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On the Hermite-Hadamard Inequalities for /—Convex Functions on
Balls and Ellipsoids

Xiaoqian Wang?, Jianmiao Ruan®’, Xinsheng Ma?

*Department of Mathematics, Zhejiang International Studies University, Hangzhou 310014, China.

Abstract. In this paper, we establish some Hermite-Hadamard type inequalities for h— convex function on
high-dimensional balls and ellipsoids, which extend some known results. Some mappings connected with
these inequalities and related results are also obtained.

1. Introduction

The concept of h—convexity was first introduced by Varosanec [16] in 2007, and then has been studied
extensively by many mathematicians, see e.g. [2, 9, 10, 13] and the references therein.

Definition 1. Let  : [0,1] — [0, 00) be a given function. We say that f : D — R, where D is a convex subset
of R, is h—convex if for any X,Y € D and a € [0,1],

f@X+(1-a)Y) < h@)f(X) +h(l - a)f(Y). (1)

This notion unifies and generalizes the known classes of the usual convex functions, s—convex functions (in
the second sense) [3], P—functions [14] and Godunova-Levin functions [8], which are obtained by putting
in (1)

ha)=a, la)=a’°(0<s<1), h(a)=1,
and

1/a, O<a<l,
h(a):{o/ 0(:0

respectively.

Convexity and its generalizations are very important both in pure mathematics and in applications.
One of the significant application involved in convex type functions is the following well-known Hermite-
Hadamard inequality.
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Theorem A. Let f : [a,b] € R — R be a convex function. Then

b b
f(#)s ﬁf F)dx < w

In 1999, Dragomir and Fitzpatrick [7] proved the variant of Hermite-Hadamard’s inequality which holds
for s—convex functions in the second sense.

Theorem B. [7] Let f : [a,b] € R — R be a nonnegative s—convex function in the second sense with 0 <'s < 1.
Then

b 1 b b
25-7(%)3 mf Fodx < f—(‘?:{( ).

In 2008, Sarikaya, Saglam and Yildririm obtained the following analogue inequalities for h—convex
functions.
Theorem C. [15] Let f : [a,b] € R — IR be an h—convex function on [a, b]. Then

1
Zh(

a+b

1 b 1
%)f( > )sb_a f foodx < [f@) + FO)] fo h)dx.

At the meantime, there is an extensive literature devoted to develop Hermite-Hadamard’s type inequal-
ities to higher-dimensions. For example, some inequalities for convex type functions on rectangles can be
found in[1, 6, 11], and on disks can be found in [4, 5]. In this paper, we mainly deal with analogue inequal-
ities for h-convex functions on balls and ellipsoids. Compared to the methods employed on rectangles,
which used on balls (ellipsoids) are rather technical.

In the sequel, unless otherwise specified, R" denotes the Euclidean space of dimension n and |E| denotes
the Lebesgue measure of a measurable set E C IR”, do(x) is the usual surface measure (n > 3) or the arc length
(n = 2) in general. B,(C,r) and 0,(C,r) are the n—dimensional ball and its sphere respectively centered at
the point C = (c1, ¢y, ..., c,) € R" with radius r > 0. E,(C, R) denotes the n—dimensional ellipsoid centered
at the point C = (c1, ¢y, ..., cy) € R” with semiaxises R = (11,72, , 1), that is

(x1—c1)? | (v —co)? (xtn — cn)?
rz r2 + oo + r—z
1 2 n

and S,(C, R) is the sphere of E,(C, R). It is well known that

<1, 0<r,ro,..., 1, <00,

et nmzri!
Bu(C, 1)l = T+ 1) 164(C, 1) = TE+1) 2)
_minen _ e
|Ex(C,R)I = T+’ 1Sx(C, tR)l = t*[S/(CR)I, £>0, (©)

where I'(-) denotes the Gamma function and R = (try,try, -, try).

Throughout the paper, we also assume that the function / in Definition 1 is always Lebesgue integrable
on the interval [0, 1] and satisfies h (%) > 0.

