the Eq. (1) depends continuously on the
functions involved therein.

Proof. Let x(t) and y(t) be any solution of Eq. (1) and (12) respectively. Then

t T
‘D¥x(t) = Ax(t) + f (t,x(t), f h(t,s)x(s)ds, f k(t,s)x(s)ds), x(0) = x
0 0

and

t T
D(t) = Ay(t) + F (t,y(t), fo h(t, s)y(s)ds, fo k(t,S)y(S)dS), y(0) = yo

This implies

t S T
x(t) = xo + % (t—5)*x(s)ds + % f (t—s)*'f (s, x(s),f0 h(s, T)x(T)dT,fO k(s, T)x(’[)dT) ds

and

oA (e R A : ! )
v =+ s [ =9 ds+ s [ 0= F(s,y<s>, | s oo, | ks, wtore) as

Using hypothesis, we obtain
() = yt)|

t
< |x0—y0|+%j(;(1f—s)"“1 |x(s)—y(s)| ds + Ta )f(t—s)“ !
s T
—F(S,y(s),‘f0 h(s, T)y(’[)d’(,fov k(s,’r)y(’r)d’c) ds
¢ T
< |xo — yo| + % fo (t =) [x(s) — y(s)| ds + = @ f (t—s)? (s x(s f h(s, T)x(7)dx, f k(s, T)X(T)d’[)

T
_ - _ a1
f(s,y(s),fh(s,’t)y(’t)dnﬁ k(s,r)y(r)d’c) dS+F( )f(t s) (s y(s), f h(s, T)]/(T)d’[f k(s, T)y(T)dT)

S T
—F (s, y(s), I) h(t, T)y(T)dr, fo k(S,T)y(T)dT) ds

T
(sx fh(s T)X(T)d’tf k(S,T)x(T)dT)

$|x°‘y°|+$ fot(f—sy“ [x(®) = y) dH% fo (-5 o) - v s
e | (-9 [ w01 - wola+ [ kG, o) - o] s
+ﬁ fo t(t—s)a—l f(s, (), f Sh(t,T)y(T)dT, fo Tk(S,T)]/(T)dT)—F(S,y(S)I fo ) e, Dy, fOTk(s,r)y(T)dT)
s{6+r( €+1)t} (Ar(Jr)L)f(t $)* 7 [x(s) — y(s)| ds + aT)fot(t—s)“_l(j:|x(7:)—y(1)|d7)ds
I%(k T) f (t - s)“1 f Ix(z) - y(T)IdT

ds
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€ N "(A+1L) o
s{6+r(a+1)T}+fO o T 1[|x(5) ys)| + fA+L)|x(T) y(@)|de

T Lk
+ . D) |x(’c) - ]/(T)| dT] ds
Applying inequality given in the Theorem 2.8 with

_ & (A+L) a— _ Lkt _ Lht
{6 Ta+1) }h() T L% 1’g(T)_(A+L)’f(T)_()\+L)’

u(t) = |x(t) - y(t)|, ¢

P=q=1/n1=1/n2=0,

we obtain

Ix(t) - yt)| < {5 + ﬁT“}exp( fo tA(’[)dT).

Finally, we get
& o g
Ix(t) - yt)| < {6 it }exp( fo A(T)dT), (14)
where
A+ L)(T-H*" 1 T Lkr
a0 == [ e [ el

From the inequality (14), it follows that the solution x(t) of Eq. (1) depends continuously on the functions
involved in the right hand side of Eq. (1). If ¢ = 0 then the inequality (14) gives continuous dependence of
solutions on initial conditions and we also note that as ¢, 5 > 0 were arbitrary, by taking ¢,6 — 0%, we have
x — y,wherex: ] — Rand y : | = R are the solutions of Eq. (1) and Eq. (12) respectively. [

Next, we consider the mixed integro—differential equation of fractional order:
t T
Dx(t) = Axi(t) + H (t, x1(t), | h(t,s)x1(s)ds, f k(t, s)x1(s)ds, 61), x1(0) = xo (15)
0 0
and
t T
D%x(t) = Axp(t) + H (t, x(t), | h(t,s)xa(s)ds, f k(t, s)xa(s)ds, 62), x2(0) = x (16)
0 0

forteJ,where H: [ X RXRXRXR — R, xp € R and 61, 5, are real parameters.
The next theorem deals with the continuous dependence of solutions of Eq. (1) on parameters.

