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Abstract. In this paper we study the relations between Cesàro-hypercyclic operators and the operators for
which Weyl type theorem holds.

1. Introduction

Throughout this note let B(H) denote the algebra of bounded linear operators acting on a complex,
separable, infinite dimensional Hilbert spaceH . If T ∈ B(H),write N(T) and R(T) for the null space and the
range of T;σ(T) for the spectrum of T;π00(T) = π0(T)∩ isoσ(T),whereπ0(T) = {λ ∈ C : 0 < dim N(T−λI) < ∞}
are the eigenvalues of finite multiplicity. Let p00(T) denote the set of Riesz points of T (i.e., the set of λ ∈ C
such that T − λI is Fredholm of finite ascent and descent [1]). An operator T ∈ B(H) is called upper
semi-Fredholm if it has closed range with finite dimensional null space and if R(T) has finite co-dimension,
T ∈ B(H) is called a lower semi-Fredholm operator. We call T ∈ B(H) Fredholm if it has closed range with
finite dimensional null space and its range is of finite co-dimension. The index of a Fredholm operator
T ∈ B(H) if given by

ind(T) = dim N(T) − dim R(T)⊥(= dim N(T) − dim N(T∗)).

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. And T ∈ B(H) is called Browder if
it is Fredholm of finite ascent and descent: equivalently [9] if T is Fredholm and T − λI is invertible for
sufficiently small λ , 0 in C. The essential spectrum σe(T), the Weyl spectrum σw(T), the Browder spectrum
σb(T), the upper semi-Fredholm spectrum and the lower semi-Fredholm spectrum of T ∈ B(H) are defined
by

σe(T) = {λ ∈ C : T − λI is not Fredholm},
σw(T) = {λ ∈ C : T − λI is not Weyl},
σb(T) = {λ ∈ C : T − λI is not Browder},
σSF+

(T) = {λ ∈ C : T − λI is not upper semi-Fredholm},
σSF− (T) = {λ ∈ C : T − λI is not lower semi-Fredholm}.
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In keeping with current usage [1, 11], we say that an operator T ∈ B(H) satisfies Browder’s theorem
(respectively Weyl’s theorem) if σ(T)\σw(T) = p00(T), equivalently σw(T) = σb(T) (respectively σ(T)\σw(T) =
π00(T)).The following implications hold [11]: Weyl’s theorem for T⇒Browder’s theorem for T⇔Browder’s
theorem for T∗. Let πa

00(T) denote the set of λ ∈ C such that λ is an isolated point of σa(T), λ ∈ isoσa(T),
and 0 < dim N(T − λI) < ∞, where σa(T) denotes the approximate point spectrum of the operator T. Then
p00(T) ⊆ π00(T) ⊆ πa

00(T). T is said to satisfy a-Weyl’s theorem if σa(T)\σea(T) = πa
00(T), where we write

σea(T) for the essential approximate point spectrum of T (i.e., σea(T) =
⋂
{σa(T + K) : K ∈ K(H)} : a-Weyl’s

theorem for T⇒Weyl’s theorem for T, but the converse is generally false [15]. It is well known that σea(T)
coincides with σea(T) = {λ ∈ C : T − λI < SF−+}, where SF−+(H) = {T ∈ B(H) : T is upper semi-Fredholm of
ind(T) ≤ 0}.We say that T satisfies a-Browder’s if σea(T) = σab(T), (equivalently, σa(T)\σea(T) = pa

00(T),where
pa

00(T) = {λ ∈ σa(T) : λ < σab(T)} [14] and σab(T) the Browder essential approximate point spectrum (i.e.,
λ < σab(T) if and only if T−λI is upper semi-Fredholm and T−λI has finite ascent). Evidently, a-Browder’s
theorem implies Browder’s theorem (but the converse is generally false).
We turn to a variant of the essential approximate point spectrum. T ∈ B(H) is called a generalized
upper semi-Fredholm operator if there exists T-invariant subspaces M and N such that H = M ⊕ N and
T|M ∈ SF−+(M),T|N is quasinilpotent. Clearly, if T is generalized upper semi-Fredholm, there exists ε > 0
such that T − λI ∈ SF−+(H) and N(T − λI) ⊆

⋂
∞

n=1 R[(T − λI)n] if 0 < |λ| < ε. Clearly, if λ ∈ isoσ(T),T − λI is
generalized upper semi-Fredholm. The new spectrum set is defined as follows. Let

ρ1(T) = {λ ∈ C : there exists ε > 0 such that T − µI is generalized upper semi-Fredholm if 0 < |µ − λ| < ε}

and let σ1(T) = C\ρ1(T). Then

σ1(T) ⊆ σea(T) ⊆ σab(T) ⊆ σa(T).

