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Abstract. In this paper, we study on the new class of q−fractional integral operator. In the aid of iterated
Cauchy integral approach to fractional integral operator, we applied tp f (t) in these integrals and a new
class of q-fractional integral operator with parameter p, is introduced. Recently, the q-analogue of fractional
differential integral operator is studied and all of the operators defined in these studies are q−analogue of
Riemann fractional differential operator. We show that our new class of operator generalize all the operators
in use, and additionally, it can cover the q-analogue of Hadamard fractional differential operator, as well.
Some properties of this operator are investigated.
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1. Introduction

Fractional calculus has a long history and has recently gone through a period of rapid development.
q-differential operators were defined by Jackson (1908)[1], after that , q−calculus became a bridge between
mathematics and physics. It has lots of applications in different areas of mathematics such as combinatorics,
number theory, basic hypergeometric functions and other sciences: quantum theory, mechanics, theory of
relativity, capacitor theory, electrical circuits, particle physics, viscoelastic, electro analytical chemistry,
neurology, diffusion systems, control theory and statistics. The q−Riemann-Liouville fractional integral
operator was first introduced by Al-Salam [2], and then some studies on q-analogues of Riemann operator
were done [3], [4], [5], [6], [7], [8].

On the other hand, recent studies on fractional differential equations indicate that a variety of interesting
and important results concerning existence and uniqueness of solutions, stability properties of solutions,
and analytic and numerical methods of solutions for these equations have been obtained, and the surge for
investigating more and more results is underway. Several real world problems were modeled. Nowadays,
fractional-order differential equations can be traced in a variety of applications such as diffusion processes,
biomathematics, thermo-elasticity [9], etc. However, most of the work on this topic is based on Riemann-
Liouville, and Caputo-type fractional differential equations . q-analogue of these operators are defined [2]
and application of them is investigated [5], [6], [10]. Another type of fractional derivative that appears
side by side to Riemann-Liouville and Caputo derivatives in the literature is the fractional derivative due
to Hadamard operator, introduced in 1892 [11], which contains logarithmic function of arbitrary exponent
in the kernel of the integral appearing in its definition. In the paper [12], Leonhard Euler (1707–1783)
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introduced the series which can be considered as q−analogue of logarithm function. Since that time, a
lot of mathematician have tried to define q−logarithm function. Because of the difficulty of working with
this function, there is no q−analogue of Hadamard fractional differential integral operator. Hadamard-type
integrals arise in the formulation of many problems in mechanics such as fracture analysis. For more details
and applications of Hadamard fractional derivative and integral, we refer the reader to a new book that
gathered all of these applications [13] and to articles [14–16].

In the following paper, new q-integral operator is introduced, then, Some properties and relations will
be investigated. In fact, a parameter is used to generalize the Riemann operator to define new class of
q−fractional difference operator. In the first section, let us introduce some familiar concepts of q-calculus.
Most of these definitions and concepts are available in [18] and [19]. We use [n]q as a q−analogue of any
complex number. Naturally, we can define [n]q! as

[a]q =
1 − qa

1 − q
(
q , 1

)
; [0]q! = 1; [n]q! = [n]q [n − 1]q n ∈N, a ∈ C .

The q-shifted factorial and q-polynomial coefficient are defined by

(
a; q

)
0 = 1,

(
a; q

)
n =

n−1∏
j=0

(
1 − q ja

)
, n ∈N,

(
a; q

)
∞

=

∞∏
j=0

(
1 − q ja

)
,

∣∣∣q∣∣∣ < 1, a ∈ C.

(
n
k

)
q

=

(
q; q

)
n(

q; q
)

n−k
(
q; q

)
k
,

Let the function | f (x)xα| be bounded on the interval (0,A] for some 0 ≤ α < 1, then Jackson integral is
defined as [18]∫

f (x)dqx = (1 − q)x
∞∑

i=0

qi f (qix)

and it converges to a function F(x) on (0,A] , which is a q−antiderivative of f (x). Suppose 0 < a < b, the
definite q−integral is defined as

b∫
0

f (x)dqx = (1 − q)b
∞∑

i=0

qi f (qib),

b∫
a

f (x)dqx =

b∫
0

f (x)dqx −

a∫
0

f (x)dqx.

q−analogue of integral by part can be written as

b∫
a

1(x)Dqf (x)dqx =
(
1(b) f (b) − 1(a) f (a)

)
−

b∫
a

f (qx)Dqg(x)dqx.