Now we recall some known results. In 2000, Dragomir [4] proved the Hermite-Hadamard type inequal-

ity of convex functions on the disk in R2.
Theorem D. [4] Let f : Bo(C,v) = R be a convex function on the disk Bo(C, r). Then

1 1
fO=—5 b fX)dX < o— o fX)da(X).
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Furthermore, Dragomir extended the proceeding result from the disk in IR? to the ball in R? in the same
year and obtained the following similar result.
Theorem E. [5] Let f : B3(C,¥) — R be a convex function on B3(C,r). Then

1
F(X)dX < BC I F(X)do(X).

1
©<
f IB3(C, M)l Jpycr
In 2014, Matloka [12] generalized Theorem D for h—convex functions on disks and established the
corresponding Hermite-Hadamard inequality.
Theorem F. [12] Let f : Bo(C,7) — R be an h—convex function on By(C,r). Then

1 1
2h(%)f(C) <

1
o o, fORX T2 | f00do00, @)

where

. 2 [y th(1 - byt
?‘(r)—?zfoth(?)dt Y e T har|
5@ 2 h =)

As a consequence of Theorem F, the author obtained the variant Hermite-Hadamard inequality for
s-convex functions.
Theorem G. [12] Let f : Bo(C,r) = R be an s—convex function in the second sense on By(C,r) with 0 <s < 1.
Then
1 2°(s+1)

2° 1
SfO=—3 o fX)dX < e+ D6+ -4 e fX)do(X). (5)

Remark 1. Taking the changing of variable £ = v in Theorem F, we have

2 fol vh(v)dv
1—4h(d) [ vh(1 = v)dv’

F(r) =

which implies that F (r) is independent of the radius r.
Remark 2. There was a mistake in Theorem F. The condition

1
1—4h(1)f ti(1 = Hdt > 0
2 0

is necessary for the second inequality in (4). We will prove the assertion by contradiction. Suppose that

1
1—4h(1)f th(1 — B)dt < 0.
2 0

Then F(r) < 0. Choosing f > 0, we yield that
f(X)dX >0, f(X)do(X) >0,
By(Cr) 8(Cr)

which is a contradiction with F(r) < 0.
According to proceeding argument, the second inequality in (5) of Theorem G is valid under the additional
assumption of

2°(s+ 1)(s +2) > 4.
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With these motivations, one of the purposes of this paper is to establish analogues of Hermite-Hadamard
inequalities for h—convex functions on n—dimensional convex bodies—-balls and ellipsoids. Now we are
in a position to state our results.

Theorem 1. Let f : B,(C,7) = R be an h—convex function on B, (C,r). Suppose that h satisfies

1
1—2nh(%) f #13(1 = Hdt > 0. ©)
0
Then

K(n)
fO < wmnl wien? D= FEA e

fX)da(X), ?)

(%

n [ Ut
1—2mn(2) [ - pdt

It is not difficult to see that (6) is always true if h(t) = t. In fact, we have

1 n-1 _ n-1 n
1 2nh(2)ft (1 - fdt =1 nf(t — )t = 1 >0,

On the other hand, a direct calculation shows that K'(n) = 1. These observations imply that
Corollary 1. If f : B,(C,r) = R be a convex function, then

1

1
O i )y o SO S s | 0040000,

Particularly, Corollary 1 reduces to Theorem D and Theorem E if n = 2 and n = 3 respectively.
If h(t) = t°, 0 < s < 1, then integration by parts tells us that

1 1 1
f (1 - tdt f 711 = t3dt = f (t—1)""1edr
0 0 0

(n—-1)
(s+1)(s+2)---(s+n)

Combining (9) and Theorem 1, we arrive at the Hermite-Hadamard inequality of s—convex functions on

the ball.

Corollary 2. Let f : B,(C,1r) — R be an s—convex function in the second sense on B,(C,r). If 0 < s < 1 and it
satisfies

©)

2°(s+1)(s+2)---(s+n)>2n!, (10)
then
1 K
il d
ﬂ)—wmﬂlmmf XSl ooy O
where

o n2(s+1)(s+2)---(s+n—1)
YT s+ )5 +2) (5 +n) —2n!

