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Abstract. In this paper we study the relations between Cesaro-hypercyclic operators and the operators for
which Weyl type theorem holds.

1. Introduction

Throughout this note let B(H) denote the algebra of bounded linear operators acting on a complex,
separable, infinite dimensional Hilbert space H. If T € B(H), write N(T) and R(T) for the null space and the
range of T; o(T) for the spectrum of T; 119o(T) = mo(T)Nisoo(T), where ip(T) = {A € C : 0 < dim N(T—-AI) < oo}
are the eigenvalues of finite multiplicity. Let poo(T) denote the set of Riesz points of T (i.e., the setof A € C
such that T — Al is Fredholm of finite ascent and descent [1]). An operator T € B(H) is called upper
semi-Fredholm if it has closed range with finite dimensional null space and if R(T) has finite co-dimension,
T € B(H) is called a lower semi-Fredholm operator. We call T € B(H) Fredholm if it has closed range with
finite dimensional null space and its range is of finite co-dimension. The index of a Fredholm operator
T € B(‘H) if given by

ind(T) = dim N(T) — dim R(T)* (= dim N(T) — dim N(T*)).

An operator T € B(H) is called Weyl if it is Fredholm of index zero. And T € B(H) is called Browder if
it is Fredholm of finite ascent and descent: equivalently [9] if T is Fredholm and T — Al is invertible for
sufficiently small A # 0 in C. The essential spectrum o.(T), the Weyl spectrum o,(T), the Browder spectrum
0p(T), the upper semi-Fredholm spectrum and the lower semi-Fredholm spectrum of T € B(H) are defined

by

0.(T) ={A € C: T — Al is not Fredholm},

0w(T) ={A € C: T — Al is not Weyl},

o0p(T) = {A € C: T — Al is not Browder},

osr,(T) = {A € C: T — Al is not upper semi-Fredholm},
osp_(T) = {A € C : T — Al is not lower semi-Fredholm}.
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In keeping with current usage [1, 11], we say that an operator T € B(H) satisfies Browder’s theorem
(respectively Weyl's theorem) if 0(T)\ow(T) = poo(T), equivalently 0.,(T) = 04(T) (respectively o(T)\ow(T) =
100(T)). The following implications hold [11]: Weyl’s theorem for T = Browder’s theorem for T < Browder’s
theorem for T*. Let 7t(,,(T) denote the set of A € C such that A is an isolated point of 0,(T), A € is00,(T),
and 0 < dim N(T — Al) < oo, where ¢,(T) denotes the approximate point spectrum of the operator T. Then
poo(T) S moo(T) S 75, (T). T is said to satisfy a-Weyl’s theorem if ,(T)\oe(T) = 75,(T), where we write
0ea(T) for the essential approximate point spectrum of T (i.e., 0e(T) = (Woa(T + K) : K € K(H)} : a-Weyl’s
theorem for T = Weyl’s theorem for T, but the converse is generally false [15]. It is well known that o,,(T)
coincides with ¢,,(T) = {A € C: T — AI ¢ SF.}, where SF_(H) = {T € B(H) : T is upper semi-Fredholm of
ind(T) < 0}. We say that T satisfies a-Browder’s if 0,,(T) = 04(T), (equivalently, 6,(T)\0ea(T) = pf,(T), where
Poo(T) = {A € 04(T) : A ¢ (T} [14] and 0,4(T) the Browder essential approximate point spectrum (i.e.,
A ¢ 04(T) if and only if T — Al is upper semi-Fredholm and T — Al has finite ascent). Evidently, a-Browder’s
theorem implies Browder’s theorem (but the converse is generally false).

We turn to a variant of the essential approximate point spectrum. T € B(H) is called a generalized
upper semi-Fredholm operator if there exists T-invariant subspaces M and N such that H = M @ N and
Tim € SF{(M), Ty is quasinilpotent. Clearly, if T is generalized upper semi-Fredholm, there exists € > 0
such that T — Al € SF;(H) and N(T — AI) € (- RI(T — A)"] if 0 < |A| < €. Clearly, if A € isoo(T), T — Al is
generalized upper semi-Fredholm. The new spectrum set is defined as follows. Let

p1(T) = {A € C : there exists € > 0 such that T — ul is generalized upper semi-Fredholm if 0 < |u — A| < €}
and let 01(T) = C\p1(T). Then
01(T) € 0ea(T) € 0ap(T) € 04(T).

