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Abstract. The paper studies the problem of construction of optimal interpolation formulas with derivative
in the Sobolev space L(m)

2 (0, 1). Here the interpolation formula consists of the linear combination of values of
the function at nodes and values of the first derivative of that function at the end points of the interval [0, 1].
For any function of the space L(m)

2 (0, 1) the error of the interpolation formulas is estimated by the norm of
the error functional in the conjugate space L(m)∗

2 (0, 1). For this, the norm of the error functional is calculated.
Further, in order to find the minimum of the norm of the error functional, the Lagrange method is applied
and the system of linear equations for coefficients of optimal interpolation formulas is obtained. It is shown
that the order of convergence of the obtained optimal interpolation formulas in the space L(m)

2 (0, 1) is O(hm).
In order to solve the obtained system it is suggested to use the Sobolev method which is based on the
discrete analog of the differential operator d2m/dx2m. Using this method in the cases m = 2 and m = 3 the
optimal interpolation formulas are constructed. It is proved that the order of convergence of the optimal
interpolation formula in the case m = 2 for functions of the space C4(0, 1) is O(h4) while for functions of the
space L(2)

2 (0, 1) is O(h2). Finally, some numerical results are presented.

1. Introduction and statement of the problem

It is well-known that most problems of science and technology are investigated based on mathematical
models, which are differential, integro-differential, integral or functional equations. Solutions of such
equations are sought in Banach or Hilbert spaces and they are mainly solved approximately using various
type of approximation and interpolation methods of computational mathematics. In order to obtain effective
approximate methods it is needed to study structures of the considered spaces. The internal properties of a
space can be studied, for instance, by reproducing kernel functions in the theory of reproducing kernels in
Hilbert spaces [7, 9] and by extremal functions in the theory of optimal formulas in Banach spaces [32, 36].
Presently, the reproducing kernel Hilbert space methods are widely used in numerical analysis, in particular,
in numerical solution of fractional differential and integro-differential equations, see, for instance, [1–4] and
references therein. The reproducing Hilbert spaces in probability and statistics are studied in [9]. In the
recent work [22], authors studied the reproducing kernel functions in the standard Sobolev space Ws

2 and
their application to tractability of integration. Using the extremal functions in various Hilbert spaces the
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optimal integration formulas were studied in the works [15, 17, 27, 29–31, 34, 35] and the interpolation
formulas and splines were obtained in [13, 14, 16, 28, 33].

The present work is also devoted to construction of the optimal interpolation formula for functions
from Sobolev space L(m)

2 (0, 1) using the extremal function, where L(m)
2 (0, 1) is the space of functions which

are square integrable with m-th generalized derivative and equipped with the norm

∥∥∥ϕ|L(m)
2 (0, 1)

∥∥∥ =


1∫

0

(
ϕ(m)(x)

)2
dx


1/2

and
1∫

0

(
ϕ(m)(x)

)2
dx < ∞. It is known that the interpolation problem is one of the typical problem of approx-

imation theory. Classical method of its solution is construction of interpolation polynomials. However,
interpolation polynomials have disadvantages as an approximation apparatus for functions with singu-
larity and for functions with small smoothness. It is proved that the sequence of Lagrange interpolation
polynomials constructed for specific continuous function does not converge to that function. Therefore
in practice instead of high degree interpolation polynomials spline functions are used. The first spline
functions were bonded from pieces of cubic polynomials. Further, this construction was modified, de-
gree of polynomial was increased, boundary values are changed, but the idea of construction remains
changeless. The next step in the spline theory is J.C.Holladay’s [18] result connecting I.J.Schoenberg’s
natural cubic spline with the solution of the problem on minimum of the function norm from the space
L(2)

2 . Further, C. de Boor [11] generalized J.C.Holladay’s result. These results have aroused great interest
and then appeared a large number of works where depending on the specific requirements the variational
functional was modified. The theory of splines, based on variational methods, were studied and developed
in works of J.Alberg, E.Nilson and J.Walsh [5], R.Arcangeli, M.C.Lopez de Silanes and J.J.Torres [6], M.Attea
[8], A.Yu.Bezhaev and V.A.Vasilenko [10, 39], C. de Boor [11, 12], M.I.Ignatev and A.B.Pevniy [19], P.-
J.Laurent [20], G.Mastroianni and G.V.Milovanović [21], L.L.Schumaker [25], S.L.Sobolev [33], S.B.Stechkin
and Y.N.Subbotin [37] and others. A fairly complete bibliography in the theory of spline functions can be
found, for example, in [25].