(11)
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Furthermore, we will extend the above results to more general convex sets, i.e. ellipsoids.
Theorem 2. Let f : E,(C,R) — R be an h—convex function on the ellipsoid E,(C,R). Suppose that h satisfies
(6). Then

1 1 Ki(n)
O < —— ax < abn)_ do (X'),
2h(%)f( )< ECR E”(C,R)f(X) X< £ (X)do (x') (12)

1640, DI Js,.0,1)
where K (n) is as in Theorem 1,

X' = (x],%,...,x,) € 6,4(0,1), X = [, %, . %) and Xj= rjx} +cj, j=1,2,..,n

Furthermore, if f > 0, we have

1 7 (R)
IE.(C,R)] fg,,(c,m JOMX < G CR Js ey |7 (13)
where
i < BRI <, "
r nr2
and

r=min{ry, r,..., ).

It follows from Theorem 2 and the similar arguments as in Corollary 1 and Corollary 2 that
Corollary 3. If f : E,(C,R) — R be a convex function, then

O < —2 FIX < IG+1)
T EX(C R Jg,cr) B

F(X)do(X),
nre2 0,(0,1)

where X are as in Theorem 2.
Especially, if f is a nonnegative convex function on E,(C, R), then

| foodx < PEED M odo(x)
—_— < - o(X).
IEq(C, R) JE,cr) nr2r=t Js,cry

If taking h(t) = t*, we derive from Theorem 2 and Corollary 2 that
Corollary 4. Let f : E,(C,R) — R be an s—convex function in the second sense on the ellipsoid E,(C, R) and G
be the constant defined by (11). If 0 < s < 1 and (10) holds, then

%Sf(c) < F(X)dX < ‘Kzf f(?_Q do (X)),

|Ex(C, R J,cr) 52(0,1)

where X are as in Theorem 2 and

g, TG+ D 2+ +2) - (s+n-1) TG+
2T 25(s+1)(s+2)---(s+n)=2n! prt 1:
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Furthermore, if f > 0, we have

_1 F(R)
X)dX < o= = X)do(X
EA(CR)] fE,,<c,R)f XX S G C R S e OE)
where
B(R) = L DSHCERI 2+ )5 +2) (s +n-1) _ IS(CRITG + 1) g

i1 25(s+1)(s+2)---(s+n)—2n!

5876

The second purpose in this paper is to provide some applications of the Hermite-Hadamard inequalities
for h—convex functions. In [4] and [5], Dragomir studied some properties of the mappings connected to the
Hermite-Hadamard type inequality of convex function on disks and balls . In [12], Matloka considered the

similar mappings connected to the h—convex function on disks.

Theorem H. [12] Define the mapping $ : [0,1] — R by

$(t) = # ) F(EX + (1 - HO)X.

Bo(Cr

If f is an h—convex function on the disk B>(C, 1), then
(i) the function  is an h—convex function on [0, 1],
(ii) foranyt e (0,1],

JO s < s [+ Zh(%)h(l -1).

2h(1)

Theorem I. [12] Define the mapping ® : [0,1] — R by

1
6(F) = {ﬁ L(C,tr) f(X)da(X), te€(0,1],
f(©), t=0.
If f is an h—convex function on the disk B,(C, r), then
(i) the function ® is an h—convex function on [0, 1],
(ii) foranyt € (0,1], H(t) < F (tr)®(),
(iii) foranyt € (0,1],
f(©)
2h (L) F (tr)

< (1) < G(1) [h(t) ; Zh(%)h(l - t)?(r)].

Remark 3. According to Remark 1 and using the notation in (8), we can rewrite (ii) and (iii) in Theorem I as the

following explicit forms, respectively,
(ii") foranyt € (0,1], H(t) < K(@2)6(t),
(iii’) foranyt e (0,1],
f(©)
2 (1)K ()

< 6(b) < 6(1) [h(t) + 2h(%)h(1 - t)‘K(Z)].

Remark 4. There was a mistake in Theorem I. By checking the proof of Theorem I in [12] and the statement of

Remark 2, the condition

1
1—4h(1)f th(l — Bt > 0
2 0
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is necessary for (ii) and (iii) in Theorem 1.

Now, we will prove some properties of these two mappings assuming that the function f is h—convex
on ellipsoids. Correspondingly, the associated properties of balls are also obtained.