T is called approximate isoloid (a-isoloid) (or isoloid) if A € isoo,(T)(isoo(T)) = N(T — Al) # {0} and T is
called finite approximate isoloid (f-a-isoloid) (or finite isoloid, f-isoloid) operator if the isolated points of
approximate point spectrum (of the spectrum) are all eigenvalues of finite multiplicity. Clearly, f-a-isoloid
implies a-isoloid and finite isoloid, but the converse is not true.

Recall that an operator T € B(H) has the single-valued extension property at a point A € C, SVEP at
Ao for short, if for every open disc D,, centered at Ay the only analytic function f : D), — H satisfying
(T — ADf(A) = 01is the function f = 0. T has SVEP if it has SVEP at every point of C (= the complex plane).
It is known [5, Lemma 2.18] that a Banach space operator T with SVEP satisfies a-Browder’s theorem.

A bounded linear operator T : H — H is called hypercyclic if there is some vector x € H such that
Orb(T, x) = {T"x : n € IN} is dense in H, where such a vector x is said hypercyclic for T.

The first example of hypercyclic operator was given by Rolewicz in [16]. He proved that if B is a backward
shift on the Banach space /7, then AB is hypercyclic if and only if |A| > 1.

Let {e,},=0 be the canonical basis of I?(IN). If {w,},e>1 is a bounded sequence in C\{0}, then the unilateral
backward weighted shift T : *(N) — [*(IN) is defined by Te, = w,e,-1, n > 1,Teg = 0, and let {e,}nez
be the canonical basis of [*(Z). If {w,},cz is a bounded sequence in C\{0}, then the bilateral weighted shift
T: I2(Z) — [2(Z) is defined by Te, = wye,-1.

The definition and the properties of supercyclicity operators were introduced by Hilden and Wallen [12].
They proved that all unilateral backward weighted shifts on a Hilbert space are supercyclic.

A bounded linear operator T € B(H) is called supercyclic if there is some vector x € H such that the
projective orbit C.Orb(T, x) = {AT"x : A € C,n € IN} is dense in X. Such a vector x is said supercyclic for T.
Refer to [2][8][6][19] for more informations about hypercyclicity and supercyclicity.

In [17] and [18], Salas characterized the bilateral weighted shifts that are hypercyclic and those that are
supercyclic in terms of their weight sequence. In [7], N. Feldman gave a characterization of the invertible
bilateral weighted shifts that are hypercyclic or supercyclic.

For the following theorem, see [7, Theorem 4.1].

Theorem 1.1. Suppose that T : 1X(Z) — 1*(Z) is a bilateral weighted shift with weight sequence (wy),ez and
either w, > m > 0 forall n < 0 or wy, < m for all n > 0. Then:
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1. Tis hypercyclic if and only if there exists a sequence of integers ny — oo such that limy_,« H}Z Lwj =0and
hmk—)ooH 1w/ =0.
2. Tis supercyclzc if and only if there exists a sequence of integers ny. — oo such that limk_m(H;’i 1 w]-)(H;'i 1 w%]) =
0.
Let M, (T) denote the arithmetic mean of the powers of T € B(H), that is

14T+T2 4.+ T
My(T) = ——F n* e LeN-

If the arithmetic means of the orbit of x are dense in H then the operator T is said to be Cesaro-hypercyclic.
In [13], Fernando Ledn-Saavedra proved that an operator is Cesiro-hypercyclic if and only if there exists a
vector x € H such that the orbit {# 1T"x},>1 is dense in H and characterized the bilateral weighted shifts
that are Cesaro-hypercyclic.

For the following proposition, see [13, Proposition 3.4].

Proposition 1.2. Let T : [*(Z) — [*(Z) be a bilateral weighted shift with weight sequence (wy)cz. Then T is
Cesaro-hypercyclic if and only if there exists an increasing sequence ny of positive integers such that for any integer q,

g Wivg

1 w, i
limy oo [T3, =00 and limg_,e H”k = =.

N

Hypercyclic and supercyclic (Hilbert space) operators satisfying a Browder-Weyl type theorem have recently
been considered by Cao [3]. In [4] B.P. Duggal gave the necessary and sufficient conditions for hypercyclic
and supercyclic operators to satisfy a-Weyl’s theorem.