In the present work we study the problem of construction of an optimal interpolation formula based
on variational method. Assume we are given the table of the values ϕ(hβ), β = 0, 1, ...,N, h = 1/N, N is a
natural number, of a function ϕ and the values of the first derivative of that function at the end points of
the interval [0, 1], i.e., ϕ′(0) and ϕ′(1). We consider the following approximation of a function ϕ from the
space L(m)

2 (0, 1) with m ≥ 2 by another more simple function Pϕ as follows

ϕ(z) � Pϕ(z) =

N∑
β=0

Cβ(z)ϕ(hβ) + A(z)ϕ′(0) + B(z)ϕ′(1), (1)

where Cβ(z), β = 0, 1, ...,N, A(z) and B(z) are the coefficients of the approximation formula (1).
Further, in Section 3 we get that the optimal approximation formula of the form (1) is the optimal

interpolation formula (see Remark 3.1).
The difference ϕ − Pϕ is called the error of the approximation formula (1). The value of this error at a

certain point z ∈ [0, 1] is a linear functional on the space L(m)
2 (0, 1), i.e.,

(`, ϕ) =

∞∫
−∞

`(x, z)ϕ(x) dx = ϕ(z) − Pϕ(z) =

= ϕ(z) −
N∑
β=0

Cβ(z)ϕ(hβ) − A(z)ϕ′(0) − B(z)ϕ′(1), (2)
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where δ is Dirac’s delta-function and

`(x, z) = δ (x − z) −
N∑
β=0

Cβ(z)δ(x − hβ) + A(z)δ′(x) + B(z)δ′(x − 1) (3)

is the error functional of the approximation formula (1) and belongs to the space L(m)∗
2 (0, 1). The space L(m)∗

2 (0, 1)
is the conjugate space to the space L(m)

2 (0, 1). Further, for simplicity the error functional `(x, z) we denote as
`(x).

By the Cauchy-Schwarz inequality the absolute value of the error (2) is estimated as follows

|(`, ϕ)| ≤ ‖ϕ|L(m)
2 ‖ · ‖`|L

(m)∗
2 ‖,

where ∥∥∥`|L(m)∗
2

∥∥∥ = sup
ϕ,‖ϕ‖,0

|(`, ϕ)|

‖ϕ|L(m)
2 ‖

.

Therefore, in order to estimate the error of the approximation formula (1) on functions of the space L(m)
2 (0, 1)

it is required to find the norm ‖`‖ of the error functional ` in the conjugate space L(m)∗
2 (0, 1).

From here we get the following.

Problem 1.1. Find the norm ‖`‖ of the error functional ` of the approximation formula (1) in the space L(m)∗
2 (0, 1).

It is clear that the norm of the error functional ` depends on coefficients Cβ(z), β = 0, 1, ...,N, A(z) and
B(z). We consider the minimization problem of the quantity ‖`‖ by coefficients Cβ(z), β = 0, 1, ...,N, A(z) and
B(z).

The coefficients C̊β(z), β = 0, 1, ...,N, Å(z) and B̊(z) (if there exist) satisfying the equality∥∥∥ ˚̀|L(m)∗
2

∥∥∥ = inf
Cβ(z),A(z),B(z)

∥∥∥`|L(m)∗
2

∥∥∥ (4)

are called the optimal coefficients, the corresponding approximation formula

P̊ϕ(z) =

N∑
β=0

C̊β(z)ϕ(hβ) + Å(z)ϕ′(0) + B̊(z)ϕ′(1)

is called the optimal approximation formula and the difference ϕ − P̊ϕ is said to be the error of the optimal
approximation formula (1) in the space L(m)

2 (0, 1).
Thus, in order to construct optimal approximation formula of the form (1) in the space L(m)

2 (0, 1) we need
to solve the following problem.

Problem 1.2. Find the coefficients C̊β(z), β = 0, 1, ...,N, Å(z) and B̊(z) which satisfy equality (4).

It should be noted that first such type of problem was stated and studied by S.L. Sobolev in [33], where
the extremal function of the interpolation formula was found in the L(m)

2 space. The connection between
interpolation formulas with derivatives and classical Euler-Maclaurin quadrature formulas were studied
in [23, 24, 38].