Theorem 3. Define the mapping $ : [0,1] — R by

% 1
) = ——==5 tX + (1 -1)C)dX.
© |En(C, R Je,cr) A (1 =-90)
If f is an h—convex function on the ellipsoid E,(C, R), then
(i) the function $ is an h—convex function on [0, 1],
(ii) foranyt e (0,1],

;; (Z:) () < 5(1>[h<t)+2h( Jua-s). (15)

As a consequence of the proceeding theorem, we have the following results.
Corollary 5. Define the mapping H:[0,1] —» R by

~ 1

H(t) = ———— X+ (1 -H0)dX.

® 1B+(C, )l I, fex+ =00
If f is an h—convex function on the ball B,,(C, ), then the mapping H enjoys the same properties as $ in Theorem 3.

If we choose n = 2 in Corollary 5~, then it reduces to Theorem H.
Theorem 4. Define the mapping G : [0,1] = R by

5u(Ctr)

£(O), t=0.

If f is an h—convex function on the ball B,,(C, r) and (6) holds, then

(i) the function G(t) is an h—convex function on [0,1],

(i) for any t € (0,1], H(t) < K(n)G(t),

(iii) foranyt € (0,1],
f(©)

(K0

1
G(t) = {m fX)do(X), t € (0,1],

G < G) [h(t) oy (%)h(l - t)‘K(n)] . (16)

By virtue of Remark 3 and Remark 4, it is obviously that Theorem 4 generalizes Theorem I.
Theorem 5. Define the mapping ® : [0,1] — R by

1
Gt) = {m s P00, e 1],

£(0), t=0.

If f is an h—convex function on the ellipsoid E,(C, R) and (6) holds, then
(i) the function ®(t) is an h—convex function on [0,1],

(ii) when f >0, for any t € (0,1], H(t) < F(R)G(#),

(iii) when f >0, forany t € (0,1],

£(©)
2h (1) F(R)
where ¥ (R) is defined by (14), i.e.
|Sn (C R)I I3 + 1)

< &) < G(1) [h(t) +2h (%)h(l - t)sf(R)], (17)

F(R) =

K(n) and v = min{ry,ro,...,1,}.
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2. Proof of The Theorems
2.1. Proof of Theorem 1

(i) A changing of variables yields that

f (X)dX = f (2C - X)dX.
B.(Cr) B,(Cr)

Since f(C) = f (% + 25%) then

1 X 2C-X
f(C) B |Bn(cr 1’)| an(C,r)f 27 2 )dX

|Bn(12,r)| Bn(c,,)[ ( )f(X)+h( )f(zc X]dx

2h(})
~ BuC Iy 0

IA

In this way we obtain the first part of (7).
(ii) The translation invariance of Lebesgue measure shows that

1 1

- CdX = —— X+ Q)dX
1Bu(C, )| I, cr) 1O 1Ba(0, I Js, 0, s :

Taking the spherical change of the unit sphere 6,,(0, 1)

X} = COS 1,
X7, = sin @1 cos @z,
X7 = sin ¢y sin @, cos @3,

X4 = sin (pl. singy - : sin (p,,_% COS Pp—1,
X, = sin@q sing, - --sin @, sin@;_1,

where

OS(Pll -"/(Pn—Z ST[/ OS(Pn—l SZT(,

we have
f(X+Cx
B.(0,7)
s

= f F(X +C)t" o (X')dt

0x(0,1)
= f f fox 40+ (1-2)c)ertao (xan

5,001 \Y r
<

ffé(m) - (rX’+C)+h(1—_)f(C)]tn1dG(X,)dt

(f - 1h( )dt)( f(rX’+C)da(X’))
0 0,(0,1)

+F(O)I64(0, 1) fo (1)

5878

(18)

(19)

(20)
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On the other hand, the change of variable formula tells us that

1
f " h(tdt,
0

1 t”‘lh(f)dt
™ Jo r

1 ’ n-1 t ! n—1
~ [ h(l——)dt N
" Jo r 0
and
fX +C)do(X') = L_lf F(X)do(X).
84(0,1) = Jsucn
Then, by (2), (18)-(23) and the first inequality in (7),
1
_ X)dX
|B.#(C, 1)l B,,(C,r)f( )
1
< n f £ h(t)dt ! F(X)do(X) +n f " (1 - t)dtf(C)
60 (C, ) Js,cr)
1
< () dt ——— X)do(X
f ® 164(C, 1) 6(C,r)f( Mo (X)
1
+2n | "7th(1 —tdth( ) X)dX.
f =080 3) Bl Joen ™
Recalling

1
1—2nh(1)f #1h(1 = Bt > 0,
2/ Jo
we have

1
n [ " h(t)dt

1 FX)AX < b . !

|B (C 7”)| B.(Cr) 1-— znh(%)fo i‘”_lh(l — t)dt |6I1(C/ 1’)| 0u(Cyr)

which completes the proof.