In addition, we can interchange the order of double q-integral by

x∫
0

v∫
0

f (s)dqsdqv =

x∫
0

x∫
qs

f (s)dqvdqs.
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It is noticeable that, the limit of integration is changed here. q-shifted factorial may extend to the following
definition

(x − a)(α) = xα
∞∏

k=0

(
1 − x

a qk
)(

1 − x
a qk+α

) =
xα

(
x
a ; q

)
∞(

qα x
a ; q

)
∞

. (1)

We can write q-Gamma function by using this definition as [4]

Γq(t) =
(1 − q)(t−1)

(1 − q)t−1 .

Let us generalize the relation (1) to the following form

(x − y)(α)
qp+1 = xα

∞∏
k=0

(
x − y

(
qp+1

)k
)

(
x − y

(
qp+1)k+α

) =
xα

( y
x ; qp+1

)
∞(

qα(p+1) y
x ; qp+1

)
∞

. (2)

2. Iterated q-integral to approach new class of operators

There are several approaches to fractional differential operators. One of these discussions is obtained by
the iterated Cauchy integrals. The Riemann–Liouville fractional integral is a generalization of the following
iterated Cauchy integral:

x∫
a

dt1

t1∫
a

dt2...

tn−1∫
a

f (tn)dtn =
1

Γ(n)

x∫
a

(x − t)n−1 f (t)dt.

In the aid of this formula, for any positive real value 0 < α, we have

aIα( f (x)) =
1

Γ(α)

x∫
a

(x − t)α−1 f (t)dt.

By putting 1
ti

in the chain of integration, we can reach to Hadamard operator. The related iterated integral
is written as

x∫
a

1
t1

dt1

t1∫
a

1
t2

dt2...

tn−1∫
a

1
tn

f (tn)dtn =
1

Γ(n)

x∫
a

(
Lo1

(x
t

))n−1
f (t)

dt
t
.

In 1892, Hadamard began the publication of series of articles under the common title [11]. Third section
of this article gave an underlying idea for creating different form of fractional integral operators. In this
section, Hadamard investigated the relation between coefficients of series with unit radius of convergent
and singularity of function. This operator is defined by

a Jα( f (x)) =
1

Γ(α)

x∫
a

(
Lo1

(x
t

))α−1
f (t)

dt
t
.

The author in [21] assumed tp
i in the chain of integration and reached to the general formula for fractional

integral operator.There are four different models of q-analogues of Riemann-Liouville fractional integral
operators. There are some trying to investigated the Hadamard type but there is no q-analogue of this
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operator. First let us rewrite the definition of q−fractional integral operator in all introduced forms. In fact,
for α ≥ 0 and f : [a, b]→ R, the α order fractional q-integral of a function f (x) is defined by

Iαq,a( f (x)) =
1

Γq(α)

x∫
a

Kq(t, x) f (t)dqt

The kernel of this integral is defined as Kq(t, x) = (x−qt)(α−1) [3], Kq(t, x) = (x−qt)α−1
q [4], Kq(t, x) = xα−1( qt

x ; q)α−1
[6], and Kq(t, x) = (x − qt)α−1 [5]. In fact, some alternative definitions were introduced, [22] but difficulty of
defining q-analogue of logarithm still remains problem.

Lemma 2.1. On behalf of the Hadamard integral operator for k ∈N, the new q-integral operator is found as below

Jk
p,q

(
f (a)

)
=

1∏k−1
n=1

[
n
(
p + 1

)]
q

a∫
0

wp f (w)
k−1∏
n=0

(
ap+1
−

(
wq

)p+1 qn(p+1)
)

dqw

Proof. Clearly, the base case holds. For n = 2, we have:

J2
p,q

(
f (a)

)
=

a∫
0

x∫
0

xpyp f (y)dqydqx =

a∫
0

a∫
qy

xpyp f (y)dqxdqy =
1[

p + 1
]

q

a∫
0

yp f (y)
[
ap+1
− qp+1yp+1

]
dqy.