The rest of the paper is organized as follows. In Section 2 the extremal function which corresponds to
the error functional ` is found and with its help representation of the norm of the error functional (3) is
calculated, i.e., Problem 1.1 is solved; in Section 3 in order to find the minimum of the quantity ‖`‖2 by
coefficients Cβ(z), β = 0, 1, ...,N, A(z) and B(z) the system of linear equations is obtained for the coefficients
of optimal approximation formula (1) in the space L(m)

2 (0, 1), moreover existence and uniqueness of the
solution of this system are discussed; in Section 4 some preliminaries are given; Section 5 is devoted to
calculation of coefficients of the optimal interpolation formula (1) for the cases m = 2 and m = 3; finally, in
Section 6 some numerical results which confirm the theoretical results of the paper are presented.



Kh. M. Shadimetov et al. / Filomat 33:17 (2019), 5661–5675 5664

2. The extremal function and the norm of the error functional

In this section we find explicit form of the norm of the error functional `, i.e., we solve Problem 1.1.
For finding explicit form of the norm of the error functional ` in the space L(m)

2 we use its extremal
function [32, 33]. The function ψ` from L(m)

2 (0, 1) space is called the extremal function for the error functional
` if the following equality is fulfilled (

`, ψ`
)

=
∥∥∥` ∣∣∣L(m)∗

2

∥∥∥ · ∥∥∥ψ` ∣∣∣L(m)
2

∥∥∥ .
The space L(m)

2 (0, 1) is a Hilbert space and the inner product in this space is defined by the following formula

〈ϕ,ψ〉 =

1∫
0

ϕ(m)(x)ψ(m)(x) dx. (5)

According to the Riesz theorem any linear continuous functional ` in a Hilbert space is represented in the
form of a inner product. Therefore, in our case, for any function ϕ from L(m)

2 (0, 1) space, taking (5) into
account, we have(

`, ϕ
)

= 〈ψ`, ϕ〉. (6)

Here ψ` is the function from L(m)
2 (0, 1), is defined uniquely by the functional ` and is the extremal function.

It is easy to see from (6) that the error functional `, defined on the space L(m)
2 (0, 1), satisfies the following

equalities

(`, xα) = 0, α = 0, 1, ...,m − 1. (7)

Hence, it is clear that for existence of the approximation formula (1) the condition N + 3 ≥ m has to be met.
The equalities (7) mean that the approximation formula (1) is exact for any polynomial of degree≤ m−1.

Then we conclude that for functions ϕ of the space L(m)
2 (0, 1) the order of convergence of the approximation

formula (1) is O(hm) .
The equation (6) was solved in [33] and for the extremal function ψ` was obtained the following

expression

ψ`(x) = (−1)m`(x) ∗ Gm(x) + Pm−1(x), (8)

where

Gm(x) =
x2m−1sgnx
2(2m − 1)!

, (9)

Pm−1(x) is a polynomial of degree m − 1 and ∗ is the operation of convolution which for the functions f and
1 is defined as follows

f (x) ∗ 1(x) =

∞∫
−∞

f (x − y)1(y) dy =

∞∫
−∞

f (y)1(x − y) dy.

Now we obtain the norm of the error functional ` which is uniquely defined by the extremal function
ψ`. Indeed, since L(m)

2 (0, 1) is the Hilbert space then by the Riesz theorem we have(
`, ψ`

)
= ‖`‖ · ‖ψ`‖ = ‖`‖2.
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Hence, using (3) and (8), taking (7) into account, we get

‖`‖2 = (`, ψ`) = (`(x), (−1)m`(x) ∗ Gm(x)) =

=

∞∫
−∞

`(x)

(−1)m

∞∫
−∞

`(y)Gm(x − y) dy

 dx.

Whence, keeping in mind that Gm(x), defined by (9), is the even function, we have

‖`‖2 = (`, ψ`) = (−1)m
[ N∑
β=0

N∑
γ=0

Cβ(z)Cγ(z)

∣∣∣hβ − hγ
∣∣∣2m−1

2(2m − 1)!
− 2

N∑
β=0

Cβ(z)
(z − hβ)2m−1sgn(z − hβ)

2(2m − 1)!

−2
N∑
β=0

Cβ(z)
(
A(z)

(hβ)2m−2

2(2m − 2)!
− B(z)

(1 − hβ)2m−2

2(2m − 2)!

)

+A(z)
z2m−2

(2m − 2)!
− B(z)

(1 − z)2m−2

(2m − 2)!
−

A(z) · B(z)
(2m − 3)!

]
. (10)

Thus Problem 1.1 is solved.
Further, in next sections, we solve Problem 1.2.