2.2. Proof of Theorem 2

5879

(21)

(22)

(23)

Since the proof for the left part of (12) follows the same procedure as in Theorem 1 (i), we omit the

details. Now, we will focus on proving the right part of (12). Let X’ = (

transformation of the unit sphere 6,(0, 1) defined by (19). Suppose that

X =(x1,%,...,X%,) and X; = rjx}+cj, ji=12,...,n

That is
X1 =11 cos@r + 01,
Xy = 1p8in 1 COS P + C2,
—_ X3 = r38in @1 sin @, cos @3 + c3,
X=1.

Xy_1 = Iy_1 Sin @1 8in @y sin @3 - - - sin @, COS Q1 + Cp—1,
Xp = Ty SIN @1 Sin@o sin @z - - - sin@y,_ sSin @,_1 + ¢y,

,x;) be the spherical
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where
0<@1...,0n2<m, 0L @1 <27

Thus, for any X = (x1,xp,...,x,) € E4(C,R), there is 0 < t < 1 such that
X =tX+(1-HC:=X(t,@1,..., Pn1).

It is not difficult to check that the Jacobian of the transformation X is

2( ) £ &
X1,X2,...,Xn dp1 I
Jit, 1,0, Pn1) = = |det| '
(P (p" a(tl(Pll"'lqon—l) : :
oxq X2
a(()n—l aff)u—l

We infer from (24) that

f F(X)dX
E.(CR)

IN

Firo - f " h(h)dt

xf f J }'()(sm(pl)” 2o (Sin @u2)d@y1dQn 2 -
(p1=0 Pn-1= =0

H1r2 - 1 f(C) f 701 — tdt
0

ity - 1t (sin (p1)”‘2 -+« (sin (p,,_3)2(sin Pn-2).

f f f f (X + (1= HC) ilt, @1, -, Pu1)dpu-1dpyo- - -deprdt
P1= =0 Pn2= =0 Pn— 1—0

d(pl

T Tl 27T
<[ [ g ing, g, d
P1= Pn—2=0 Jp,-1=0

= nr- f 1L p()dt fé o £(X)do (X))

1
+1172 -+ 1, F(O)64(0, 1) f (1 - pydt.
0
With the aid of (2), (3) and the inequality

2h(3)

O ECRT Jocn O™

we deduce that

L,,(C,R)f(x)dx < nr2: f £ 1h(t)dt f@; on f ()A(‘)da (X

+2nh(1) f #1(1 - Dt f FX)X.
2 0 E.(CR)
Then, by (6),

K(n)
F(X)dX <
|E.(C, R)If CR) X) 16,(0, DI Js, 0,1

f(X)do(X).

5880

(24)
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This proves the right part of (12).

Now we turn to prove inequality (13). Let

d (X1, X1, Xiv1, -+, Xn)
Ai(@1, @2, -, Pp1) = e
’ ’ ’ a((Plr(PZ/---/(Pn—l)
o1 X1 IXis1 Xy
91 _‘9@1 _3(;)1 01 ’
p Ty 7,
20, e D ) e 2
= |det| P 7. (25)
dn iy Min Ity
a(Pn—l e aan—l aan—l e aan—l

Comparing with the Jacobian of transformation of the unit sphere, we easily see that

o pu1) = JZA%((pl,@z,...,%_l) (26)
i=1

)n—Z ..