Assume that for n = k − 1 the relation is true, then we have

Jk
p,q

(
f (x)

)
= Jk−1

p,q

(
Jp,q f (x)

)
=

1[
p + 1

]
q
∏k−1

n=1
[
n
(
p + 1

)] x∫
0

y∫
0

ypwp f (w)
[
xp+1
− qp+1yp+1

] k−1∏
n=0

(
ap+1
−

(
wq

)p+1 qn(p+1)
)

dqwdqy

=
1∏k

n=1
[
n
(
p + 1

)] x∫
0

wp f (w)×


[
k(p + 1)

][
p + 1

] x∫
qy

yp
[
xp+1
− qp+1yp+1

] k−1∏
n=0

(
ap+1
−

(
wq

)p+1 qn(p+1)
)

dqy

 dqw.

Inner part of integral can be computed as special case of Lemma 3.3 which is mention later. It is completed
the proof by induction.

This mentioned relation motivates us to define q-analogue of integral operator as follows;

Definition 2.2. Let α > 0 and x > 0, if Jackson integral of f (x)exists, then we define q-fractional integral as

Jαp,q
(

f (a)
)

= =

(
1 − q

)α−1(
1 − qp+1)(α−1)

qp+1

a∫
0

wp f (w)(ap+1
−

(
wq

)p+1)(α−1)
qp+1 dqw

=

([
p + 1

]
q

)1−α

Γqp+1 (α)

a∫
0

wp f (w)(ap+1
−

(
wq

)p+1)(α−1)
qp+1 dqw.
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Remark 2.3. Alternatively, we may define

[
p + 1

](α)
=

∞∏
k=1

[
p + 1

]
qk[

p + 1
]

qk+α

=

(
1 − qp+1

) (
1 − q2p+2

)
...(

1 − q(α+1)(p+1)) (1 − q(α+2)(p+1)) ... (1 − qα+1)(1 − qα+2)...
(1 − q)(1 − q2)...

=

(
1 − qp+1

)(α)

qp+1(
1 − q

)(α)
=

(
1 − qp+1

)(α)

qp+1(
1 − q

)α Γq(α + 1)
=

Γqp+1 (α + 1)

Γq(α + 1)

([
p + 1

]
q

)α
, (3)

which is another version of q−analogue of exponent. Then last definition can be written as

Jαp,q
(

f (a)
)

= =
1[

p + 1
](α−1)

Γq(α)

a∫
0

wp f (w)(ap+1
−

(
wq

)p+1)(α−1)
qp+1 dqw.

For any natural number k ∈N we have:

[
k
(
p + 1

)]
q =

1 − qk(p+1)

1 − q
=

1 − qk(p+1)

1 − qk

1 − qk

1 − q
=

[
p + 1

]
qk [k]q .

Moreover, this definition is the unification of q-analogue of Reimann and Hadamard integral operator. To show this
fact, let q→ 1− then we have

lim
q→1−

Jαp,q
(

f (a)
)

=

(
p + 1

)1−α

Γ(α)

a∫
0

wp f (w)
(
ap+1
− wp+1

)α−1
dw.

This is exactly the operator introduced in [21]. On the other hand, if we let p→ −1+ and use L’Hopital, we get

lim
p→−1+

lim
q→1−

Jαp,q
(

f (a)
)

=
1

Γ(α)

a∫
0

lim
p→−1+

(
ap+1
− wp+1

p + 1

)α−1

wp f (w)dw =
1

Γ(α)

a∫
0

(
Lo1

( a
w

))α−1
f (w)

dw
w
.

When p = 0, we get the well-known q−fractional Reimann integral [3].

3. Some properties of the new q-fractional integral operator

In this section, we study some familiar properties of fractional integral operator as semi-group properties
of it. This property is essentially useful to solve the related q−difference equation. In addition, we will
define inverse operator as q-fractional derivative and at the end, properties of these operators will be
studied. In this procedure, we prove some useful identities and relations as well. q−fractional Reimann
integral operators were extensively investigated in several resources [3]. In the aid of Hine’s transform for
q-hypergeometric functions, useful identities were introduced and a lot of identities were studied [3] [6].
Let us start by the following lemma that is proved in [3]. This relation acts an important role to show the
semi-group property of our operator.

