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Abstract. In this paper, the Kantorovich operators K,, n € IN are shown to be uniformly bounded in
variable exponent Lebesgue spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the
difference K, (f) — f for functions f of regularity of order 1 and 2 measured in variable exponent Lebesgue
spaces, which is of interest on its own and can be applied to other problems related to the Kantorovich
operators.

1. Introduction

The variable exponent Lebesgue space L") is a special case of Orlicz-Musielak spaces treated by
Musielak [8]. Many results for variable exponent spaces were obtained, we can refer [8],[13] and the
references therein. Since the spaces L") are not invariant to translations, they do not have some undesired
properties. For instance, the translation operator is in general not continuous on L*". Especially, for every
[P0 with p non-constant there exist f € [’) and a translation 7, such that 7, f ¢ L'" (see e.g. [7]). The
convolution is in general not continuous, particularly, Young’s inequality for convolutions does not hold
in the spaces L") (see e.g. [8]). The Hardy-Littlewood maximal operator is in general not bounded on the
LP0). For these reasons the exponent p(.) is a strange manifestation of the technique of proof which does not
correspond to anything in the constant exponent case.

We denote by 3 [0, 1] the class of all measurable functions p : [0, 1] — [1, c0) satisfying the condition

1<p™ = inf p(x) <p(x) <p* = supp(x) < +oo.
0<x<1 0<x<1

For any p € 30, 1], we define the variable exponent Lebesgue space by

1
L' ([0,1]) = {f | f:10,1] — R is measurable, f |f (x)|p(x) dx < oo},
0
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then L% ([0, 1]) endowed with the norm

1 (x)
||pr(v):inf{)\>0:jO‘ %p dxsl}.

The modular of LV ([0, 1]) which is the mapping py() : L'" ([0,1]) > R is defined by

1
e (f) = f; |f(x)|p(x) dx < oo.

We have the following relations:

Proposition 1.1. (see [8], [13]). If f € LV ([0,1]), f # O, then

(@) ”pr(.) <lE=EL>1Depy(f)<l(=L>1);

i) min {170, A1 b < v () < max {1 LA,

(iii) ppoy (N < C & ||fll,, <C

(iv) Pp(~>(m) -t

Definition 1.2. Let p : [0,1] — R. We say that p(-) is log-Holder continuous if there is a C > 0 such that

) = p)] < = , (1)

log|x—y

for all x,y € [0,1] with (x - y| <3

Fortunately, under some conditions one has proved the continuity of the Hardy-Littlewood maximal
function (see [5], [7]). In this articles the authors consider the Hardy-Littlewood maximal operator,

1
M@ =swp [ ]y

where the supremum is taken over all balls B which contain x and for which [B N Q] > 0. It has been known
that the condition (1) plays a crucial role for the action of integral operators on LF*) (Q). In particular, [5], [7]
showed that if p is log-Hélder continuous M : LFY) (Q) — [PV (Q) is bounded (continous). In other words,
there is a constant C = C(p~, p*, QQ)) > 0 such that

M, < ™ p* DA, @)
for f e PV (Q), 1 <p~ <pt < 0.
Bernstein polynomials are used for a constructive proof of the Weierstrass theorem, which dates back

to 1911 (see [1], [14]).
Let f be a continuous function on [0, 1]. Denote by g, x (x) the Bernoulli polynomial:

Ink (x) = (:)xk (1 - x)n—k .

Bernstein proposed to use polynomials of the form

Bu(f)) = Y flk/mgux (x), f € C([0,1]), x€[0,1], n € N,
k=0
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He showed that these polynomials converge uniformly over [0, 1] to the original function f € C([0, 1]):
lim B,(f) = f

uniformly on [0, 1]. Some other authors have dealt with the degree of LP-approximation of the Bernstein
operators (see [9] and in case p = 1 see [2], [11]).
The Kantorovich polynomials introduced by Kantorovich [12]

K(f)) 1= (2 + 1) [Z gn,k<x>] fy)dy
k=0

Ik,r1+1

foreveryn > 1and 0 < k <, f € L'([0,1]),0 < x < 1. Each K, is a polynomial of degree not greater than
n and every K, is a positive linear operator from L” ([0, 1]) into L? ([0, 1]) (and, in particular, from C ([0, 1])
into C ([0, 1])). For additional information on these operators, see to Chap.10 in [6] and [14].

In [4], Theorem 2.1.2 in [14], [16] and [18] proved that for f € LP([0,1]),p = 1

lim [[K, (f) = f|, = 0.

n—o0

In case p = 1 the degree of this approximation process for a very special subclass of Lebesgue integrable
functions was given by [10].
In [15] the author proved that for f € L7 ([0, 1]), p > 1, then

K. (F) = |, = 0™, me N.

It should be noted that, in [3] Kantorovich operators K, n € IN are shown to be uniformly bounded in
Morrey spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the difference K, (f) — f
for functions f of regularity of order 1 measured in Morrey spaces by authors.

