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The Study of Global Stability of a Diffusive Michaelis-Menten and
Tanner Predator-Prey Model
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Abstract. In this paper, we consider a parabolic predator-prey model of Michaelis-Menten and Tanner
functional response with random diffusion:

ut = d1∆u + au − bu2
−

δuv
αu + v

,

vt = d2∆v + rv − γ
v2

u

with d1, d2, a, b, r, α, γ, δ > 0 under the no-flux boundary condition in a smooth bounded domain Ω ⊂

Rn (n = 1, 2, 3). By applying a new method, we establish much improved global asymptotic stability of the
unique positive equilibrium solution than works in literature. We also show the result can be extended to
more general type of systems with heterogeneous environment.

1. Introduction

The main purpose of this article is to consider the following parabolic predator-prey model with
Michaelis-Menten and Tanner functional response

(I)



ut = d1∆u + au − bu2
−

δuv
αu + v

, x ∈ Ω, t ∈ (0,∞),

vt = d2∆v + rv − γ
v2

u
, x ∈ Ω, t ∈ (0,∞),

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(. 0), x ∈ Ω,

(1)

where d1, d2, a, b, r, α, γ, δ > 0, Ω is a bounded domain in Rn(n = 1, 2, 3) with smooth boundary ∂Ω, 0 < T ≤
+∞, and u(x, t) and v(x, t) are the density of prey and predator, respectively. Throughout this article, we
suppose that the two diffusion coefficients d1 and d2 are equal, but not necessarily constants. We shall apply
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d to stand for the common value from now on. It may rely on both time variables and spatial but strictly
positive in Ω × [0,∞). The no-flux boundary condition is proposed to guarantee that ecological system is
not disturbed by exterior factors which may influence population flow cross the boundary, and therefore
internal forces are the sole reason to generate interesting dynamical behavior of the system.

The functional response δuv
αu+v was introduced firstly by Michaelis and Menten [1]. They established the

following predator-prey model with Michaelis-Menten functional response
ẋ = rx − θx2

−
γxy

ax + by
,

ẏ = −dy +
δxy

ax + by
,

(2)

Wang and Chen [2] established a three-dimensional pulsed input models with delayed Michaelis-Menten
functional response. Hsu et al [3] studied the global analysis of a predator-prey system with Michaelis-
Menten functional response, i.e. ratio-dependent.

Besides the Michaelis-Menten functional responses mentioned above, there are exist many other well-
known functional responses, such as Monod-Haldane type, Holling type (I, II, III, IV) and Hassel-Verley
type functional responses and so on. Several researchers investigated and raised many open problems
for built predator-prey systems with different types of functional responses. Particularly, In 2005, Wang
and Peng [4] considered the positive steady states of a Holling-Tanner prey-predator system with random
diffusion

ut = d1∆u + au − u2
−

uv
m + u

, x ∈ Ω, t ∈ (0,∞),

vt = d2∆v + bv −
v2

γu
, x ∈ Ω, t ∈ (0,∞),

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(. 0), x ∈ Ω.

(3)

They obtained the existence and non-existence of positive non-constant steady states for the above system
(3). In addition, they also obtained a certain condition which can guarantee that (3) possesses no positive
non-constant steady solution. In the another paper [5], the authors studied the stability of diffusive predator-
prey model of Holling-Tanner type (3) by the construction of a standard linearization procedure and a
Lyapunov function. Chen and Shi [6] focused attention on the steady states of (3). They applied the defined
iteration and comparison principle sequences to prove the global asymptotic stability. Their scientific
research achievement improves the earlier one proposed by Wang and Peng [5] which used Lyapunov
method. We also note here that the (non-spatial) kinetic equation of system (3) was first introduced by May
[8] and Tanner [7], see also [9, 10] and references therein.

Recently, Qi and Zhu [11] studied the global stability of a reaction-diffusion system of predator-prey
model (3). Indeed, they established improved global asymptotic stability of the unique positive equilibrium
solution in [11]. Besides the papers mentioned above, one can see [12–18, 20, 21] for more detailed
information and biological significances of the studied system.

In the present paper by incorporating the ratio-dependent Michaelis-Menten functional response and
diffusion term into system (3), motivated by the previous works [6], we will study the global stability of
the positive equilibrium solution by applying a new comparison argument, which is more complicated and
different from the method applied in paper such as [6]. Therefore, we argue that it is interesting, beneficial
and significant to study the global asymptotic stability of (1) since it possesses biological implications and
extends the former researches.

Definition 1.1 (Global stability). Let (u∗, v∗) be a positive solution of model (1). We say that it is global asymp-
totically stable if any other positive solution (u(x, t), v(x, t)) of model (1) has the property

lim
t→∞

(u(x, t), v(x, t)) = (u∗, v∗).



D. Luo / Filomat 33:17 (2019), 5651–5659 5653

Our main theorem is as follows.