T is called approximate isoloid (a-isoloid) (or isoloid) if λ ∈ isoσa(T)(isoσ(T)) ⇒ N(T − λI) , {0} and T is
called finite approximate isoloid ( f -a-isoloid) (or finite isoloid, f -isoloid) operator if the isolated points of
approximate point spectrum (of the spectrum) are all eigenvalues of finite multiplicity. Clearly, f -a-isoloid
implies a-isoloid and finite isoloid, but the converse is not true.
Recall that an operator T ∈ B(H) has the single-valued extension property at a point λ0 ∈ C, SVEP at
λ0 for short, if for every open disc Dλ0 centered at λ0 the only analytic function f : Dλ0 → H satisfying
(T − λI) f (λ) = 0 is the function f ≡ 0. T has SVEP if it has SVEP at every point of C (= the complex plane).
It is known [5, Lemma 2.18] that a Banach space operator T with SVEP satisfies a-Browder’s theorem.
A bounded linear operator T : H → H is called hypercyclic if there is some vector x ∈ H such that
Orb(T, x) = {Tnx : n ∈N} is dense inH , where such a vector x is said hypercyclic for T.
The first example of hypercyclic operator was given by Rolewicz in [16]. He proved that if B is a backward
shift on the Banach space lp, then λB is hypercyclic if and only if |λ| > 1.
Let {en}n≥0 be the canonical basis of l2(N). If {wn}n∈≥1 is a bounded sequence in C\{0}, then the unilateral
backward weighted shift T : l2(N) −→ l2(N) is defined by Ten = wnen−1, n ≥ 1,Te0 = 0, and let {en}n∈Z
be the canonical basis of l2(Z). If {wn}n∈Z is a bounded sequence in C\{0}, then the bilateral weighted shift
T : l2(Z) −→ l2(Z) is defined by Ten = wnen−1.
The definition and the properties of supercyclicity operators were introduced by Hilden and Wallen [12].
They proved that all unilateral backward weighted shifts on a Hilbert space are supercyclic.
A bounded linear operator T ∈ B(H) is called supercyclic if there is some vector x ∈ H such that the
projective orbit C.Orb(T, x) = {λTnx : λ ∈ C,n ∈ N} is dense in X. Such a vector x is said supercyclic for T.
Refer to [2][8][6][19] for more informations about hypercyclicity and supercyclicity.
In [17] and [18], Salas characterized the bilateral weighted shifts that are hypercyclic and those that are
supercyclic in terms of their weight sequence. In [7], N. Feldman gave a characterization of the invertible
bilateral weighted shifts that are hypercyclic or supercyclic.
For the following theorem, see [7, Theorem 4.1].

Theorem 1.1. Suppose that T : l2(Z) −→ l2(Z) is a bilateral weighted shift with weight sequence (wn)n∈Z and
either wn ≥ m > 0 for all n < 0 or wn ≤ m for all n > 0. Then:
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1. T is hypercyclic if and only if there exists a sequence of integers nk → ∞ such that limk→∞
∏nk

j=1 w j = 0 and
limk→∞

∏nk
j=1

1
w− j

= 0.

2. T is supercyclic if and only if there exists a sequence of integers nk →∞ such that limk→∞(
∏nk

j=1 w j)(
∏nk

j=1
1

w− j
) =

0.

LetMn(T) denote the arithmetic mean of the powers of T ∈ B(H), that is

Mn(T) =
1 + T + T2 + ... + Tn−1

n
,n ∈N∗.

If the arithmetic means of the orbit of x are dense inH then the operator T is said to be Cesàro-hypercyclic.
In [13], Fernando León-Saavedra proved that an operator is Cesàro-hypercyclic if and only if there exists a
vector x ∈ H such that the orbit {n−1Tnx}n≥1 is dense in H and characterized the bilateral weighted shifts
that are Cesàro-hypercyclic.
For the following proposition, see [13, Proposition 3.4].

Proposition 1.2. Let T : l2(Z) −→ l2(Z) be a bilateral weighted shift with weight sequence (wn)n∈Z. Then T is
Cesàro-hypercyclic if and only if there exists an increasing sequence nk of positive integers such that for any integer q,

limk→∞
∏nk

i=1
wi+q

nk
= ∞ and limk→∞

∏nk−1
i=0

wq−i

nk
= 0.

Hypercyclic and supercyclic (Hilbert space) operators satisfying a Browder-Weyl type theorem have recently
been considered by Cao [3]. In [4] B.P. Duggal gave the necessary and sufficient conditions for hypercyclic
and supercyclic operators to satisfy a-Weyl’s theorem.
In this paper we will give an example of a hypercyclic and supercyclic operator which is not Cesàro-
hypercyclic and vice versa. Furthermore, we study the relations between Cesàro-hypercyclic operators and
the operators for which Weyl type theorem holds.