3. Existence and uniqueness of the optimal interpolation formula

The error functional (3) satisfies conditions (7). The norm of the error functional ` is a multi variable
quadratic function with respect to the coefficients Cβ(z), β = 0, 1, ...,N, A(z) and B(z). For finding the point
of the conditional minimum of the expression (10) under the conditions (7) we apply the Lagrange method.

Consider the function

Ψ(C0(z),C1(z), ...,CN(z),A(z),B(z), λ0(z), ..., λm−1(z))

= ‖`‖2 − 2(−1)m
m−1∑
α=0

λα(z) (`, xα) .

Equating to 0 the partial derivatives of the function Ψ by Cβ(z), β = 0, 1, ...,N, A(z),B(z) andλ0(z), λ1(z), ..., λm−1(z),
we get the following system of linear equations

N∑
γ=0

Cγ(z)

∣∣∣hβ − hγ
∣∣∣2m−1

2(2m − 1)!
− A(z)

(hβ)2m−2

2(2m − 2)!

+B(z)
(hβ − 1)2m−2

2(2m − 2)!
+

m−1∑
α=0

λα(z)(hβ)α =

∣∣∣z − hβ
∣∣∣2m−1

2(2m − 1)!
, β = 0, 1, ...,N, (11)

N∑
γ=0

Cγ(z)
(hγ)2m−2

2(2m − 2)!
+

B(z)
2(2m − 3)!

− λ1(z) =
z2m−2

2(2m − 2)!
, (12)

N∑
γ=0

Cγ(z)
(hγ − 1)2m−2

2(2m − 2)!
−

A(z)
2(2m − 3)!

+

m−1∑
α=1

αλα(z) =
(1 − z)2m−2

2(2m − 2)!
, (13)
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N∑
γ=0

Cγ(z) = 1, (14)

N∑
γ=0

Cγ(z)(hγ) + A(z) + B(z) = z, (15)

N∑
γ=0

Cγ(z)(hγ)α + αB(z) = zα, α = 2, 3, ...,m − 1. (16)

The system (11)-(16) is called the discrete system of Wiener-Hopf type for optimal coefficients [32, 36]. In
the system (11)-(16) the coefficients Cβ(z), β = 0, 1, ...,N, A(z), B(z) and λα(z), α = 0, 1, ...,m−1 are unknowns.
The system (11)-(16) has a unique solution and this solution gives the minimum to ‖`‖2 under the conditions
(14)-(16) when N + 3 ≥ m. Here we omitted the proof of the existence and uniqueness of the solution of the
system (11)-(16). The existence and uniqueness of the solution of this system can be proved similarly the
existence and uniqueness of the solution of the discrete Wiener-Hopf type system for coefficients of optimal
quadrature formulas in the space L(m)

2 (0, 1) (see [32, 36]).
Therefore, the square of the norm of the error functional `, being quadratic function of the coefficients

Cβ(z), A(z) and B(z) has a unique minimum in some concrete value Cβ(z) = C̊β(z), A(z) = Å(z) and B(z) = B̊(z).
As it was said above the approximation formula (1) with the coefficients C̊β(z), Å(z) and B̊(z) correspond-

ing to this minimum is called the optimal approximation formula and C̊β(z), Å(z) and B̊(z) are called the optimal
coefficients.

Remark 3.1. It is easy to check that for the optimal coefficients C̊β(z), Å(z), B̊(z) and λ̊α(z) the following are true

C̊β(hγ) =

{
1, γ = β,
0, γ , β, γ = 0, 1, ...,N, β = 0, 1, 2, ...,N,

Å(hβ) = 0, B̊(hβ) = 0, λ̊α(hβ) = 0, β = 0, 1, ...,N.

Then we get that the optimal approximation formula (1) satisfies the following interpolation conditions

ϕ(hβ) = P̊ϕ(hβ), β = 0, 1, ...,N,

which mean that the optimal approximation formula (1) is the interpolation formula. Therefore, further in this paper,
the optimal approximation formula (1) we call the optimal interpolation formula (1).

Remark 3.2. It should be noted that by integrating both sides of the system (11)-(16) by z from 0 to 1 we get the
system (4.1)-(4.6) of the work [30]. This means that by integrating both sides of the approximate equality (1) we get
optimal quadrature formulas of the form (1.4) of the work [30]. In particular, when m = 2 and m = 3, we obtain
the classical Euler-Maclaurin quadrature formulas. This confirms the result on connection between interpolation
formulas with derivatives and classical Euler-Maclaurin quadrature formulas of works [23, 24, 38] in the case m = 2.

