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Abstract. A topological space X is an S-paracompact if there exists a bijective function f from X onto a
paracompact space Y such that for every separable subspace A of X the restriction map f |A from A onto
f (A) is a homeomorphism. Moreover, if Y is Hausdorff, then X is called S2-paracompact. We investigate
these two properties.

1. Introduction

In this paper, we introduce two new properties in topological spaces which are S-paracompactness and
S2-paracompactness and our purpose is to investigate these properties. It is useful to introduce the following
notations. The order pair will be denoted by 〈x, y〉. The sets of positive numbers, rational numbers,
irrational numbers and real numbers will be denoted by N,Q,P and R respectively. The closure and the
interior of the subset A of X will be denoted respectively by A and int(A). Throughout this paper, a T1
normal space is called T4 and a T1 completely regular space is called Tychonoff space (T3 1

2
). In the definitions

of compactness, countable compactness, paracompactness, and local compactness we do not assume T2.
Moreover, in the definitions of Lindelöfness we do not assume regularity. Also, the ordinal γ is the set of
all ordinal α such that α < γ. We denote the first infinite ordinal by ω, the first uncountable ordinal by ω1,
and the successor cardinal of ω1 by ω2.

The following definition of the notions of C-paracompactness and C2-paracompactness were introduced by
A. V. Arhangel’skiĭ (see [8]).

Definition 1.1. A topological space X is C-paracompact if there exists a bijective function f from X onto a paracompact
space Y such that for every compact subspace A of X the restriction map f |A from A onto f (A) is a homeomorphism.
Furthermore, if Y is Hausdorff, then X is called C2-paracompact.

2. S-paracompactness and S2-paracompactness

We introduce the notions of S-paracompactness and S2-paracompactness inspired by Definition 1.1 as the
following.

2010 Mathematics Subject Classification. Primary 54C10; Secondary 54D20
Keywords. separable; S-paracompact; S2-paracompact; paracompact; L-paracompact; L2-paracompact; S-normal; L-normal.
Received: 24 February 2019; Revised: 25 June 2019; Accepted: 09 July 2019
Communicated by Ljubiša D.R. Kočinac
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Definition 2.1. A topological space X is an S-paracompact if there exists a bijective function f from X onto a
paracompact space Y such that for every separable subspace A of X the restriction function f |A from A onto f (A) is a
homeomorphism. Moreover, if Y is Hausdorff, then X is called S2-paracompact.

From the definition it is clear that any S2-paracompact is S-paracompact. The next theorem will be used
to show that the converse is not necessarily true.

Theorem 2.2. If X is separable but not Hausdorff, then X cannot be an S2-paracompact.

Proof. Let X be any separable non-Hausdorff space. Suppose that X is S2-paracompact. Then there exist
a Hausdorff paracompact space Y and a bijective function f : X −→ Y such that f |A: A −→ f (A) is
a homeomorphism for all separable subspaces A ⊆ X. Since X is separable, then f : X −→ Y is a
homeomorphism. But Y is T2, then X is T2 which is a contradiction.

The following example is an application of Theorem 2.2.

Example 2.3. Consider the finite complement topology defined on the real numbers, (R,CF ) (see [9, Example 19]).
Since (R,CF ) is paracompact being compact, then the identity function id : (R,CF ) −→ (R,CF ) shows that it is
S-paracompact but not S2-paracompact being separable but not Hausdorff space.

From Example 2.3, we conclude that any paracompact (T2 paracompact) space is S-paracompact (S2-
paracompact). For the converse, we have the following counterexample.

Example 2.4. ω1 is an S2-paracompact space which is not paracompact. First, we show that any separable subspace
of ω1 is countable. Suppose that A ⊂ ω1 is uncountable which implies that A is unbounded in ω1. If D is any
countable subset of A, then there exists α < ω1 such that α = sup D. Thus, there exists η ∈ A such that α < η. The
set ((α, η] ∩ A) is a nonempty open subset of A with ((α, η] ∩ A) ∩D = ∅. Thus, A cannot be separable implying that
any separable subspace of ω1 is countable. Since ω1 is T2 locally compact, then there exists a one to one continuous
function, say f , onto a Hausdorff compact space Y (see [7]). Let A ⊂ ω1 be any separable subspace. Since the closure of
any countable set is compact in ω1, then we get that f |A : A −→ f (A) is a homeomorphism (see [3, 3.1.13]) implying
that f |A : A −→ f (A) is a homeomorphism.