In [17], the author obtained the convergence of a sequence of operators of Bernstein — Kantorovich
{Ky (f)};~, to the function f in Lebesgue spaces with variable exponent LP1)([0,1]). In this article, p(x)
variable exponent satisfied log-Holder continous and

_ ql,OSXSé,
“”‘{qb1—53st

sequence is uniformly bounded in these spaces are obtained and, as a corollary, it is shown that if n — oo
then K, (f) converges to function f in the metric of space LP")([0, 1]) defined by the norm.

In the paper [19], the author consider the approximation on an open set Q by positive linear operators
on a variable space L/ (Q) associated with a general exponent function p : Q — [1,00). Under an
assumption of log-Holder continuity of the exponent function p, the author provide quantitative estimates
for the approximation when the approximated function lies in a variable Sobolev space. The uniform
boundedness of the Kantorovich operators and the Durrmeyer operators on the variable spaces is proved
when the exponent function p is Lipschitz a with 0 < @ < 1, which yields rates of approximation. The
technical difficulty arising from the uniform boundedness is overcome by the Lipschiz continuity of the
exponent function and localization of Bernstein type positive linear operators.

In this paper we deal with a Kantorovich operators and characterize the convergence in the variable
exponent Lebesgue space LP) ([0, 1]). Also we an upper estimate is obtained for the difference K,, (f) - f for
functions f of regularity of order 1 and 2 measured in LV ([0, 1]) spaces. We note that, the conditions we
put on p(.) variable exponent in our article are simplified according to conditions of p(.) variable exponent
which using in [17], [19].

Let p € 3[0,1] and defined Kantorovich operators K, : LPV) ([0, 1]) — LV ([0, 1]) by

where 0 < 0 < 1 and 41, g2 > 1 are constants. The conditions on the variable exponent at which this

Ka(H@) :=Z(’;)xk<1—x>”(n+1> [ s, )

k=0 Tens
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where
pa = [k/ (n+ 1), (k+1)/ (n+ 1)].
Let x € [0, 1]. Define
n n n
Z Ini(x) = Z (k)xk 1-2"" =1
k=0 k=0
We need to recall some properties of convex functions.
Consider a real interval I of R. A function ¢ : I — R is said to be convex if

plax + (1 - a)y) < ap(x) + (1 - a)p(y)

foreveryx,yeland 0 <a <1.
If I is open and ¢ is convex, then for every finite family (xy)o<k<, in I and (ak)o<k<, in [0, 1] such that

ZZ:O ak = 1/

¢ [Zn: akxk] < Zn: ax (x)
k=0 k=0

(Jensen’s inequality).
The function [t (t € R), 1 < p < o0, is convex. Given a probability space (2, F, 1), an open interval I of
R and a p-integrable function f : QO — I, then

ffdy el
Q

Furthermore, if ¢ : I = Ris convex and ¢ o f : () — R is p-integrable, then

(p(fgfdu)ﬁfg(wf)du

(Integral Jensen inequality). In particular, we have

Uofdurﬁfowdu- @

We denote

1<yp, = inf x), 0<k<nelN.
Pr xe[k/(n+1),(k+1)/(n+1)]P )

Lemma 1.3. Let p € 3 [0, 1] be log-Holder continuous, if there is a constant Cy > 0 such that

e
|p(x)—pn|sm—noi,xe[0,l],neN. (5)

X
Then there is a positive constant C such that, for every x € [0,1]
(n+ 1D <C. (6)

Proof. By using (5) we obtain

. _Co C
(n+ 1P < (n+ D)% < (n + 1) = Ko,

Lemmal.1 is proved. O

By RI°¢ [0, 1] the class of all exponents p(.), satisfying the condition (5).
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2. Main results

We can now state our main result.

Theorem 2.1. Ifp € R1°8[0,1] N T [0,1] and f € [PV ([0, 1]), then operators of Kantorovich {Ka(HY,

bounded in LPO ([0, 1]). In other words, there is a constant C = C(p~,p*) > O such that

KAy < Al e N

Proof. By the Proposition 1.1 (i) we assume that

1
_ px) o
Il =1 [ lrel =1
Then, we need to show that there exists a constant C independent of function f such that

&Pl =

Consider the operators (3), then we have

! p(x)
ﬁmeﬂdx sz
x Z

f(; |]1/n(x)| : |]2,n (x)| dx.