One can solve the system (11)-(16) for coefficients of optimal interpolation formula (1) by direct or
iterative methods. But here we use the method suggested by Sobolev for construction of optimal quadrature
formulas in the space L(m)

2 which is based on the discrete analogue of the differential operator d2m/dx2m

(see, for instance, [35]). This method allows to get explicit formulas for optimal coefficients and reduces
the size of the system (11)-(16). Further we demonstrate this method in the case m = 2. Before that we give
some preliminaries.

4. Preliminaries

Below, mainly the concept of discrete argument functions is used. The theory of discrete argument
functions is given in [32, 36]. For completeness we give definitions about functions of discrete argument.

Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h = 1
N , N = 1, 2, ....
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Definition 4.1. The function ϕ(hβ) is a function of discrete argument, if it is given on some set of integer values of β.

Definition 4.2. The inner product of two discrete argument functions ϕ(hβ) and ψ(hβ) is given by

[
ϕ(hβ), ψ(hβ)

]
=

∞∑
β=−∞

ϕ(hβ) · ψ(hβ),

if the series on the right hand side converges absolutely.

Definition 4.3. The convolution of two functions ϕ(hβ) and ψ(hβ) is the inner product

ϕ(hβ) ∗ ψ(hβ) =
[
ϕ(hγ), ψ(hβ − hγ)

]
=

∞∑
γ=−∞

ϕ(hγ) · ψ(hβ − hγ).

Furthermore, in our computations we need the discrete analogue Dm(hβ) of the differential operator
d2m/dx2m which satisfies the equality

hDm(hβ) ∗ Gm(hβ) = δd(hβ),

where Gm(hβ) is the discrete argument function corresponding to the function Gm(x) defined by (9), δd(hβ)
is the discrete delta-function, i.e., δd(hβ) = 0 for β , 0 and δd(0) = 1.

In [26] the discrete analogue Dm(hβ) was constructed and the following was proved.

Theorem 4.4. The discrete analogue of the differential operator d2m/dx2m has the form

Dm(hβ) =
(2m − 1)!

h2m



m−1∑
k=1

(1 − qk)2m+1q|β|k

qkE2m−1(qk)
for |β| ≥ 2,

1 +

m−1∑
k=1

(1 − qk)2m+1

E2m−1(qk)
for |β| = 1,

−22m−1 +

m−1∑
k=1

(1 − qk)2m+1

qkE2m−1(qk)
for β = 0,

(17)

where E2m−1(x) is the Euler-Frobenius polynomial of degree 2m − 1, qk are roots of the Euler-Frobenius polynomial
E2m−2(x), |qk| < 1, h is small positive parameter.

Several properties of the discrete argument function Dm(hβ) were proved in [26, 32, 36]. Here we give
the following.

Theorem 4.5. The discrete argument function Dm(hβ) and monomials (hβ)k are related to each other as follows

∞∑
β=−∞

Dm(hβ)(hβ)k =


0 for 0 ≤ k ≤ 2m − 1,
(2m)! for k = 2m,
0 for 2m + 1 ≤ k ≤ 4m − 1,
h2m(4m)!B2m

(2m)!
for k = 4m,

(18)

where B2m is the Bernoulli number.
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5. Coefficients for the optimal interpolation formula (1) in the cases m = 2 and m = 3

In this section we give solution of Problem 1.2 for the cases m = 2 and m = 3 and we find explicit
formulas for optimal coefficients C̊β(z), β = 0, 1, ...,N, Å(z) and B̊(z) of the optimal interpolation formula (1)
using the discrete analogue of the operator d2m/dx2m in the cases m = 2 and m = 3.

The following hold

Theorem 5.1. The coefficients C̊β(z), β = 0, 1, ...,N, Å(z) and B̊(z) of the optimal interpolation formula (1) in the
space L(2)

2 (0, 1) have the following forms

C̊0(z) =
1

2h3

[
6
√

3
N∑
γ=0

qγ|z − hγ|3 + |z − h|3 + h3
− z3(4 + 3

√

3)

+3z2h(1 −
√

3) + qNN1(z)
]
, (19)

C̊β(z) =
1

2h3

[
6
√

3
N∑
γ=0

q|β−γ||z − hγ|3 + |z − h(β − 1)|3 − 8|z − hβ|3

+|z − h(β + 1)|3 + qβM1(z) + qN−βN1(z)
]
, β = 1, 2, ...,N − 1, (20)