Here is another example of a Tychonoff space S2-paracompact that is not paracompact being Hausdorff
not normal space.

Example 2.5. Recall the modified Dieudonné plank

X = ((ω2 + 1) × (ω + 1)) \ {〈ω2, ω〉}.

Define τ as the unique topology on X generated by the following neighborhood system: For each α < ω2 and
n < ω, let B(〈α,n〉) = {{〈α,n〉}}. Let B(〈α,ω〉) = {{α} × (n, ω] : n < ω} for every α < ω2. For each n < ω, let
B(〈ω2,n〉) = {(α,ω2] × {n} : α < ω2}.

As mentioned in [5, Example 2], if we define a new topology on X by making each element of the form 〈ω2,n〉
with n < ω isolated, the modified Dieudonné plank will be a Tychonoff S2-paracompact space which is not paracom-
pact space.

The same technique of the proof of Theorem 2.2 could be used to prove the following theorem.

Theorem 2.6. If X is separable but not paracompact, then X cannot be an S-paracompact.

Recall that a space (X,τ) is S-normal if there exist a normal space Y and a function f such that f : X −→ Y
is a bijection and f |B: B −→ f (B) is a homeomorphism for every separable subspaces B ⊆ X (see [5]). Since
any T2 paracompact space is normal, then any S2-paracompact space is S-normal. However, this relation is
not reversible as shown in the following example.
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Example 2.7. Consider the left ray topology defined on R, (R,L), such that L = {∅,R} ∪ {(−∞, a) : a ∈ R}. It is an
example of S-normal space by being a normal space which is not S2-paracompact space since it is separable and not T2
space. In fact, it is not even an S-paracompact because it is separable not a paracompact space.

The following theorem presents a relation between the S2-paracompactness and compactness.

Theorem 2.8. Every T2 countably compact separable S-paracompact space is compact.

Proof. Let X be any T2 countably compact separable S-paracompact space. Then X is paracompact be-
cause the witness function of S-paracompactness is a homeomorphism. Since any countably compact T2
paracompact space is compact (see [3, 5.1.20]), we get that X is compact.

Remark 2.9. It is clear that any separable S2-paracompact is T2 paracompact, hence T4. Thus, the Niemtyzki planeL
(see [9, Example 82]), the Sorgenfrey line square (R2,S) [9, Example 84], and the rational sequence topology (R,RS)
(see [9, Example 65]) are examples of Tychonoff separable spaces which are not paracompact because they are Hausdorff
non-normal spaces. Hence, they are not S-paracompact spaces. Also, the particular point topology defined on R, (R,
τ√2), is not S-paracompact space by being separable not paracompact space (see [9, Example 10]). Note that since
any submetrizable is C2-paracompact, (R2,S) is an example of a C2-paracompact space which is not S2-paracompact
(see [8]).

A function f : X → Y witnessing S-paracompactness (S2-paracompactness) of X need not be continuous,
see Example 2.18. But it will be continuous if X is Fréchet. Recall that a space X is called Fréchet if for every
subset A ⊆ X and for any x ∈ A, there exists a sequence (an)n∈N such that an ∈ A for every n ∈N and an −→ x
(see [3]).

Theorem 2.10. If X is an S-paracompact (S2-paracompact) space and Fréchet such that f : X −→ Y is a witness of
S-paracompactness (S2-paracompactness) of X, then f is continuous.

Proof. Assume that X is S-paracompact and Fréchet. Let f : X −→ Y witnesses S-paracompactness of
X. Let A ⊆ X and pick y ∈ f (A) implying that there exists a unique x ∈ X such that f (x) = y and
x ∈ A. Since X is Fréchet, then there exists a sequence (an) ⊆ A such that an −→ x. The subspace
B = {x, an : n ∈ N} of X is separable by being countable, thus f |B: B −→ f (B) is a homeomorphism. Now,
let W ⊆ Y be any open neighborhood of y. Then W ∩ f (B) is open in the subspace f (B) containing y. Since
f ({an : n ∈N}) ⊆ f (B) ∩ f (A) and W ∩ f (B) , ∅, W ∩ f (A) , ∅. Hence y ∈ f (A), thus f (A) ⊆ f (A). Therefore,
f is continuous.

Theorem 2.11. S-paracompactness (S2-paracompactness) is a topological property.

Proof. Let X be an S-paracompact space and let Z be any topological space such that X is homeomorphic
to Z. Let f be the function witnessing S-paracompactness of X onto a paracompact space Y and 1 : X −→ Z
be a homeomorphism. Then f ◦ 1−1 : Z −→ Y will be the witness of S-paracompactness of Z.