Lemma 3.1. For α, β, µ ∈ R+, the following identity is valid

∞∑
t=0

(1 − µq1−t)(α−1)(1 − q1+t)(β−1)

(1 − q)(α−1)(1 − q)(β−1)

(
qt
)α

=
(1 − µq)(α+β−1)

(1 − q)(α+β−1)
.
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Remark 3.2. To find an appropriate condition for our aim, we have to modify the Lemma 3.1 by using relation (3)
and substituting q by qp+1. Then, we will get;

∞∑
t=0

(1 − µ
(
qp+1

)1−t
)(α−1)
qp+1 (1 −

(
qp+1

)1+t
)(
β−1)

qp+1

(
q1+p

)tα
=

(1 − qp+1)(α−1)
qp+1 (1 − qp+1)(

β−1)
qp+1

(1 − qp+1)(
α+β−1)

qp+1

(1 − µqp+1)(
α+β−1)

qp+1 .

In this step, let us calculate the following q-integral by using the above remark.

Lemma 3.3. The following Jackson integral for real positive α and λ > −1 holds.

x∫
a

tp(xp+1
−

(
qt
)p+1)(α−1)

qp+1 (tp+1
− ap+1)(λ)

qp+1 dqt =
1[

p + 1
]

q

(
Γqp+1 (α)Γqp+1 (λ − 1)

Γqp+1 (α + λ − 1)

) [
(xp+1

− ap+1)(α+λ)
qp+1

]
.

Proof. In the aid of definition of Jackson integral, left hand side of this inequality can be written as

x∫
a

tp(xp+1
−

(
qt
)p+1)(α−1)

qp+1 (tp+1
− ap+1)(λ)

qp+1 dqt

=

x∫
0

tp(xp+1
−

(
qt
)p+1)(α−1)

qp+1 (tp+1
− ap+1)(λ)

qp+1 dqt −

a∫
0

tp(xp+1
−

(
qt
)p+1)(α−1)

qp+1 (tp+1
− ap+1)(λ)

qp+1 dqt.

We know that for some i ∈N the factor (
(
aqi

)p+1
− ap+1)(λ)

qp+1 = 0 so we can expand the integral as

a∫
0

tp(xp+1
−

(
qt
)p+1)(α−1)

qp+1 (tp+1
− ap+1)(λ)

qp+1 dqt =

a(1 − q)
∞∑

i=0

qi
(
aqi

)p
(xp+1

−

(
aqi+1

)p+1
)(α−1)
qp+1 (

(
aqi

)p+1
− ap+1)(λ)

qp+1 = 0.

Now using the Lemma 3.1 we have

x∫
0

tp(xp+1
−

(
qt
)p+1)(α−1)

qp+1 (tp+1
− ap+1)(λ)

qp+1 dqt

=
(
xp+1

)α+λ
(1 − q)

∞∑
i=0

(
qi
)(p+1)(λ+1)

(1 −
(
qi+1

)p+1
)(α−1)
qp+1

1 −
(

a
xq

)p+1 (
q1−i

)p+1
(λ)

qp+1

=
(
xp+1

)α+λ
(1 − q)

(1 − qp+1)(α−1)
qp+1 (1 − qp+1)(λ)

qp+1

(1 − qp+1)(α+λ)
qp+1

1 −
(

a
xq

)p+1

qp+1

(λ+α)

qp+1

= (1 − q)

 (1 − qp+1)(α−1)
qp+1 (1 − qp+1)(λ)

qp+1

(1 − qp+1)(α+λ)
qp+1

 (xp+1
− ap+1

)(λ+α)

qp+1
.
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Corollary 3.4. We interpret logarithm function by limit of expression in Remark 2.3. Hadamard integral operator
has the following property [23];

Jαa+

((
log

( t
a

))λ)
(x) =

Γ(λ + 1)
Γ(λ + α + 1)

(
log

( t
a

))λ+α

.

On the other hand, we have

lim
p→−1+

lim
q→1−

 (tp+1
− ap+1)(λ)

qp+1[
p + 1

](λ)

 =
(
log

( t
a

))λ
.

Now, by considering the Lemma 3.3, we get

Jαa+,p,q

 (tp+1
− ap+1)(λ)

qp+1[
p + 1

](λ)

 =
(1 − q)(α−1)

qp+1 Γq(λ + 1)

(1 − q)α−1Γq(λ + α + 1)
[
p + 1

](α+λ)

(
xp+1
− ap+1

)(λ+α)

qp+1
.