Theorem 1.2. Suppose d = d(x, t) is strictly positive, bounded and continuous in Ω× [0,+∞), a, b, r, α, γ, and δ are
positive constants, r < a, then the positive equilibrium solution (u∗, v∗) is globally asymptotically stable in the sense
that every solution u(x, t) of (1) satisfies

lim
t→∞

(u(x, t), v(x, t)) = (u∗, v∗)

uniformly in x ∈ Ω.

Remark 1.3. The approach we apply here is more powerful than that applied in [6] and more flexible than the Lyapunov
function and linear analysis approaches, and the results cover more general settings such as when the Laplace operator
is replaced by a uniform elliptic operator. It means we can cover cases with heterogeneous environment.

Let us denote by

Lu =

N∑
i, j=1

ai j(x)
∂2u
∂xi∂x j

a uniform elliptic operator in Ω with continuous coefficients ai j(x), i, j = 1, 2, · · · ,N. Therefore, we can easily
reveal a outcome similar to Theorem 1.2 for the following initial-boundary value problem:

(II)



ut = Lu + au − bu2
−

δuv
αu + v

, x ∈ Ω, t ∈ (0,∞),

vt = Lv + rv − γ
v2

u
, x ∈ Ω, t ∈ (0,∞),

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(. 0), x ∈ Ω.

Theorem 1.4. Suppose r < a and a, b, r, α, γ, δ are positive constants satisfying the assumption in Theorem 1.2 and
L is a uniform elliptic operator in Ω with continuous coefficients. Then, the unique positive equilibrium (u∗, v∗) of
(II) is globally asymptotically stable.

It is known via a direct and simple computation that (1) possesses a unique positive equilibrium (u∗, v∗),
where

u∗ =

a
(
α + r

γ

)
− δ r

γ +

√(
a
(
α + r

γ

)
− δ r

γ

)2

2b
(
α + r

γ

) ,

v∗ =
r
γ

u∗.

Remark 1.5. To guarantee that the ecosystem (1) has a unique positive equilibrium (u∗, v∗), the condition, a
(
α + r

γ

)
−

δ r
γ > 0, is imposed according to the expressions of u∗ and v∗.

The rest of the paper is organized as follow. In Sect. 2, we prove our main result. We shall argue how
to generalize our results to more general setting in Sect. 3, such as different functional responses and time
delay.
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2. Proof of the main result

We define w = v
u , then we obtain

wt =
vtu − vut

u2 =
vt

u
−

utv
u2 ,

∇w =
∇v · u − ∇u · v

u2 =
∇v
u
−
∇u · v

u2 ,

∆w =
∆vu3 + u2

∇u · ∇v − u2v∆u − u2
∇u · ∇v − (∇v · u − ∇u · v) 2u∇u

u4

=
∆v
u
−

v∆u
u2 −

2∇u · ∇v
u2 +

2v|∇u|2

u3 .

Therefore the equation satisfied by w(x, t) is

wt − d∆w =
(vt

u
−

utv
u2

)
− d

(
∆v
u
−

v∆u
u2 −

2∇u · ∇v
u2 +

2v|∇u|2

u3

)
=

vt − d∆v
u

−
v(ut − d∆u)

u2 + 2d
∇u
u

(
∇v
u
−

v∇u
u2

)
=

v(r − γ v
u )

u
−

v
(
au − bu2

−
δuv
αu+v

)
u2 + 2d

∇u
u
· ∇w

=w
(
r − a + bu + w

(
δu

αu + v
− γ

))
+ 2d
∇u
u
· ∇w.

(4)

Proposition 2.1. Suppose r < a and ε1 > 0 small. There exists a sufficiently large constant T > 0 such that the
solution u of (1) satisfies

u ≤ u2(ε1) ≡
aα − r

γu1b +

√(
aα − r

γu1b
)2

+ 4abα r
γu1

2bα
+ O(ε1),

for x ∈ Ω and t ≥ T, where

u1 =
a(α + w1(ε1)) − δw1(ε1) +

√[
a(α + w1(ε1)) − δw1(ε1)

]2

2b(α + w1(ε1))
,

w1 =
(r + δ)u1 + bu2

1 − (a + αγ)u1

2γu1

+

√[
(a + αγ)u1 − (r + δ)u1 − bu2

1

]2
+ 4γu1

[
(rα − aα + bαu1)u1

]
2γu1

.

and u1 ≡
a
b .

Proof. Since u > 0, v ≥ 0, it is easily to verify by a direct calculation that u satisfies

ut − d∆u ≤ u(a − bu), in Ω × (0,∞).

