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Remarks on an Equation of the Ginzburg-Landau Type
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Abstract. This paper is concerned with a priori estimate of the Ginzburg-Landau equation. We study the
uniform bound of classical solutions on the whole space. In addition, we also obtain the Liouville-type
result of finite energy solutions.

1. Introduction

In 1994, Brezis, Merle and Riviere [5] studied the quantization effects of the following equation

−4u = (1 − |u|2)u in R2.

It is the Euler-Lagrange equation of the Ginzburg-Landau (GL) energy

EGL(u) =
1
2
‖∇u‖2L2(R2) +

1
4
‖1 − |u|2‖2L2(R2).

Here u : R2
→ R2 is a vector value function. In particular, they proved

|u| ≤ 1 in R2. (1.1)

(The same result was also obtained in [8]). Based on this result, they also obtained a Liouville-type theorem
for the finite energy solution by an argument due to Cazenave. Namely,

∇u ∈ L2(R2)⇒ u(x) ≡ C with |C| ∈ {0, 1}. (1.2)

Those results can be generalized to the higher dimensions case (cf. [11]).
In 2010, Ma [13] gave a new proof of |u| ≤ 1 on the whole space in the higher dimensions case, where

only the maximum principle was employed. Afterwards, this priori estimate was also obtained for the
Chern-Simons-Higgs type equation which has a more complicated right hand side (cf. [12]).

In 1995, Rubinstein (cf. [14]) introduced another GL functional with a new penalization

Eβ(u,G) =
1
2
‖∇u‖2L2(G) +

1
4ε2 ‖β

2
− |u|2‖2L2(G).
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Here G is a bounded domain in R2, ε > 0, and β ∈ L∞(G). This functional is helpful to study the pinning
effects of GL vortices (cf. [2], [3], [6], [7] and [9]) and other analogous problems appear in the study of
Bose-Einstein condensate (cf. [1] and the references therein).

In this paper, we are concerned with the following equation

−4u = u(β2
− |u|2) in Rn, (1.3)

where u : Rn
→ Rk is a vector-valued function, and β ∈ L∞(Rn) satisfies

0 < m ≤ β(x) ≤M < ∞, ∀x ∈ Rn. (1.4)

Here n, k ≥ 2,m,M are positive constants. We will use the idea in [13] to prove a result analogous to (1.1).

Theorem 1.1. Let u ∈ C2(Rn,Rk) be a classical solution of (1.3) with (1.4). Then

|u| ≤M, ∀x ∈ Rn. (1.5)

Next, if u satisfies a stronger assumption |u| ≤ β than (1.5), we will prove a result analogous to a
Liouville-type result (1.2) for the finite energy solutions.

Theorem 1.2. Let u ∈ C2(Rn,Rk) be a finite energy solution (i.e. ∇u ∈ L2(Rn)) of (1.3). Assume that β is a piecewise
derivable function satisfying (1.4) and x · ∇β ≥ 0. If

|u(x)| ≤ β(x), ∀x ∈ Rn, (1.6)

then either u ∈ L2(Rn,Rk), or |u| ≡ β a.e. in ∈ Rn.

Remark 1.1.. An obvious fact is, if u ∈ L2(Rn,Rk)∩C2(Rn,Rk), then |u| → 0 when |x| → ∞. In addition, when
β = 0 in Bρ and β = 1 in Rn

\ Bρ, Theorem 1.2 is consistent with Theorem 1.2 in [10].

Remark 1.2.. Let u be a finite energy solution of (1.3). By the regularity result (cf. Lemma A.1 in [4]), one
has supRn |∇u| < ∞, which together with ∇u ∈ L2(Rn), implies ∇u ∈ Lγ(Rn) for all γ ≥ 2.

2. Proof of Theorem 1.1

For any fixed unit vector ~e ∈ Sk−1, we define v = ~e · u. Then from (1.3) we have

4v + v(β2
− |u|2) = 0, in Rn. (2.1)

Let V = v2. Then, using |u|2 ≥ V, from the result above we deduce that

4V = 2(v4v + |∇v|2) ≥ 2v4v ≥ 2V(V − β2). (2.2)

Given any small R ∈ (0, 1) and large α > 1, take

w(x) := (R2
− |x − x0|

2)−α.

By (1.4) and a direct computation, we can see that

4w + 2w(β2
− w) ≤ 0, in BR(x0) (2.3)

for sufficiently large α. Since w(x) = ∞ on ∂BR(x0), we claim by the comparison lemma that

V(x) ≤ w(x), in BR(x0).
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In fact, if there exists a point x1 ∈ Rn such that V(x1) > w(x1), then the positive maximum of V(x) − w(x)
can be achieved at some point x2. Therefore, at point x2, one has

0 ≤ −
1
2
4(V − w) ≤ V(β2

− V) − w(β2
− w) (2.4)

by (2.2) and (2.3). On the other hand, if we write 11(t) = t(t − β2(x)), then 1′1(t) > 0 for t > M2/2 and all
x ∈ Rn. This implies that

V(β2
− V) − w(β2

− w) < 0

at x2 as long as we notice V(x2) > w(x2) ≥ R−2α > M2/2. This contradicts with (2.4) and the claim is verified.
Then we have some constant C(R) > 0 such that |v(x)| ≤ C(R) in B R

2
(x0). Since x0 and ~e are arbitrary, we

deduce that

|u(x)| ≤ C, in Rn. (2.5)

Moreover, we prove |u(x)| ≤M on Rn by the contradiction argument.
Case 1. Suppose that there exists a point x0 ∈ Rn such that v(x0) > M. First, by (2.1) and v ≤ |u| we see

that

4v + v(β2
− v2) ≥ 0 when v > 0. (2.6)

For small ε > 0, we take
W1(x) := v(x) − v(x0) + ε − ε|x − x0|

2.