Proposition 3.5. The given q-fractional integral operator has semi-group property. That means

Jαp,q
(
Jβp,q f (x)

)
= Jα+β

p,q f (x)

Proof. Let us start by left hand side of this equality

Jαp,q
(
Jβp,q f (x)

)
=

(
1 − q

)α−1(
1 − qp+1)(α−1)

qp+1

x∫
0

wp(xp+1
−

(
wq

)p+1)(α−1)
qp+1

(
Jβp,q f (w)

)
dqw

=

(
1 − q

)α+β−2(
1 − qp+1)(α−1)

qp+1

(
1 − qp+1)(β−1)

qp+1

x∫
0

sp f (s)

×


x∫

qs

wp(xp+1
−

(
wq

)p+1)(α−1)
qp+1 (wp+1

−
(
sq

)p+1)(
β−1)

qp+1 dqw

 dqs.

Now apply the Lemma 3.3 to have

Jαp,q
(
Jβp,q f (x)

)
=

(
1 − q

)α+β−2(
1 − qp+1)(α−1)

qp+1

(
1 − qp+1)(β−1)

qp+1

x∫
0

sp f (s)

×

(1 − q)


(1 − qp+1)(α−1)

qp+1 (1 − qp+1)(
β−1)

qp+1

(1 − qp+1)(
α+β−1)

qp+1


[
(xp+1

−
(
sq

)p+1)(
α+β−1)

qp+1

] dqs

=

(
1 − q

)α+β−1

(1 − qp+1)(
α+β−1)

qp+1

x∫
0

sp f (s)(xp+1
−

(
sq

)p+1)(
α+β−1)

qp+1 dqs =Jα+β
p,q f (x).

Definition 3.6. Letα ≥ 0 and n = bαc+1 such that n ≥ α, and let p > 0. The corresponding generalized q−fractional
derivatives is defined by

(D0
p,q f )(x) = f (x)

(Dα
p,q f )(x) = (x−pDq)n

(
Jn−α
p,q

)
f (x) =

([
p + 1

]
q

)α−n+1

Γqp+1 (n − α)
(x−pDq)n

x∫
0

wp f (w)(xp+1
−

(
wq

)p+1)(n−α−1)
qp+1 dqw
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if the integral does exist.

Now, the relation between the defined q-derivative and q-integral operator is as follows;

(Dα
p,q Jαp,q f )(x) = (x−pDq)n

(
Jn−α
p,q

)
(Jαp,q f )(x) = (x−pDq)n(Jn

p,q f )(x).

It is easy to see that (x−pDq)n(Jn
p,q f )(x) = f (x). The case n = 1 can be derived by using fundamental theorem

of q-calculus, i.e

(x−pDq)(Jp,q f )(x) = (x−pDq)


x∫

0

wp f (w)dqw

 = x−p (
xp f (x)

)
.

General case for arbitrary natural number n can be proved by induction easily. For instance, let us consider
the case for 0 < α < 1 in next proposition.

Proposition 3.7. Assume that 0 < α < 1, p > 0 and integral does exist, then the following identity holds;

(Dα
p,q Jαp,q f )(x) = f (x).

Proof. Direct calculation of the identity in the aid of Lemma 3.3 shows that

(Dα
p,q Jαp,q f )(x) =

([
p + 1

]
q

)
Γqp+1 (α)Γqp+1 (1 − α)

(x−pDq)

x∫
0

w∫
0

wpsp f (s)(wp+1
−

(
sq

)p+1)(α−1)
qp+1

× (xp+1
−

(
wq

)p+1)(−α)
qp+1 dqsdqw

=

([
p + 1

]
q

)
Γqp+1 (α)Γqp+1 (1 − α)

(x−pDq)

x∫
0

sp f (s)

Γqp+1 (α)Γqp+1 (1 − α)[
p + 1

]
q

 dqs = f (x)

4. Conclusion

In this paper, we defined the class of generalized q-fractional difference integral operator and the inverse
operator also is defined. A few properties of these operators were investigated, but still there are a lot of
identities and formulae related to this operator which can be studied as a future work. q-calculus is the
world of mathematics without limit and the introduced operator can be necessary and important as a part
of these objects.
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