Taking a compactification of the first three Tychonoff spaces mentioned in Remark 2.9 will show that
S-paracompactness (S2-paracompactness) is not hereditary. Moreover, as shown in Example 2.12 below,
S-paracompactness (S2-paracompactness) is not a multiplicative property.

Example 2.12. The Sorgenfrey line (R,S) is an S2-paracompact by being a T2 paracompact space. However, as
mentioned in Remark 2.9, (R2,S) is not an S2-paracompact.

Here is a case when a product of two S2-paracompact spaces will be an S2-paracompact.

Theorem 2.13. The Cartesian product of two S2-paracompact spaces is S2-paracompact in case that at least one of
them is countably compact and Fréchet.
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Proof. Let X and Z be S2-paracompact such that X is countably compact and Fréchet. Let Y and f : X −→ Y
be witnesses of S2-paracompactness of X. Then f is continuous by Theorem 2.10 implying that Y is countably
compact. Hence, Y is compact. Let Y′ and f ′ : Z −→ Y′ be witnesses of S2-paracompactness of Z. Consider
the function 1 := f × f ′ : X × Z −→ Y × Y′. Observe that Y × Y′ is T2 paracompact (see [3, 5.1.36]). Now, let
D be any separable subspace of X × Z. Therefore, p1(D) ⊆ X and p2(D) ⊆ Z are both separable subspaces
of X and Z respectively being continuous images of a separable subspace D ⊆ X × Z. Then using the
fact that countable product of separable spaces is separable, p1(D) × p2(D) is separable in X × Z. Thus, as
D ⊆ p1(D) × p2(D), we get that 1 |D: D −→ 1(D) is a homeomorphism.

As an application of Theorem 2.13, consider the following topological space: ω1 × Iκ, where κ is an
uncountable ordinal (see [9, Example 106]). Observe that ω1 is an S2-paracompact, Fréchet, and countably
compact. Moreover, Iκ is S2-paracompact by being T2 compact. By Theorem 2.13, we get that ω1 × Iκ is
an S2-paracompact. Observe that ω1 × Iκ is not paracompact because it is T2 non-normal since Iκ is not of
countable tightness.

Theorem 2.14. S-paracompactness (S2-paracompactness) is an additive property.

Proof. Let {Xα : α ∈ Λ} be a family of S2-paracompact spaces. Hence, for each α ∈ Λ there exist a
paracompact space Yα and a bijection fα : Xα −→ Yα such that fα |Aα : Aα −→ fα(Aα) is a homeomorphism for
each separable subspace Aα of Xα. Since paracompactness is an additive property (see [3, 5.1.30.]), ⊕α∈ΛYα
is paracompact. Define f : ⊕α∈ΛXα −→ ⊕α∈ΛYα as follows: for each x ∈ ⊕α∈ΛXα, there exists a unique γ ∈ Λ
such that x ∈ Xγ then f (x) = fγ(x). Let A be any separable subspace of ⊕α∈ΛXα. Write A = ∪α∈Λ∗ (A ∩ Xα)
where Λ∗ = {α ∈ Λ : A ∩ Xα , ∅}. Since A is separable, then Λ∗ is countable and A ∩ Xα is separable in Xα

for all α ∈ Λ∗. Therefore, fα |A∩Xα : A∩Xα −→ fα(A∩Xα) is a homeomorphism for each α ∈ Λ∗ implying that
f |A: A −→ f (A) is a homeomorphism.

The following result gives a relation between S2-paracompactness and metrizability.

Theorem 2.15. Every second countable S2-paracompact space is metrizable.

Proof. Let (X,τ) be an S2-paracompact second countable space which yields that X is separable S2-paracompact.
Then X is T4 implying that X is regular. Since any second countable T3 space is metrizable [3, 4.2.9], we get
that X is metrizable.

Corollary 2.16. Every T2 second countable S-paracompact space is metrizable.

The converse of Theorem 2.15 is not true in general. For example, the discrete topology defined on R is
metrizable and S2-paracompact but not second countable.

Recall that a topological space X is called P-space if X is T1 and every Gδ-set is open (see [6]). In the
following theorem, we will show that the class of P-spaces is S2-paracompact.

Theorem 2.17. Every P-space is S2-paracompact.