2. Main results

Definition 2.1. An operator T ∈ B(H) is Cesàro-hypercyclic if and only if there exists a vector x ∈ H such that the
orbit {n−1Tnx}n≥1 is dense inH

The following example gives an operator which is Cesàro-hypercyclic but not hypercyclic.

Example 2.2. [13] Let T the bilateral backward shift with the weight sequence

wn =

{
1 if n ≤ 0,
2 if n ≥ 1.

Then T is not hypercyclic, but it is Cesàro-hypercyclic.

Now, we will give an example of a hypercyclic and supercyclic operator which is not Cesàro-hypercyclic.

Example 2.3. Let T the bilateral backward shift with the weight sequence

wn =

{
2 if n < 0,
1
2 if n ≥ 0.

Then T is not Cesàro-hypercyclic, but it is hypercyclic and supercyclic.

Proof. By applying Theorem 1.1 and taking nk = n, we have

lim
n→∞

n∏
j=1

w j = lim
n→∞

1
2n = 0;
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and

lim
n→∞

n∏
j=1

1
w− j

= lim
n→∞

1
2n = 0.

Furthermore, we have

lim
n→∞

(
n∏

j=1

w j)(
n∏

j=1

1
w− j

) = lim
n→∞

(
1
2n )(

1
2n ) = 0.

Therefore by Theorem 1.1 the operator T is hypercyclic and supercyclic. However, for all increasing
sequence nk = n of positive integers and taking q = 0, we have

lim
n→∞

n∏
i=1

wi+q

n
= lim

n→∞

1
n2n = 0,

from Proposition 1.2, T is not Cesàro-hypercyclic.

The following example gives us an operator which is Cesàro-hypercyclic but not hypercyclic and supercyclic.

Example 2.4. Let T the bilateral backward shift with the weight sequence

wn =

{
1
2 if n < 0,
n + 1 if n ≥ 0.

Then T is Cesàro-hypercyclic, but it is not hypercyclic and supercyclic.

Proof. By applying Proposition 1.2 and taking nk = n and q = 0, we have

lim
n→∞

n∏
i=1

wi+q

n
= lim

n→∞

(n + 1)!
n

= ∞,

and

lim
n→∞

n∏
i=0

wq−i

n
= lim

n→∞

1
n2n = 0.

Therefore by Proposition 1.2 the operator T is Cesàro-hypercyclic. On the other hand, we have

lim
n→∞

n∏
j=1

w j = lim
n→∞

((n + 1)!) = ∞;

and

lim
n→∞

(
n∏

j=1

w j)(
n∏

j=1

1
w− j

) = lim
n→∞

((n + 1)!)(2n) = ∞.

Therefore by Theorem 1.1 the operator T is not hypercyclic and supercyclic.

We denote by CH(H) the class of all cesàro-hypercyclic operators in B(H) and CH(H) the norm-closure of
the class CH(H). The following lemma [13, Theorem 5.1] give the essential facts for hypercyclic operators
and supercyclic operators that we will need to prove the main theorem.

Lemma 2.5. CH(H) is the class of all those operators T ∈ B(H) satisfying the conditions:

1. σw(T) ∪ ∂D is connected, where ∂D the boundary of the open unit disk;
2. σ(T)\σb(T) = ∅;
3. ind(T − λI) ≥ 0 for every λ ∈ ρSF(T), where ρSF(T) = {λ ∈ C : T − λI is semi-Fredholm }.
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Lemma 2.6. Let T ∈ CH(H). If T ∈ B(H) is f -isoloid and the Weyl’s theorem holds for T, then λ < σ1(T) implies
that λ < σ(T) or λ ∈ isoσ(T).

Proof. Suppose T ∈ CH(H). Let λ0 < σ1(T). Then there exists ε > 0 such that T − λI is generalized upper
semi-Fredholm. For every λ, there exists ε

′

such that T−λ′ I ∈ SF−+(H) and N(T−λ′ I) ⊆
⋂
∞

n=1 R[(T−λ′ I)n] if
0 < |λ

′

− λ| < ε
′

. Since T ∈ CH(H), it induces that ind(T − λI) ≥ 0 by Lemma 2.5(3). Then T − λ′ I is Weyl if
0 < |λ

′

−λ| < ε. Since the Weyl’s theorem holds for T, then T−λ′ I is Browder and hence T−λ′ I is invertible
if 0 < |λ

′

− λ| < ε. It implies λ ∈ isoσ(T) ∪ ρ(T), where ρ(T) = C\σ(T). We claim that λ < isoσ(T). If not, since
T is finite isoloid and theWeyl’s theorem holds for T, it follows that λ ∈ π00 = σ(T)\σw(T). Then T − λI is
Browder. It is in contradiction to the fact that T ∈ CH(H) by Lemma 2.5(2). Thus λ < σ(T). It induces that
λ0 ∈ isoσ(T)∪ ρ(T). Using the same way, we prove that T − λ0I is invertible, which means that λ < σ(T).