C̊N(z) =
1

2h3

[
6
√

3
N∑
γ=0

qN−γ
|z − hγ|3 + |z − h(N − 1)|3 + h3

−(1 − z)3(4 + 3
√

3) + 3h(1 − z)2(1 −
√

3) + qNM1(z)
]
, (21)

Å(z) =
f1(z)

q(1 − q2N)
, (22)

B̊(z) =
f2(z)

q(1 − q2N)
, (23)

where

M1(z) = 3z(z + h)(z − h −
√

3z) + 6h2 f1(z)
q(1 − q2N)

,

N1(z) = 3(1 − z)(1 − z + h)(1 − z − h −
√

3 +
√

3z) − 6h2 f2(z)
q(1 − q2N)

,

f1(z) =
1

2h2

[
2
√

3
N∑
γ=0

(qγ+1 + q2N+1−γ)|z − hγ|3 + h2zq(1 − q2N)

+hz2(2q + 1)(1 + q2N) + z3(q + 1) + z3q2N(3q + 1)

+2h(1 − z)2(2q + 1)qN + (1 − z)3qN(4q + 2)
]
,

f2(z) = −
1

2h2

[
2
√

3
N∑
γ=0

(qN−γ+1 + qN+1+γ)|z − hγ|3

+h2(1 − z)q(1 − q2N) + h(1 − z)2(2q + 1)(1 + q2N) + (1 − z)3(q + 1)

+(1 − z)3q2N(3q + 1) + 2hz2(2q + 1)qN + z3qN(4q + 2)
]
,

q =
√

3 − 2.
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Theorem 5.2. The coefficients C̊β(z), β = 0, 1, ...,N of the optimal interpolation formula (1) in the space L(3)
2 (0, 1)

have the following forms

C̊0(z) =
1

2h5

[
− 32z5 + |z − h|5 + (z + h)5

− 10A(z)h4 + 240(λ1(z) + 2λ2(z))h2

+

2∑
k=1

Ak

qk

 N∑
γ=0

qγk |z − hγ|5 + Mk(z) + qN
k Nk(z)

 ],
C̊β(z) =

1
2h5

[
|z − h(β − 1)|5 − 32|z − hβ|5 + |z − h(β + 1)|5

+

2∑
k=1

Ak

qk

 N∑
γ=0

q|β−γ|k |z − hγ|5 + qβkMk(z) + qN−β
k Nk(z)

 ], β = 1, 2, ...,N − 1,

CN(z) =
1

2h5

[
− 32(1 − z)5 + |z − h(N − 1)|5 + (h + 1 − z)5 + 10B(z)h4

−240h2λ1(z) +

2∑
k=1

Ak

qk

 N∑
γ=0

qN−γ
k |z − hγ|5 + qN

k Mk(z) + Nk(z)

 ],
where

Ak =
(1 − qk)7

q5
k + 57q4

k + 302q3
k + 302q2

k + 57qk + 1
,

Mk(z) =

∞∑
γ=1

qγk
(
(z + hγ)5

− 10Å(z)(hγ)4 + 240
(
λ̊1(z) + 2λ̊2(z)

)
(hγ)2

)
,

Nk(z) =

∞∑
γ=1

qγk
(
(hγ + 1 − z)5 + 10B̊(z)(hγ)4

− 240λ̊1(z)(hγ)2
)
,

k = 1, 2,

the coefficients Å(z), B̊(z) and λ̊1(z), λ̊2(z) satisfy the system of linear equations

A(z)

− h4

24

∞∑
γ=1

D3(hγ + hβ)γ4

 + B(z)

 h4

24

∞∑
γ=1

D3(h(N + γ) − hβ)γ4


+λ1(z)

h2
∞∑
γ=1

D3(hγ + hβ)γ2
− h2

∞∑
γ=1

D3(h(N + γ) − hβ)γ2


+2λ2(z)

h2
∞∑
γ=1

D3(hγ + hβ)γ2

 = −
1

240

∞∑
γ=−∞

D3(hβ − hγ)|z − hγ|5,

β = −2, β = −1, β = N + 1, β = N + 2,

here D3(hβ) is defined by (17) and qk, (k = 1, 2) are roots of the Euler-Frobenius polynomial E4(x) = x4 + 26x3 +
66x2 + 26x + 1 for which |qk| < 1.