> -1 (Sil’l o1 . (sin (pn_3)2(Sil'1 (Pn—Z)/

where r = min{ry, 73,...,7,}. Since f > 0,

f FX)da(X)

S$1(C,R)

f f f )'()]2(<p1, s Pp1)AQ 1Ay - - A
(p1=0 (Pn—Z_O Pn-1= O

! f f f ??)(smqn)” 2 (Sin @y3)*(SIN @ 2)dy1d Qa2 - - -dey,
({71:0 n—2=0 Pp—1=

which yields that

1
T o 27
jz;(o,l)f(.) 0X) < on LI(C,R)f( )do(X) (27)

By combing (12) and (27) we finish the proof of Theorem 2. O

v

2.3. Proof of Theorem 3

(i) Lett;, 2 €[0,1],and o, > 0,a + = 1. Then

Saty + pty)
B IEn((lj, R)| EH(C,R)f(“ (X + (1 - t1)Cl+ B[LX + (1 - £2)Cl)dX

M) ()
< IE.(C,R)| ECR) f(hX + (1 -t)C)dX + m - f(th +(1-£)C)dX
= h@)H(t) +h(B)D(t),

which means that $ is an 1—convex function on [0, 1].
(ii) For any fixed t € (0, 1], taking the substitution n = (11,12, - - - , 1), where 1; = tx; + (1 — t)c;, we have
1

o) = —|En(C/ R Jr cx fX+ (1 -1)C)dX
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_ l a(x1/x2/~--rxn)
|Ex(C, R JE,cr) 1 A, n2, s
1
= - d
t"Eq(C, R)| JE,ctr) Sl
I FEOAX. (28)

|En(C tR) JE,cir)
Then Theorem 2 gives us that

1 3
T(%)f(c) < 9().

In this way the first part of the inequality (15) is proved.
By the h—convexity of f on the ellipsoid and the left-side of (12), we have

h(t)

§ _ _Hf(C
50 < e ), o FOX = 0FO)
ne) 2h(1 - t)h (%)
NI [ el d
S EGCR S cn X TECR fEW<C,R>f (X)dX

[h(t) +2h (%)h(l - t)] m fE S0

And the definition of $ implies that

~ 1
W = ECR Jren O

Therefore,

5t < $(1) [h(t) +2h (%)h(l - t)],

which completes the proof. m]

2.4. Proof of Theorem 4

Due to (2) and the spherical transformation given by (19), we can deduce that

—~ 1
G(t) =
® 160, DI J5,,0,1)

F(trX +C)do (X). (29)

(i) Letfy,t2 €[0,1]and o, > 0, a + = 1. Then, by (29),

a(atl + ‘Btz)
= 1 flatrX +C) + B (trX’ + C))do (X)

164(0, DI Js,,0,1)

1

16,(0, DI J5,0,1)

h@)G(t) + h(B)G(t).

[A(@)f (1rX" + C) + h(B) f (t2rX” + C))] do (X')



X. Wang et al. / Filomat 33:18 (2019), 5871-5886

This means that G is h—convex on [0,1].
(ii) As a special case of (28), we easily to see that

~ 1
Hi) = ———
O =BGl s cm

Thus, according to Theorem 1,

K(n)
16,,(C, tr)] 54(C tr)

holds for all ¢ € (0, 1].
(iii) With the aid of (30), (31) and the left part of (7), we can arrive at

f(©)
2n(1)

for all t € (0,1]. Especially,

F(X)dX.

H(t) < F(X)da(X) = K(m)G(t)

< H(t) < K(n)G(t)

F(C) < 2h (%)‘K(n)a(l).

On the other hand, (29) provides us that

- 1 ’ _ ’
G(t) m 5.0 f (t (TX + C) + (1 t)C) do (X )
_

16, (0, DI Js, 0,1

= h(t)GQ) +h(1 - Hf(C)
< G [h(t) +2h (%)h(l _ t)?((n)],

IN

[AOf(rX + C) + h(1 = ) f(O)] do (X')

where the last inequality is obtained by (33). By combining (32) and (34) we finish the proof.

2.5. Proof of Theorem 5

5883

(30)

(31)

(32)

(33)

(34)

For any fixed t € (0,1], we know that the surface of the ellipsoid can be presented as follows, X =

(x1,x2,...,x,) € S,(C,tR),

X1 = tricos @y + ¢y,
Xo = trp sin@q cos @z + ¢z,
X3 = trzsin@q sin @, cos @3 + c3,
X(t, P1, P2, -, (Pn—l) =
Xp—1 = trp_1 sin@qsin@; sin@s - -+ sin @,_» cOS Py_1 + Cy—1,
Xy = try sin@qsing; sings -+ - sin@,_» sin @,_1 + ¢y,

where 0 < @1, , @y < 7,0 < @y <2m. Let

a(-xl/ s /xi—llxi+1/ e /xn)

a((Pll @21 ceey (Pn—l)