Let H(T) be the class of complex-valued functions which are analytic in a neighborhood of σ(T) and are
not constant on any neighborhood of any component of σ(T). Our results are:

Theorem 2.7. If T ∈ B(H) is f -isoloid and the Weyl’s theorem holds for T (or T is f -a-isoloid and the a-Weyl’s
theorem holds for T ), then T ∈ CH(H)⇔ σ(T) = σ1(T) and σ(T) ∪ ∂D is connected

Proof. For the forward implication, since T satisfies Weyl’s theorem and T is isoloid imply σb(T) = σw(T) =
σ(T), π00(T) = ∅, hence σ(T) ∪ ∂D is connected and it induces that σ(T) = σ1(T) by Lemma 2.6.

Conversely, σ1(T) ⊆ σae(T) ⊆ σw(T) ⊆ σb(T) ⊆ σ(T), (1) and (2) in Lemma 2.5 follow and (3) is evident.

Corollary 2.8. Suppose T ∈ CH(H) and the a-Weyl’s theorem holds for T. Then a-Weyl’s theorem holds for f (T) for
any f ∈ H(T).

Proof. Since T ∈ CH(H), it induces that for each pair λ, µ ∈ C\σSF+
(T), ind(T − λI)ind(T − µI) ≥ 0. Theorem

2.2 in [10] tells us that the a-Weyl’s theorem holds for f (T) for any f ∈ H(T).

Theorem 2.9. If T ∈ CH(H), then T and T∗ satisfy a-Browder’s theorem.

Proof. Since σp(T∗) = ∅ for cesàro-hypercyclic T, T∗ has SVEP, hence T∗ satisfies a-Browder’s theorem.
Evidently, σea(T) ⊆ σab(T). Thus to prove that T satisfies a-Browder’s theorem it would suffice to prove that
σab(T) ⊆ σea(T) [5, Lemma 2.18]. Let λ < σea(T). Then T − λI is upper semi-Fredholm and ind(T − λI) ≤ 0.
Since T∗ has SVEP, dsc(T − λI) < ∞ [1, Theorem 3.17 ]⇒ ind(T − λI) ≥ 0. Thus ind(T − λI) = 0 and T − λI is
Fredholm. But then, since dsc(T − λI) < ∞, asc(T − λI) = dsc(T − λI) < ∞ [1, Theorem 3.4 ], which implies
that λ < σab(T).

The following example gives us an operator which satisfies a-Browder’s theorem but not Cesàro-
hypercyclic.

Example 2.10. Let T be defined by

T( x0
2 ,

x1
3 ,

x2
4 , ...) for all (xn) ∈ l2(N).

Then T is quasi-nilpotent, so has SVEP and consequently satisfies a-Browder’s theorem. On the other hand, by
Proposition 1.2 the operator T is not Cesàro-hypercyclic.

Theorem 2.11. If T ∈ CH(H), then T∗ satisfies Weyl’s theorem. If also π00(T) ⊆ π00(T∗), then T satisfies a-Weyl’s
theorem.
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Proof. Evidently, if T ∈ CH(H), then p00(T) = p00(T∗) = π00(T∗) = ∅. Since σp(T∗) = ∅ for cesàro-hypercyclic
T, T∗ has SVEP, hence T∗ satisfies satisfies Browder’s theorem, it follows that T∗ satisfies Weyl’s theorem.
Since p00(T) ⊆ π00(T) for every operator T, and since operators T, satisfy Browder’s theorem, we have that
σ(T)\σw(T) = p00(T) ⊆ π00(T). Hence, if π00(T) ⊆ π00(T∗), then σ(T)\σw(T) = p00(T) ⊆ π00(T) ⊆ π00(T∗) =
p00(T∗) = p00(T), i.e., T satisfies Weyl’s theorem. To complete the proof, we prove now that T satisfies
a-Weyl’s theorem.
Since σp(T∗) = ∅ for cesàro-hypercyclic T, T∗ has SVEP, hence σ(T) = σa(T) andπ00(T) = πa

00(T). Let λ < σea(T).
then T − λI is upper semi-Fredholm and ind(T − λI) ≤ 0. Arguing as in the proof of Theorem 2.9, it is seen
that T − λI is Fredholm and ind(T − λI) = 0, i.e., λ < σw(T). Since σw(T) ⊇ σea(T) for every operator T,
we conclude that σw(T) = σea(T). But then, since T satisfies Weyl’s theorem, σa(T)\σea(T) = σ(T)\σw(T) =
π00(T) = πa

00(T).

Corollary 2.12. T ∈ CH(H) satisfies a-Weyl’s theorem if and only if π00(T) = ∅.
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reading of the manuscript.
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