p()—p

IA

wNMHJ\MW

dx

%mmud‘mw

k n+1

Note that since

n

Y =1,

k=0

and
*(1-x"" >0
for every x € [0,1]. Then by (6), (8), (9) and (10) we have

plx)-p
(n+1)7’(x)—;7,, (g X x)f |f(y)|dy)
k=0

k n+1

C [Z i () f lf) 1d}/]pm :
(f |f(y)|dy)l7(x) —Pu
“

px)=pa
C |f(y)|x{y:f>l)} * |f(y)|x{y:f51>}) dy)

E(fo (|f(]/)|p(y) N 1)dy)lﬂ(x)_p

Cor-r
= C1 .

|J1,0()]

IA

IA

IA
M)

IA

IA

5759

uniformly

)

(10)
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On the other hand, by considering the beta function

1
B(u,v) := f #11 =0 dt, (u,v > 0)
0

it is not difficult to show that, for0 < k < n,

1

m+1)(}) (11)

1
f F1-x)"* dx=Blk+1,n-k+1)=
0

Hence by the convexity of the function t — [t} (p, > 1, n € IN), Jensen’s inequality applied to the measure
(n + 1)dy for every f € LP» ([0,1]) and by relations (4), (8), (10), (11) we get

1 1
f K.(HEVdx < G f 1o, o| dx
0 0

<
1 n P
< G fo [kZ:O‘gn,k(x)(n"'l) L . )f(y))dy] dx
n n 1 _
< C 1 - ""‘d)( ”"d)
< cnsn B [ a-ata)([ Lo
n 1
< C P;d <C p(y) 1)d
<o) J. Vol aysc: [ (irr «1)ay
= 2C1
= C,.
Therefore,
1
f KN dx < C. (12)
0

By the Proposition 1.1(iii), (8) and (12) we get
”K”(f)”p(,) < C”f”p(,) ’

then for every f € /") ([0,1]), i.e., [[Kyll,) < C.

Now we show that Kantorovich operators converge in LP) ([0, 1]). We suppose that f is continuous on
[0,1],i. e, f € C([0,1]). In this case, for any € > 0, there exists 09 = 0¢(¢) such that for |x - y| <00,x,y€[0,1]
the inequality ) fx)—f (y)) < ¢ holds. Hence, for a given ¢ > 0 there is a np € IN such that for every n > ng

=y, < [Lom@o+n [ |fw- ]
k=0 Ten ()
< ¢ Zgn,k (%)
k=0 ()
< e (13)

Thus {K,(f)};", uniformly bounded in f € C([0,1]). Next, it is well-known (see, for example Corollary
3.4.10 in [8]) that the continuous functions & on [0, 1] are dense in L’V ([0, 1]). As a result, we can easily see
that the functions % (.) which are continuous on [0, 1] are dense in L*®) ([0, 1]). We have

1K (F) = fll iy < ML =l + 11K () = By + [[K (F) = Ko )], - (14)
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Given ¢ > 0, we choose a function 4 such that

If =, < (15)
By (13), for the continuous function / a given ¢ > 0 and for |x - y| < 0o, x, y € [0,1] such that

1Ky () = Bl < €. (16)
Finally, by (7) and (15) implies that

K () = K )], = K (F = 1), < € p)|If =R, < Ce (17)
and now, by (14)-(17) we obtain

||Kn (f) - f||p(_) <C¢, neNN.

Since C([0,1]) is dense in L% ([0,1]) we have operators {K;(f)};”; uniformly bounded in LY ([0,1]) for
arbitrary functions f € LP" ([0, 1]). This completes the proof of Theorem 2.1. [

Theorem 2.2. If f € L' ([0,1]), then

Kol < e+ DS

Proof. Applying twice the Jensen inequality and (10) we can write

Ku(p), < (1+1) i () d W)]dy = (n+1)
ol 0| [ B owrss| [ frolas=ce vl

Ik,rH—l

1,ne]N.

| NnE N
namely K, (f) € L' ([0, 1]) whenever f € L! ([0, 1]). This completes the proof of Theorem 2.2. O

Let L) ([0,1]) = {f : f absolutely continuous on [0, 1], f € LV ([0, 1])}.

Theorem 2.3. Ifp € R1°8[0,1]1N I [0,1] and f € L'*V ([0, 1]), then there exists C = C(p~,p*) > 0 such that

f

Proof. Let f € LPY ([0,1]) for every x € [0, 1], we have

C
K (F) = £, < =l neN. (18)

Ko () (0) = F@) = Ko (F () = F@) (1) = (1 + 1) [Z G (x)] fl (F() - f) .
k=0 kon+1

By the Proposition 1.1(i) let’s assume that

1
() 0

In order to prove (18) we have to prove

f f’(x)|p(x) dx = 1. (19)

n|[Ka(F) = fll,, <G meN.
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So, one can write