Bi(t/(Plr(P2/-~~/(Pn—1) =

(35)
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Ix i1 Iix 9%y
dor t dgn Jor t agn
ox i Oin 9xn
3 e 3 3 cee 3
= |det| G (e (36)
(?X] ax,‘q (93(,41 axn
a({)n—l e 3({)n—1 &@n—l e a({)n—l

It is clear that

Bi(t, 01,92, .., Pu-1) = "L AQ1, 02, - -, Pr1)

and

n

]3(t/ (Pll (PZI ety (Pﬂ—l) = J Z Blz(t/ (Pll (PZ/ e /(Pn—l) = tn_l,lz((Pl/ (PZI cecy (Pn—l)/

i=1

where Ai(Q1, @2, ..., Pu-1) and Jo(@1, @2, ..., Ps-1) are presented by (25) and (26) respectively.
In the sequential of the paper, without confusion, we sometimes rewrite the notation X(f, ¢1, @2, . . ., @n-1)
by X(t) and J>(¢1, @2, - - -, Pn-1) by |2 for the sake of convenience. Therefore, for any ¢ € (0, 1], we have

&)

1 T T 27T
_— X(t 1,02, .., 00-1)d0,_1d©,_o -+ -d
IS(CtR)lf(m_O fq}nzof%lof( O3t 1,92, -, Pu-1)APu_1dPy 2 - - -dpy

- e On1)d O 1dO 0 - - -dpr.
S CRI (c R) f(p f(P Of(P Of(X(t))]z(<p1,¢z, s Pn-1)APn_1dpn—z - -dr

(i) Lett,t, €[0,1]and a, >0, a + = 1. Then
@((Xfl + ﬁtz)

1 Tt ys 27
SCRl | X(aty + Bt2)) Jad@u-1d@us - - -d
1Su(C, R Jy, =0 L“:Of%]_of( (aty + Bt2) J2dPn-1d@u—2 - - -dipy

1 " n
_ —|s (c R)| f¢ L f(p . L | JX )+ BX Dy

< X)) 2dpu—1d@,_p - - -d

h(ﬁ)
|S (G R) f(pl f% - Of% - Of(X(t2))]2d(Pn71d(Pn72 d;

h@)G(t1) + h(p)G(t2).

This concludes the proof of (i).
(ii) For any given t € (0, 1], the identity (28) tells us that

» 1
- - aX.
50 = ECm) fEn(c,tm J0ax

Since f > 0, by Theorem 2, we can claim that

1 F(tR)
_ X)dX < ————
|Ex(C R JE, cir) ) 1S4(C tR)| Js,c.tr)

That is

FX)do(X).

S(t) < FR)G(), te(0,1],
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where

15.(C,tR)| T(5 +1)
(i‘?‘)”_1 nme

F(tR) =

K(n).

On the other hand, by (3), we have
F(tR) = F(R).

This observation yields that
S < FR)G()

for all t € (0,1]. We finish the proof of (ii).
(iii) Since the inequality

FO _¢
(b <9

is easily reached by (15) and (ii), next we will pay more attention to proving the right part of (17).
Because of

~ 1 Tt g 27
&)= ———— X(O)od@y_1d@y_s - - -d
(f) 15,(C, R)| >f(p1:0 [Pnz=0f<p,,1=of( (D) 2dpn-1dpn—2 - - -der

and the h—convexity of f, we have

~ 1 Tt T 27
Gj(t) B |Sn(C/ R)l @1=0 . ~[ff;l—z_() fﬁonq_o f(tX(l) * (1 a t)C)]Zd(pn_ld(p”_z o d(Pl
1 Tt T 27
S ECR f(ﬁ L fq) » fq TS +h = OFCOadpn-adp i
ey (" no o
= _— e i P EEE h _
15,(C,R)| LFO L - L - FXA)odpu-1dpy— - -dp1 + h(1 = ) f(C)

< WHGA) + 27—‘(1{)}1(%)11(1 —HB)
= Q) [h(t) + 27 (R)h (%)h(l - t)],
which completes the proof. ]
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