By the well established fact and a simple comparison that any positive solution of
ut − d∆u ≤ u(a − bu), x ∈ Ω, t ∈ (0,∞),
∂u
∂ν

= 0, x ∈ ∂Ω, t ∈ (0,∞),
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converges to the asymptotic stable equilibrium a
b uniformly as t → ∞, i.e. lim

t→∞
u = a

b , we can obtain that

∀ε1 > 0, ∃t1 > 0 such that

u(x, t) < u1(ε1) ≡
a
b

+
ε1

5
(5)

for x ∈ Ω and t ≥ t1. Therefore, for t ≥ t1,

wt − d∆w ≤ w
(
r − a + bu1(ε1) + w

(
δu1(ε1)

αu1(ε1) + u1(ε1)w
− γ

))
+ 2d
∇u
u
· ∇w.

It is obvious that the following ordinary differential equation (ODE) about W(t)

Wt = W
(
r − a + bu1(ε1) + W

(
δu1(ε1)

αu1(ε1) + u1(ε1)W
− γ

))
(6)

possesses three solutions:

W0 = 0,

W1,2 =
(r + δ)u1(ε1) + bu2

1(ε1) − (a + αγ)u1(ε1)
2γu1(ε1)

±

√[
(a + αγ)u1(ε1) − (r + δ)u1(ε1) − bu2

1(ε1)
]2

+ 4γu1(ε1)(r − a + bu1(ε1))βu1(ε1)

2γu1(ε1)
.

(7)

It is obvious that W1(t) is the unique asymptotically stable positive equilibrium point of (6), and W0(t) = 0
is unstable. Since the trajectories of (6) cannot cross the x-axis, then all positive solutions W(t) of (6) will
converge to the unique positive asymptotically stable equilibrium point W1(t). By a simple comparison
argument, we obtain that there possesses a positive constant t2 ≥ t1 satisfies

0 < w(x, t) =
v(x, t)
u(x, t)

≤ w1(ε1) ≡W1 +
ε1

5
(8)

for all x ∈ Ω and t ≥ t2. Therefore, v ≤ w1(ε1)u, and

ut − d∆u ≥ u(a − bu) −
δw1(ε1)u
α + w1(ε1)

=
u
[
(a − bu) (α + w1(ε1)) − δw1(ε1)

]
α + w1(ε1)

for all x ∈ Ω and t ≥ t2. Let

(a − bu) (α + w1(ε1)) − δw1(ε1) = 0,

then we obtain only one positive solution

uR =
aα + (a − δ)w1(ε1)

b(α + w1(ε1))
(9)

which is a stable equilibrium point of the corresponding ordinary differential equation

ut =
u
[
(a − bu) (α + w1(ε1)) − δw1(ε1)

]
α + w1(ε1)

. (10)

Hence, all positive solution of (10) will converge to uR, which means that there exists t3 > t2 such that

u ≥ u1(ε1) ≡ uR −
ε1

5
=

aα + (a − δ)w1(ε1)
b(α + w1(ε1))

−
ε1

5
, (11)
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for all x ∈ Ω and t ≥ t3. On the other hand, by applying the second equation of (1), we have

vt − d∆v ≥ rv − γ
v2

u1(ε1)

for all x ∈ Ω and t ≥ t3. Therefore, there exists a constant t4 > t3 such that

v ≥ v1(ε1) =
ru1(ε1)
γ

−
ε1

5
(12)

for all x ∈ Ω and t ≥ t4. Setting the estimate v ≥ v1(ε1) into the first equation of (1), we have

ut − d∆u ≤ au − bu2
−

δuv1(ε1)
αu + v1(ε1)

=
u
[
(a − bu)(αu + v1(ε1)) − δv1(ε1)

]
αu + v1(ε1)

The quadratic equation of one variable

(a − bu)(αu + v1(ε1)) − δv1(ε1) = 0

possesses only one positive solution

uR =
aα − v1(ε1)b +

√(
aα − v1(ε1)b

)2
+ 4

(
av1(ε1) − δv1(ε1)

)
bα

2bα
(13)

By comparison principle, we can draw a conclusion that there exists t5 > t4 such that if t ≥ t5,

u ≤ u2(ε1) ≡ uR +
ε1

5

=
aα − v1(ε1)b +

√(
aα − v1(ε1)b

)2
+ 4

(
av1(ε1) − δv1(ε1)

)
bα

2bα
+
ε1

5
.

(14)

The expression of u2(ε1) and that of u1(ε1) and w1(ε1) are valid by a simple computation using (5), (7), (8)
and (11)-(14). The proof is complete.