Here we give the proof of Theorem 5.1. Theorem 5.2 can be proved similarly as Theorem 5.1.
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Proof of Theorem 5.1. In the case m = 2 from the system (11)-(16) we have the following

N∑
γ=0

Cγ(z)

∣∣∣hβ − hγ
∣∣∣3

12
− A(z)

(hβ)2

4
+ B(z)

(hβ − 1)2

4
+ λ1(z)(hβ) + λ0(z) =

∣∣∣z − hβ
∣∣∣3

12
, β = 0, 1, ...,N, (24)

N∑
γ=0

Cγ(z)(hγ)2 + 2B(z) − 4λ1(z) = z2, (25)

N∑
γ=0

Cγ(z)(1 − hγ)2
− 2A(z) + 4λ1(z) = (1 − z)2, (26)

N∑
γ=0

Cγ(z) = 1, (27)

N∑
γ=0

Cγ(z)(hγ) + A(z) + B(z) = z. (28)

Using (25), (27) and (28) from (25) we get

λ1(z) = 0. (29)

Then, taking (29) into account, the system (24)-(28) can be written as follows

N∑
γ=0

Cγ(z)

∣∣∣hβ − hγ
∣∣∣3

12
− A(z)

(hβ)2

4
+ B(z)

(hβ − 1)2

4
+ λ0(z) =

∣∣∣z − hβ
∣∣∣3

12
, β = 0, 1, ...,N, (30)

N∑
γ=0

Cγ(z)(hγ)2 + 2B(z) = z2, (31)

N∑
γ=0

Cγ(z) = 1, (32)

N∑
γ=0

Cγ(z)(hγ) + A(z) + B(z) = z. (33)

Further, we solve the system (30)-(33).
We introduce the following denotations

v2(hβ) =

N∑
γ=0

Cγ(z)

∣∣∣hβ − hγ
∣∣∣3

12
, (34)

u2(hβ) = v2(hβ) − A(z)
(hβ)2

4
+ B(z)

(hβ − 1)2

4
+ λ0(z). (35)

Now we can express the coefficients Cβ(z), β = 0, 1, ...,N by the function u2(hβ). For this we use the discrete
analogue D2(hβ) of the differential operator d4

dx4 which satisfies the equation

hD2(hβ) ∗
|hβ|3

12
= δd(hβ),

where δd(hβ) is the discrete delta function. From Theorem 4.4 in the case m = 2 we get the following

D2(hβ) =
6
h4


6
√

3q|β| for |β| ≥ 2,
19 − 12

√
3 for |β| = 1,

6
√

3 − 8 for β = 0,
(36)
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where q =
√

3 − 2.
Using equality (18) and the discrete analogue (36) for coefficients Cβ(z), β = 0, 1, ...,N, of the optimal

interpolation formula (1) we get the following equality

Cβ(z) = hD2(hβ) ∗ u2(hβ). (37)

Hence we conclude that if we find the function u2(hβ), then the coefficients Cβ(z), β = 0, 1, ...,N, of the
formula (1) will be found from (37).

Now we find explicit representation of the function u2(hβ). Since Cβ(z) = 0 for hβ < [0, 1], then from (37)
we get

Cβ(z) = hD2(hβ) ∗ u2(hβ) = 0 for hβ < [0, 1]. (38)

Consider equality (34) for hβ < [0, 1].
Suppose β < 0. Then, taking (31)-(33) into account, we have

v2(hβ) = −
1

12

(
(hβ)3

− 3(hβ)2(z − A(z) − B(z)) + 3(hβ)(z2
− 2B(z)) −

N∑
γ=0

Cγ(z)(hγ)3
)
. (39)

Now, we assume β > N, then using (31)-(33) from (34) we get

v2(hβ) =
1

12

(
(hβ)3

− 3(hβ)2(z − A(z) − B(z)) + 3(hβ)(z2
− 2B(z)) −

N∑
γ=0

Cγ(z)(hγ)3
)
. (40)

Further, using (39) and (40), from (35) we obtain

u2(hβ) =


−

(hβ−z)3

12 −
A(z)

2 (hβ)2, β < 0,
|z−hβ|3

12 , 0 ≤ β ≤ N,
(hβ−z)3

12 +
B(z)

2 (hβ − 1)2, β > N.