Theorem 6.2. Assume that the function H satisfies the conditions:

|H(t,x,,2,61) = H(t, %, 7,2,61)| < Li(lx = 5| + |y — 7| + |z - 2I), (17)

|FH(t,x, y,2,61) — H(t, x, y,2,62)| < L2161 - 2, (18)
where L1, Ly > 0. Let x1(t) and x,(t) be the solutions of Eq. (15) and (16) respectively. Then

3 [61 — 82| L, ( ' )

lx1(£) — x2(8)] < —F(oc ) T exp j(; A(t)dt), (19)

where
(/\ + Ll)(T - t)a_l [ t LlhT T leT ]
A = dt + T
® I'(a) o (A+Ly) o (A+Ly)
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Proof. Let x1(t) and x,(f) be the solution of Eq. (15) and (16) respectively, then

¢ T
D%x1(t) = Axy1(t) +H(t, x1(b), f h(t, s)x1(s)ds, f k(t, s)x1(s)ds, 61),
0 0
x1(0) = xo
and
t T
‘D%xy(t) = Axa(t) +H(t, x(t), f h(t, s)xz(s)ds, f k(t, s)x2(s)ds, (52),
0 0
x2(0) = xo

This gives

1 ¢ N 1 ¢ N T
x1(t) = xp + W [) (t =) xi(s)ds + m fo (t—s)*'H (s, x1(s), fh(s, T)xl(T)dT'fo k(s, )x1(7)dT, 61)ds

and

T
() =x0+ =— @) f(t —5)% 7wy (s)ds + — @ f(t -5 'H (s X2(8), f h(s, T)x2(7)dT, j(; k(s, T)x2(7)dT, 62) ds
Therefore, for any ¢ € J,

1 () — x2(2)|

L t _ gyl _ L ' _ a1
Sl"(a)fo‘(t S)¥ |x1(s) — x2(s)| ds+1"(a)j(;(t s)

S T
-H (s, X2(s), f h(s, T)xz(1)dT, f k(s, T)x2(7)dT, 62) ds
0 0

L t_a—l _ L t_a—l
Smmﬁ“ 99 ) nw¢+nmﬁﬁ )

S T
-H (s, xz(s),f h(s, T)Xz(’[)d’[,f k(s, T)x2(7)dT, 61) ds
0 0

1 [ -
+m£(t—8) 1

S T
-H (s,xz(s), f h(s, T)x2(1)dT, f k(s,T)xz(T)dT,(Sz) ds

0 0

S T
H (s,xl(s), f h(s, T)x1(7)dT, f k(s,T)xl(T)dT,(Sl)
0 0
S T
H(s,xl(s),f h(S,T)xl(T)dT,f k(s, T)xl(’c)d’c,61)
0 0

S T
H(s, xz(s),f h(s, T)xl(’t)d’f,f k(s, T)x1(7)dT, 61)
0 0

<L ft(t —s)o"1 [x1(s) — x2(s)| ds + i ft(t —s)‘*’1 Ix (s) — x2(s)| + f |h(s, T) |x1(T) — x2(7)| dT
T 1 2 1 2 ; , 1 2

IWMMMxMWsHUfawwlmw

Sléll(a izllﬁz I Al“:-aLl f(t $)* ! |x1(s) — x2(s)|ds + ?(—h;f(t—s)“_l(fo x1(7) —xz(T)|dT)dS

leT afl
+W ; (t—s) j; lx1(7) _xz(T)|d’C)dS
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t
§|61_62|L2T"+f (A +Ly)
T@+1) . T

(=5l - 220

* T
Lihr Likr
" 0 (/\ + Ll) |X1(T) - xZ(T)l dt + 0 (A + Ll) |X1(T) - XZ(T)| dT]dS

Applying inequality given in the Theorem 2.8 with

01 — 62| Ly (A+ L) 1 Lihy Lakr
= — = Ta = T — a = =
u(t) = e = y(®), ¢ = Joy T ) = = T =9"Y 0 = 0 90 = Gy
pzqzll m=1,n=0,
we obtain
11— 62l La (ff )
- < — A .
|x1(£) — x2(8)] < Ta+ D) T exp | (t)dt
Finally, we get
|61 — 02| Lo (ft )
_ < - e o A d
[x1(t) — x2(t)] < Ta+1) T exp | ()dt),
where
M+LMT—0*T ' Ly T Liky ]
A(t) = 1+ drt + dt
® I'(a) o (A+Ly) o (A+Ly)
0
7. Illustrative Example
In this section, we give an example to illustrate the usefulness of our main results.
We consider
el Wﬂllftl d}flw p
D2x(t) = x(t) + 759 + 5 J, —(2+t)2x(s) s+ 5 J, (3+t)2x(s) s, (20)

t € [0,1], x(0) = 0.