By repeating the above step, there exists a sufficiently large T such that when t ≥ T,

u ≤ un+1(ε1) ≡
aα − vn(ε1)b +

√(
aα − vn(ε1)b

)2
+ 4

(
avn(ε1) − δvn(ε1)

)
bα

2bα
+
ε1

5
,

u ≥ un(ε1) ≡
a(α + wn(ε1)) − δwn(ε1) +

√[
a(α + wn(ε1)) − δwn(ε1)

]2

2b(α + wn(ε1))
−
ε1

5

uniformly in Ω for any positive integer n, where

vn(ε1) =
run(ε1)
γ

−
ε1

5
,

wn =
(r + α)un + bu2

n − (a + αγ)un

2γun

+

√[
(a + αγ)un − (r + δ)un − bu2

n

]2
+ 4γun

[
(rα − aα + bαun)un

]
2γun

.
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When setting ε1 = 0, we obtain

un+1 =

aα − r
γunb +

√(
aα − r

γunb
)2

+ 4
(
a r
γun − δ

r
γun

)
bα

2bα
,

un =
a(α + wn) − δwn +

√[
a(α + wn) − δwn

]2

2b(α + wn)
,

vn =
r
γ

un

and u1 = a
b , u1 > u∗, u1 < u∗. It is known by a direct calculation with the first equality proposed above that(

aα −
r
γ

u1b
)2

+ 4
(
a

r
γ

u1 − δ
r
γ

u1

)
bα

=(aα)2 +
r2b2u2

1

γ2 + 2(aα)
rb
γ

u1 −
4δbαru1

γ

<

(
aα + b

r
γ

u1

)2

.

Therefore,

u2 =

aα − b r
γu1 +

√(
aα − b r

γu1

)2
+ 4

(
a r
γu1 − δ

r
γu1

)
bα

2bα

<
2aα
2bα

= u1.

Then, by induction, we can obtain that the sequence {un} is decreasing as n→∞. Similarly, since

wn =
r + δ
2γ

+
bun

2γ
−

a + αγ

2γ

+

√(
r + δ
2γ

+
bun

2γ
−

a + αγ

2γ

)2

+
1
γ

(rα − aα + bαun),

and

un =
1
2


(

a
b
−

δwn

b(α + wn)

)
+

√(
a
b

+
δwn

b(α + wn)

)2

−
4aδwn

b2(α + wn)

 ,
where r < a, we obtain that the sequence {wn} is decreasing and the sequence {un} is increasing. Hence, we
obtain

lim
n→∞

un = lim
n→∞

un = u∗

under the assumption of Theorem 1.2. Thus, we obtain

lim
n→∞

vn = lim
n→∞

vn = v∗.

Now, we prove lim
t→∞

(u(x, t), v(x, t)) = (u∗, v∗), uniformly in x ∈ Ω.
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Proof. [Proof of Theorem 1.2] For any ε > 0, there exists N1 ∈ Z+ such that when n > N1,∣∣∣un − u∗
∣∣∣ +

∣∣∣un − u∗
∣∣∣ < ε

4
. (15)

We can choose a sufficiently small positive number ε1 > 0 such that∣∣∣uN1 (ε1) − uN1

∣∣∣ +
∣∣∣uN1

(ε1) − uN1

∣∣∣ < ε
4
. (16)

For any ε > 0, there exists N2 ∈ Z+ such that when n > N2,∣∣∣vn − v∗
∣∣∣ +

∣∣∣vn − v∗
∣∣∣ < ε

4
. (17)

We can choose a sufficiently small positive number ε2 > 0 such that∣∣∣vN2 (ε2) − vN2

∣∣∣ +
∣∣∣vN2

(ε2) − vN2

∣∣∣ < ε
4
. (18)

Furthermore, there exists tM1 , tM2 � a such that when t ≥ tM1 and t ≥ tM2 , we have

uN1
(ε1) ≤ u(x, t) ≤ uN1 (ε1) in Ω

vN2
(ε2) ≤ u(x, t) ≤ vN2 (ε2) in Ω

respectively.
Let N = max{N1,N2}, ε = min{ε1, ε2} and tM = max{tM1 , tM2 }. Hence, by (15)- (18), when t ≥ tM, we

obtain

|u(x, t) − u∗| < ε in Ω

and

|v(x, t) − v∗| < ε in Ω

This proves lim
t→∞

u(x, t) = u∗ and lim
t→∞

v(x, t) = v∗ uniformly in x ∈ Ω. This completes the proof of Theorem
1.2.

3. Generalization and future works

It is effortless to verify that the proof of Theorem 1.4 follows exactly the same way of argument as in
Theorem 1.2. Hence, it is omitted.

The approach we propose in this paper is novel and can be used to many interesting reaction-diffusion
type models where the stability of a unique positive equilibrium solution is an essential problem to be
considered. For instance, the famous Gierer-Meinhardt model [19],

ut = ε2∆u − u +
up

vq , x ∈ Ω, t ∈ (0,∞),

τvt = ∆v − v +
um

vs , x ∈ Ω, t ∈ (0,∞),

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0)) = v0(x) ≥ 0, x ∈ Ω,

(19)

is an interesting system worth of looking into.
It will be interesting to see how can we corporate other interesting features such as time delay into our

model.
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