[

IN IA
— —

IA
— S—

1
0
and by (19)

|G|

I (Ko (F) () = fO)|" dx

" p(x)
n(n+1) Z g (%) f lF@) - £ dy] dx
k=0 Iins1

w0y oo [ [0
L v Jr

) p(x)
el ’dnd

[ n p)—py n
[n Z Fug () f 14G] dt] [n Z I (x) f
k=0 Ioni k=0 Tine

|G1,n (x)l . |G2,n (X)) dx'

p(x)
) dtdy] dx

p(x)
£t dt] dx

n p(x)-p;;
< (n+1)P(x)Pn[Zf gn,k(x)|f’(t))dt)
k=0 YIkn+
Py 1 p()-py
< Cl) g | |f(®D) dt]
(Lo 1o
1 p(x)-py
< cl(fo }f’(t)|dt)
—( p)-p;
< C(fo(f'(t)|X{y:f>1)}+f’(t)|X{y:fS1)})dt)
1 peO)-p-
< E(f(f’(t)|p(t)+1)dt)
0
< C'
= C3.

Hence by using (20) we obtain

fo I (Ko () () = fG)|" dx

IA

1
G f |Gon(x)| dx
0

IA

k=0

P
£() dt] ]dx

n 1 —
ng(Z) ( fo xk(l—x)”_kdx)((n+1) fl lfef” dt)

5762

(20)

(21)
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C3kzz;‘jl;n+1 |f(t)|p; dt < C]: (|f(t)|p(t> . 1)dt

= 2Cs. (22)
Then from (21) and (22) we get

IN

1
fo In (K () @) — F@)"™ dx < Cpp),

or, what is the same,

f (K () @ = Fop[
0

: dx < 1.
Clp=,p*)o

Hence,

p(x)

[|ee-r |,
0

((1 + C(P‘:Iﬁ))”%)/n

and so

(1+Cep)~ _C
n T n

()’ n € IN.

||Kn(f) - f”p(.) < f,

Theorem 2.3 is proved. d

Let L2#0 ([0,1]) = {f : f” absolutely continuous on [0, 1], f”" € L’ ([0, 1])}.

Theorem 2.4. Ifp € J[0,1] satisfies (1) and f € L270) ([0, 1]), then there are constants Cy = Co(p~,p*) > 0 and
C1 =Ci(p~,p*) > O such that

Ci
4n

1K () = £, Fl

, neN.
\/_ (

Proof. Let f € LPY ([0, 1]). For some z € (x, t)
f) = fx)+(t-x) f(2)
Thus we have

fH) = f(x)

t-0f@+E-0(f@-f W)
(t—x) f'(x) + (t - x) f i f(w)du.
Since all g,,x (x) > 0, we have x

K () @) - f@)] < Ka(|fO - f@]) @)

£/(0)| K (I = x0) (x) +

IA

IA

IN

K (|- = x]) (x)

Zf”(u)du

IN

- L d
((-27) X)Os;zgt_ f(f ()| du

w (o= xl) (@) + [M(F7) )] Ko (= ) (),
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where

Ky (I = x)) (x) = Zgnk(X)(nH) |t = x| dt.

Ikn+1

We obtain by direct computation

K, (1)(x) =1,

Ko ()() = x4

0= 2+ 1)
and
K (P) @) = na-Dp, 20, L1
(n+1)° (n+1) 3(n+1)

Thus by (4) and since x (1 — x) < % we obtain

K(-x)®) = Y gu@@+1) [ (-2t
k=0 Tns
n-1) a 1
: (n+ 1)2x(x D+ 3(n+ 1)2
n-—1 1
< +
4n+17° 3m+1)7>
3n+1
< - -
T 12+ 1)
1
< —.
~ dn
This yields
K () () = f0)] < |wmmy

We can immediately obtain

X ) (x)
|mmm4wm_@f. )+dﬁWmmW
Let
—C(L f +l||M(f") )¢0C>0
=0l oym Vo ™ 4, po) 0

will be taken in the following. Then

x ’ (x) »
flqum—ﬂm”) . Cj“a%f@p +f1ﬁquuﬂ”M
0 Hn B 0 Un 0 Hn
(x ()
<Cf @) +f M) @)
B o |Collfll,, o [Col|M(f) 0

5764
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If 2C <1, let Cy = 1, then (by Proposition 1.1(iv))

1 K, _ p(x)
f M dx <2C<1.
0 Hn
If 2C > 1, let Cy = 2C then
1 Kn _ p(x)
f N@ - fOF . 2€
0 Hn Cg

5765

Hence we can find a constant Cy that only depends on p, but is independent of f, such that (by Proposition

1.1(iv))

”K” (f) - f“p(.) <

CO 7
o0 T I (G ok

CO ’
2y
Since p (.) satisfy (1) and by (2) we have

, C
f p()+E|

C ’’
”Kn (f)_f”p(.) < ﬁ‘ f

)7

Theorem 2.4 is proved. O
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