In this paper we will give an example of a hypercyclic and supercyclic operator which is not Cesaro-
hypercyclic and vice versa. Furthermore, we study the relations between Cesaro-hypercyclic operators and
the operators for which Weyl type theorem holds.

2. Main results

Definition 2.1. An operator T € B(H) is Cesaro-hypercyclic if and only if there exists a vector x € H such that the
orbit {n~1T"x},»1 is dense in H

The following example gives an operator which is Cesdaro-hypercyclic but not hypercyclic.

Example 2.2. [13] Let T the bilateral backward shift with the weight sequence

1 ifn<o,
=12 ifnx1

Then T is not hypercyclic, but it is Cesaro-hypercyclic.
Now, we will give an example of a hypercyclic and supercyclic operator which is not Cesaro-hypercyclic.

Example 2.3. Let T the bilateral backward shift with the weight sequence

[ 2 ifn<0,
L I

Then T is not Cesaro-hypercyclic, but it is hypercyclic and supercyclic.
Proof. By applying Theorem 1.1 and taking n; = n, we have

lim Hw]— hm—:O;

n—oo n—oo 2N



A. Tajmouati, M. El Berrag / Filomat 33:17 (2019), 5639-5644 5642

and

Furthermore, we have

tim [ [ ) = fimpigo =0

Therefore by Theorem 1.1 the operator T is hypercyclic and supercyclic. However, for all increasing
sequence 1y = n of positive integers and taking g = 0, we have

n
. Wiy, . 1
lim 1 = lim =0,
n—oo 1 1 n n—oo p2M
i=

from Proposition 1.2, T is not Cesaro-hypercyclic. O
The following example gives us an operator which is Cesaro-hypercyclicbut not hypercyclic and supercyclic.

Example 2.4. Let T the bilateral backward shift with the weight sequence

o = : ifn<0,
"l n+1 ifn>0.

Then T is Cesaro-hypercyclic, but it is not hypercyclic and supercyclic.

Proof. By applying Proposition 1.2 and taking #n; = n and q = 0, we have

n
. Wi+gq . (1’1 + l)'
lim = lim = o0,
n—oo n n—oo n
i=1
and
n
. - 1
lim = lim =0.
n—oo n n—oo 2N

i=0
Therefore by Proposition 1.2 the operator T is Cesdro-hypercyclic. On the other hand, we have

n—oo

lim ij = lim((n + 1)) = oo;
j=1

and .
s 1
i P —)=1 | ny —
lim ﬂ w»(g o) = lim((n+ D)) = o
Therefore by Theorem 1.1 the operator T is not hypercyclic and supercyclic. [J

We denote by CH(H) the class of all cesaro-hypercyclic operators in B(H) and CH(H) the norm-closure of
the class CH(H). The following lemma [13, Theorem 5.1] give the essential facts for hypercyclic operators
and supercyclic operators that we will need to prove the main theorem.

Lemma 2.5. CH(H) is the class of all those operators T € B(H) satisfying the conditions:

1. 04(T) U ID is connected, where dD the boundary of the open unit disk;
2. a(T)\ow(T) = 0;
3. ind(T — Al) > 0 for every A € psp(T), where psp(T) = {A € C : T — Al is semi-Fredholm }.
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Lemma 2.6. Let T € CH(H). If T € B(H) is f-isoloid and the Weyl's theorem holds for T, then A & o1(T) implies
that A ¢ o(T) or A € isoo(T).

Proof. Suppose T € CH(H). Let Ay ¢ 01(T). Then there exists € > 0 such that T — Al is generalized upper
semi-Fredholm. For every /A, there exists € such that T— A'I € SFL(H) and N(T - A'I) € (), R[(T — A'T)"] if
0 <|A = Al <€.Since T € CH(H), it induces that ind(T — AI) > 0 by Lemma 2.5(3). Then T — A'I is Weyl if
0 < |A" = A| < €. Since the Weyl’s theorem holds for T, then T — A'Iis Browder and hence T — A'I is invertible
if 0 < |1 — A| < e. It implies A € isoo(T) U p(T), where p(T) = C\o(T). We claim that A ¢ isoo(T). If not, since
T is finite isoloid and theWeyl’s theorem holds for T, it follows that A € mgy = o(T)\0w(T). Then T — Al is
Browder. It is in contradiction to the fact that T € CH(H) by Lemma 2.5(2). Thus A ¢ o(T). It induces that
Ag € is00(T) U p(T). Using the same way, we prove that T — Ayl is invertible, which means that A ¢ o(T). O