(41)

Here A(z) and B(z) are unknowns. We find them from equation (38).
Now, taking (41) into account, from (38) we get

D2(hβ) ∗ u2(hβ) = 0, β < 0, β > N,

that is, for β < 0 and β > N we obtain the following

∞∑
γ=1

D2(hγ + hβ)
(

(hγ + z)3

12
−

A(z)
2

(hγ)2

)
+

N∑
γ=0

D2(hγ − hβ)
|z − hγ|3

12

+

∞∑
γ=1

D2(h(N + γ) − hβ)
(

(hγ + 1 − z)3

12
+

B(z)
2

(hγ)2

)
= 0.

Hence, for β < 0 and β > N we have

A(z)

−h2

2

∞∑
γ=1

D2(hγ + hβ)γ2

 + B(z)

h2

2

∞∑
γ=1

D2(h(N + γ) − hβ)γ2


= −

N∑
γ=0

D2(hγ − hβ)
|z − hγ|3

12
−

∞∑
γ=1

D2(hγ + hβ)
(

(hγ + z)3

12

)

−

∞∑
γ=1

D2(h(N + γ) − hβ)
(

(hγ + (1 − z))3

12

)
. (42)
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Thus, in order to find two unknowns A(z) and B(z) it is sufficient to get two linear equations from (42) when
β = −1 and β = N + 1. Then from (42) for β = −1 and β = N + 1, after some simplifications, we get the
following system of two linear equations

A(z)q + B(z)qN+1 =
1

2h2

2√3
N∑
γ=0

qγ+1
|z − hγ|3 + h2zq + 3hz2(2q + 1) + z3(q + 1)

−h2(1 − z)qN+1 + h(1 − z)2(2q + 1)qN + (1 − z)3(3q + 1)qN
]
, (43)

A(z)qN+1 + B(z)q = −
1

2h2

2√3
N∑
γ=0

qN+1−γ
|z − hγ|3 − 3h2zqN+1 + hz2(2q + 1)qN

+z3(3q + 1)qN + +h2(1 − z)q + 3h(1 − z)2(2q + 1) + (1 − z)3(q + 1)
]
. (44)

Solving system (43)-(44) of equations we get explicit forms (22) and (23) of A(z) and B(z), respectively.
Further, from (37), using (36) and (41), for β = 0, 1, 2, ...,N we get analytic formulas (19)-(21) for optimal

coefficients Cβ(z), β = 0, 1, ...,N. Theorem 5.1 is proved. �

Remark 5.3. We note that equations (32), (33), (31) and equation (30) with β = 0 mean that in the case m = 2
the optimal interpolation formula of the form (1) is exact for the monomials 1, z, z2 and z3, respectively. Hence we
conclude that for functions ϕ from the space C4(0, 1) the order of convergence of the optimal interpolation formula (1)
obtained in Theorem 5.1 is O(h4) instead of O(h2) as stated in Section 2.

6. Numerical results

In this section we give some numerical results using Theorem 5.1.
We consider the case m = 2 and N = 5. In this case the optimal interpolation formula (1) has the form

ϕ(z) � P̊ϕ(z) =

5∑
β=0

C̊β(z)ϕ(0.2β) + Å(z)ϕ′(0) + B̊(z)ϕ′(1). (45)

The optimal coefficients C̊β(z), β = 0, 5 and Å(z), B̊(z) are defined by (19)-(23). The graphs of these coefficients
are presented in Figure 1. From Figure 1 one can see that for γ = 0, 1, ..., 5

C̊β(0.2γ) =

{
1 if γ = β,
0 if γ , β, β = 0, 1, ..., 5,

Å(0.2γ) = 0,
B̊(0.2γ) = 0.

Integrating both sides of (45) by z from 0 to 1 we get the corresponding Euler-Maclaurin quadrature formula.
In numerical examples we consider the functions ϕ1(z) = sin z and ϕ2(z) = z4 since the optimal inter-

polation formula (1) in the case m = 2 is exact for monomials 1, z, z2 and z3. We denote corresponding
optimal interpolation formulas (1) by P̊ϕ1 (z) and P̊ϕ2 (z), respectively. Graphs of the corresponding absolute
errors for the cases N = 5 and N = 10 are displayed in Figures 2-3. From these results we can see that the
errors of the optimal interpolation formula (1) decreases as N increases.
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Figure 1: The graphs of the optimal coefficients C̊β(z), β = 0, 5 and Å(z), B̊(z) of the optimal interpolation formula (45).

Figure 2: Graphs of the absolute errors |ϕ1(z) − P̊ϕ1 (z)| for the cases N = 5 and N = 10.
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Figure 3: Graphs of the absolute errors |ϕ2(z) − P̊ϕ2 (z)| for the cases N = 5 and N = 10.
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