_x(t)+1+1
T R2+9 9

1

1
Define f(t, x(t), Hix(t), K1 x(t)) Hqx(t) + §K1x(t), te[0,1], a= X A =1. Where

t
Hix(t) = fo ﬁx(s)ds,

1 —t
Kyx(t) = j; (Be_’_—t)zx(s)ds.

Clearly, the function f is continuous. For any x1,x, € Rand ¢ € [0, 1],
1
|f(t,x1,H1x1,K1x1) - f(t, leHlxz,lez)‘ Sg[ Ix1 = x2| + |[Hix1 — Hixo| + [Kyxq — K1362|]

Hence hypothesis (H1) is satisfied with L = 1. It follows from Theorem 3.2 that the problem (20) has a
unique solution on [0,1].
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8. Conclusion

In this paper, we have successfully established an existence and interval of existence of solutions,
uniqueness, continuous dependence of the solutions on initial conditions, estimates on solutions and
continuous dependence on parameters and functions involved in a nonlinear mixed fractional integro—
differential equation with constant coefficient. The important fact of this paper is that with the minimum
assumptions on the function f, we have obtained various properties of solutions of a nonlinear mixed
fractional integro—differential equation with constant coefficient. In the future, we will extend the results
to other fractional derivatives and boundary value problems.

9. Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions which
helped us to improve our results.

References

[1] S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in Fractional Differential Equations, Vol 27, Springer, New York, 2012.
https://dx.doi.org/10.1007/978-1-4614-4036-9

[2] A. Aghajani, E. Pourhadi, J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential
equations in Banach spaces, Fract. Calc. Appl. Anal. 16(4) (2013) 962-977. d0i:10.2478/s13540-013-0059-y

[3] G. Anastassiou, Advances on Fractional Inequalities, Springer, New York, 2011.

[4] K. Balachandran, J. Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal.
71(10) (2009) 4471-4475. http://dx.doi.org/10.1016/j.na.2009.03.005

[5] D. Baleanu, Z. Giiveng, J. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York,
2000. https://dx.doi.org/10.1007/978-90-481-3293-5

[6] D.Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, World Scientific, New York,

2012.

A. Barbagallo, M. A. Ragusa, A. Scapellato, Preface of the 5th Symposium on Variational Inequalities and Equilibrium Problems,

AIP Conference Proceedings 1863 (2017) 510001. https://doi.org/10.1063/1.4992659.

[8] I. Cabrera, J. Harjani, K. Sadarangani, Existence and Uniqueness of Solutions for a Boundary Value Problem of Fractional Type
with Nonlocal Integral Boundary Conditions in Hlder Spaces, Mediterr. ]. Math. 15 (2018) 1-15.
https://doi.org/10.1007/s00009-018-1142-8

[9] K.Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators
of Caputo Type, Springer-Verlag, New York, 2010.

[10] K. Diethelm, N. J. Ford, Analysis of Fractional Differential Equations, J. Math. Anal. Appl. 265(2) (2002) 229-248.
https://dx.doi.org/10.1006/jmaa.2000.7194

[11] X. Dong, J. Wang, Y. Zhou, On nonlocal problems for fractional differential equations in Banach spaces, Opuscula Math. 31(3)
(2011) 341-357.

[12] K. M. Furati, N. Tatar, Long time behavior for a nonlinear fractional model, J. Math. Anal. Appl. 332(1) (2007) 441-454.
http://dx.doi.org/10.1016/j.jmaa.2006.10.027

[13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, New York, 2000.

[14] T.B.Jagtap, V. V. Kharat, On Existence of Solution to Nonlinear fractional Integrodifferential System, Journal of Trajectory 22(1)
(2014) 40-46.

[15] V. V. Kharat, On existence and uniqueness of fractional integrodifferential equations with an integral fractional boundary
condition, Malaya J. Mat. 6(3) (2018) 485-491.

[16] V.V Kharat, D. B. Dhaigude, D. R. Hasabe, On nonlinear mixed fractional integrodifferential Inclusion with four-point nonlocal
Riemann-Liouville integral boundary conditions, Ind. J. Pure Appl. Math. (accepted)

[17] S.D.Kendre, S. G. Latpate, On some mixed integral inequalities and its applications, Theoretical Mathematics and Applications
5 (2015) 1-14.

[18] S.D. Kendre, T. B. Jagtap, V. V. Kharat, On nonlinear Fractional integrodifferential equations with nonlocal condition in Banach
spaces, Nonlinear Anal. Differ. Equat. 1(3) (2013) 129-141.

[19] S.D.Kendre, V. V. Kharat, On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces,
J. Appl. Anal. 20(2) (2014) 167-175.