Let H(T) be the class of complex-valued functions which are analytic in a neighborhood of ¢(T) and are
not constant on any neighborhood of any component of ¢(T). Our results are:

Theorem 2.7. If T € B(H) is f-isoloid and the Weyl's theorem holds for T (or T is f-a-isoloid and the a-Weyl's
theorem holds for T ), then T € CH(H) & o(T) = 01(T) and o(T) U dD is connected

Proof. For the forward implication, since T satisfies Weyl’s theorem and T is isoloid imply 0,(T) = 0,(T) =
a(T), meo(T) = 0, hence o(T) U dD is connected and it induces that ¢(T) = 01(T) by Lemma 2.6.

Conversely, 01(T) € 0,4(T) € 0,(T) € 0p(T) C o(T), (1) and (2) in Lemma 2.5 follow and (3) is evident. [

Corollary 2.8. Suppose T € CH(H) and the a-Weyl's theorem holds for T. Then a-Weyl's theorem holds for f(T) for
any f € H(T).

Proof. Since T € CH(H), it induces that for each pair A, u € C\ogg, (T), ind(T — AD)ind(T — ul) > 0. Theorem
2.2in [10] tells us that the a-Weyl’s theorem holds for f(T) for any f € H(T). O

Theorem 2.9. If T € CH(H), then T and T* satisfy a-Browder’s theorem.

Proof. Since 0,(T*) = 0 for cesaro-hypercyclic T, T* has SVEP, hence T satisfies a-Browder’s theorem.
Evidently, 0e,(T) € 04(T). Thus to prove that T satisfies a-Browder’s theorem it would suffice to prove that
0ap(T) € 0ea(T) [5, Lemma 2.18]. Let A € 04(T). Then T — Al is upper semi-Fredholm and ind(T — AI) < 0.
Since T has SVEP, dsc(T — Al) < oo [1, Theorem 3.17 | = ind(T — AI) > 0. Thus ind(T — AI) =0and T — Al is
Fredholm. But then, since dsc(T — AI) < o0, asc(T — Al) = dsc(T — Al) < oo [1, Theorem 3.4 ], which implies
that A ¢ o,(T). [

The following example gives us an operator which satisfies a-Browder’s theorem but not Cesiro-
hypercyclic.
Example 2.10. Let T be defined by

T(R, %, %, ..) forall (x,) € *(N).

Then T is quasi-nilpotent, so has SVEP and consequently satisfies a-Browder’s theorem. On the other hand, by
Proposition 1.2 the operator T is not Cesaro-hypercyclic.

Theorem 2.11. If T € CH(H), then T satisfies Weyl’s theorem. If also 1oo(T) C moo(T"), then T satisfies a-Weyl’s
theorem.
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Proof. Evidently, if T € CH(H), then poo(T) = poo(T*) = moo(T*) = 0. Since 0,(T*) = @ for cesaro-hypercyclic
T, T* has SVEP, hence T" satisfies satisfies Browder’s theorem, it follows that T* satisfies Weyl’s theorem.
Since poo(T) € mo(T) for every operator T, and since operators T, satisfy Browder’s theorem, we have that
o(T)\ow(T) = poo(T) € moo(T). Hence, if 11o0(T) € 7100(T*), then o(T)\ow(T) = poo(T) € 1oo(T) € moo(T7) =
poo(T*) = poo(T), i.e., T satisfies Weyl’s theorem. To complete the proof, we prove now that T satisfies
a-Weyl’s theorem.

Since g,,(T") = 0 for cesaro-hypercyclic T, T* has SVEP, hence o(T) = 0,(T) and 1ipo(T) = 75,(T). Let A € 0es(T).
then T — Al is upper semi-Fredholm and ind(T — AI) < 0. Arguing as in the proof of Theorem 2.9, it is seen
that T — Al is Fredholm and ind(T — AI) = 0, i.e., A ¢ 04(T). Since 04,(T) 2 0u(T) for every operator T,
we conclude that 0, (T) = 0.(T). But then, since T satisfies Weyl’s theorem, 0,(T)\0e(T) = o(T)\ow(T) =
noo(T) = ﬂgO(T). (|

Corollary 2.12. T € CH(H) satisfies a-Weyl'’s theorem if and only if moo(T) = 0.
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