Proof. Let (X,τ) be a P-space. If X is countable, then it is discrete [6] implying that X is S2-paracompact.
Assume now that X is uncountable. Let A ⊆ X be an arbitrary uncountable subset of X and let D ⊂ A be any
countable subset of A. Then D is closed set in A and A \D is a non-empty open set in A with (A \D)∩D = ∅.
Hence, D cannot be dense in A implying that A cannot be separable. Thus, we conclude that any separable
subspace of X must be countable and hence any separable subspace of X is discrete. Take the identity map
id : (X,τ) −→ (X,D). Then id |A: A −→ f(A) is a homeomorphism for all separable subspaces A. Therefore,
(X,τ) is S2-paracompact.

Note that (R,U), ω1, and the modified Dieudonné plank are examples of S2-paracompact spaces which are
not P-space.
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Example 2.18. An application of Theorem 2.17, consider (R,CC), where CC is the countable complement topology
defined on R (see [9, Example 20]). Since (R,CC) is P-space, then by Theorem 2.17, (R,CC) is S2-paracompact .
Note that the function witnessing the S2-paracompactness here is the identity taken from CC to the discrete topology
defined on R, write (R,D). However, id : (R,CC) −→ (R,D) is not continuous.

Recall that X is locally separable if each element has a separable open neighborhood (see [3, 4.4.F]).
Next theorem describes the relation between S2-paracompactness, locally separability and the Lindelöfness
property. Theorem 2.2 and Theorem 2.6 give the following statement.

Theorem 2.19. If X is Lindelöf, locally separable and S2-paracompact, then X is T2 paracompact, and hence is T4.

Note that S2-paracompactness is essential in Theorem 2.19. For example (R,CF ) is locally separable
and Lindelöf but neither T2 nor normal. Observe that (R,CF ) is not an S2-paracompact.

Let X be a topological space. Recall that the Gδ-extension Xδ of X is the topology on the same underlying
set X generated by the family of all Gδ-subsets of X (see [2]). If (X,τ) is T1 first countable space, then any
singleton is a Gδ-set. Therefore, the Gδ-extension of any T1 first countable space is S2-paracompact being
a discrete space. The converse is not true in general. As an example, consider the three Tychonoff spaces
mentioned in 2.9.

3. Invariance

In this section we will discuss the invariance of S-paracompactness (S2-paracompactness) under different
mappings. The following examples will prove that S-paracompactness (S2-paracompactness) is neither
invariant, inverse invariant nor open invariant.

Example 3.1. The identity function id : (R,U) −→ (R,L) is a continuous bijective function. As shown in
Example 2.7, (R,L) is not S-paracompact unlikely to (R,U) which is T2 paracompact. Hence, S-paracompactness
(S2-paracompactness) is not invariant.

On the other hand, the identity function id : (R2,S) −→ (R2,U) is a bijective continuous function. Since (R2,S)
is not S-paracompact, we get that S-paracompactness is not inverse invariant. In addition, p : L −→ (R,U) such
that p(〈x, y〉) = x is an example showing that S-paracompactness (S2-paracompactness) is not inverse open invariant.

S-paracompactness (S2-paracompactness) is not open invariant as shown in the following example.

Example 3.2. Consider (R,U), the usual topology defined on the set of real numbers. Then the Alexandroff Duplicate
of the usual topology is defined as follows:

A(R) = R ∪R′,

where R′ = R × {1} = {〈y, 1〉 = y′ : y ∈ R} such that the basic open neighborhood for every x ∈ R has the form
U ∪ (U′ \ {x′}) where x ∈ U ∈ U and U′ = {〈y, 1〉 : y ∈ U} and the basic open set for every x′ ∈ R′ is {x′}. The space
A(R) is S2-paracompact begin T2 paracompact (see [1, 4]). Now let i =

√
−1 < R. Consider the closed extension

(X,τ) of (R,U) where X = R ∪ {i} and τ ⊆ P(X) is defined as follows:

τ = {∅} ∪ {W ∪ {i} : W ∈ U}.

The space (X,τ) is not S2-paracompact since it is neither T2 nor paracompact but separable as {i} is a countable dense
subset of X. Define f : A(R) −→ X by:

f (x) =

{
x ; x ∈ R
i ; x ∈ R′

Then f is continuous, open, and surjective.

Since any continuous open surjective function is a quotient, we conclude the following:
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Corollary 3.3. S-paracompactness (S2-paracompactness) is not preserved under quotient maps.

We do not have any result yet regarding the closed invariant. We also do not have an answer to the following
problem.

Problem 3.4. If X is S-paracompact (S2-paracompact), is then its Alexandroff duplicate A(X) S-paracompact (S2-
paracompact)?
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