[20] S. D. Kendre, V. V. Kharat, T. B. Jagtap,On Abstract Nonl inear Fractional Integrodifferential Equations with Integral Boundary
condition, Comm. Appl. Nonlinear Anal. 22(3) (2015) 93-108.

[21] S. D. Kendre, V. V. Kharat, T. B. Jagtap, On Fractional Integrodifferential Equations with Fractional Non-separated Boundary
conditions, Int. J. Appl. Math. Sci. 13(3) (2013) 169-181.

[22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 204th ed., Elsevier,
Amsterdam, 2006.

7



[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]

[38]
[39]

[40]
[41]
[42]
[43]

[44]

S. Tate et al. / Filomat 33:17 (2019), 5623-5638 5638

V. Lakshmikantham, S. Leela, D. J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers,
Cambridge, 2009.

J. Liang, Z. Liu, X. Wang, Solvability for a couple system of nonlinear fractional differential equations in a Banach space, Fract.
Calc. Appl. Anal. 16(1) (2013) 51-63. https://doi.org/10.2478/s13540-013-0004-0

Y. U.R. I. L. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives,
Acta Math. Vietnam. 24(2) (1999) 207-233.

G. M. N'Guérékata., A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear
Anal. 70(5) (2009) 1873-1876. http://dx.doi.org/10.1016/j.na.2008.02.087

G. M. N'Guérékata., Corrigendum: A Cauchy Problem for some Fractional Differential Equations, Commun. Math. Anal. 7(1)
(2009) 11. http://math-res-pub.org/cma/7

J. Nieto, A. Ouahab, V. Venktesh, Implicit Fractional Differential Equations via the Liouville-Caputo Derivative, Mathematics
3(2) (2015) 398—411. http://dx.doi.org/10.3390/math3020398

M. Pierri, D. O'Regan, On non-autonomous abstract nonlinear fractional differential equations, Appl. Anal. 94(5) (2015) 879-890.
http://dx.doi.org/10.1080/00036811.2014.905679

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

M. A.Ragusa, A. Scapellato, Mixed Morrey spaces and their applications to partial differential equations, Nonlinear Anal. Theory
Methods Appl. 151 (2017) 51-65. https://doi.org/10.1016/j.na.2016.11.017.

Y. Ren, Y. Qin, R. Sakthivel, Existence results for fractional order semilinear integro-differential evolution equations with infinite
delay, Integr. Equ. Oper. Theory 16(1) (2010) 33—49. doi:10.1007/s00020-010-1767-x

M. Ruggieri, A. Scapellato, M. P. Speciale, Preface of the Symposium Analytical and Numerical Methods for DE with Boundary
Value Problems in Applied Sciences, AIP Conference Proceedings 1978 (2018) 140001. https://doi.org/10.1063/1.5043781

S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993.

V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, Higher Education Press, Heidel-
berg, 2010.

S. Tate, H. T. Dinde, Some Theorems on Cauchy Problem for Nonlinear Fractional Differential Equations with Positive Constant
Coefficient, Mediterr. J. Math. 14(2) (2017) 1-17. https://doi.org/10.1007/s00009-017-0886-x

S. Tate, V. V. Kharat, H. T. Dinde, On Nonlinear Fractional Integro-differential Equations with Positive Constant Coefficient,
Mediterr. J. Math. 16(2) (2019) 1-20. https://doi.org/10.1007/s00009-019-1325-y.

H. L. Tidke, Some theorems on fractional semilinear evolution equations, J. Appl. Anal. 18(2) (2012) 209-224.

H. L. Tidke, Existence of global solutions to nonlinear mixed Volterra - Fredholm integrodifferential equations with nonlocal
conditions, Electronic Journal of Differential Equations. 2009(55) (2009) 1-7.

B. Kh. Turmetov, On a method for constructing a solution of integro-differential equations of fractional order, Electron. J. Qual.
Theory Differ. Equ. (25) (2018) 1-14. https://doi.org/10.14232/ejqtde.2018.1.25

J. Wang, X. Li, A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterr. J. Math. 13(2) (2016)
625-635. https://doi.org/10.1007/s00009-015-0523-5

Y. Zhou, X. H. Shen, L. Zhang, Cauchy problem for fractional evolution equations with Caputo derivative, Eur. Phys. J. Spec.
Top. 222(8) (2013) 1749-1765. doi:10.1140/epjst/e2013-01961-5

Y. Zhou, E Jiao, J. Petari¢, Abstract Cauchy problem for fractional functional differential equations, Topol Methods Nonlinear
anal. 42(1) (2013) 119-136.

Y. Zhou, FE. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real World Appl. 11(5) (2010)
4465-4475. http://dx.doi.org/10.1016/j.nonrwa.2010.05.029