By (2.5), W1(x)→ −∞ as |x| → ∞. In view of W1(x0) > 0, there exists a point y ∈ Rn such that

W1(y) = max
Rn

W1(x) ≥W1(x0) = ε,

which implies

v(y) ≥ v(x0) + ε|y − x0|
2 > M. (2.7)

In view of 0 ≥ 4W1(y) = 4v(y) − 2nε, by (2.6) we get

2nε ≥ 4v(y) ≥ v(y)(v2(y) − β2(y)). (2.8)

If we write 12(t) = t(t2
− β2(x)), then 1′2(t) > 0 for t > M/

√
3 and all x ∈ Rn. This, together with (2.7), implies

12(v(y)) ≥ 12(v(x0) + ε|y − x0|
2). Combining with (2.8) yields

2nε ≥ 12(v(x0) + ε|y − x0|
2).

Letting ε→ 0, we get
0 ≥ v(x0)(v2(x0) − β2(x0)),

which, together with v(x0) > M, leads to a contradiction.
Case 2. Assume that we can find a point x0 ∈ Rn such that v(x0) < −M. If replacing W1 by

W2(x) := v(x) − v(x0) − ε + ε|x − x0|
2,

we can also see a contradiction by the same argument above. This shows that v ≥ −M.
Combining Cases 1 and 2 together yields |v(x)| ≤ M for arbitrary x ∈ Rn and arbitrary ~e. We then

conclude that |u(x)| ≤M in Rn. This completes the proof of Theorem 1.1.
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3. Proof of Theorem 1.2

By (1.3) we have

|u|2(β2
− |u|2) = |∇u|2 − ∆(|u|2/2). (3.1)

In view of ∇u ∈ L2(Rn), the Sobolev inequality implies u ∈ L2∗ (Rn) when n ≥ 3. Here 2∗ = 2n
n−2 . Thus, we can

find r j →∞ such that

r j

∫
∂Brj (0)

|∇u|2ds = o(1), when n ≥ 2;

r j

∫
∂Brj (0)

|u|2
∗

ds = o(1), when n ≥ 3.

Therefore, by the divergence theorem and the Hölder inequality, when r j →∞, there hold∣∣∣∣∣∣∣
∫

Brj (0)
∆(|u|2/2)dx

∣∣∣∣∣∣∣ ≤
∫
∂Brj (0)

|u||∂νu|ds

≤M

2πr j

∫
∂Brj (0)

|∇u|2ds


1
2

= o(1), when n = 2;

and ∣∣∣∣∣∣∣
∫

Brj (0)
∆(|u|2/2)dx

∣∣∣∣∣∣∣ ≤
∫
∂Brj (0)

|u||∂νu|ds

≤

r j

∫
∂Brj (0)

|u|2
∗

ds


1
2∗

r j

∫
∂Brj (0)

|∇u|2ds


1
2

|∂Br j (0)|1−
1
2−

1
2∗ r−

1
2−

1
2∗

j

= o(1), when n ≥ 3.

Thus, by (3.1), we have∫
Rn
|u|2(β2

− |u|2)dx = ‖∇u‖2L2(Rn) < ∞. (3.2)

Set S∗ = {x ∈ Rn; ε0 ≤ |u| ≤ m/2} for some fixed small constant ε0 ∈ (0,m/3). By (1.4) and (1.6),∫
Rn
|u|2(β2

− |u|2)dx ≥
∫

S∗
|u|2(β2

− |u|2)dx ≥
3m2

4
ε2

0|S∗|.

This and (3.2) imply |S∗| < ∞. Thus, there exists suitably large R0 > 0 such that S∗ ⊂ BR0 (0). Since u is
continuous and Rn

\ BR0 (0) is connected, either |u| ≤ ε0 or |u| ≥ m/2 holds true on Rn
\ BR0 (0).

When |u| ≤ ε0 on Rn
\ BR0 (0), it is led to β2

− |u|2 ≥ m2
− ε2

0 on Rn
\ BR0 (0). Thus,∫

Rn
|u|2dx =

∫
BR0 (0)

|u|2dx +

∫
Rn\BR0 (0)

|u|2dx

≤ |BR0 |M
2 +

1
m2 − ε2

0

∫
Rn\BR0 (0)

|u|2(β2
− |u|2)dx < ∞,

by virtue of (3.2). Namely, u ∈ L2(Rn,Rk).
When |u| ≥ m/2 on Rn

\ BR0 (0), by the same argument above, we can see∫
Rn

(β2
− |u|2)dx < ∞
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in view of (1.6). This furthermore implies β2
− |u|2 ∈ L2(Rn) by (1.4) and (1.6). Therefore, the C1-functional

E(U) =

∫
Rn
|∇U|2dx +

1
2

∫
Rn

(β2
− |U|2)2dx

makes sense for U ∈ Bδ(u) for small δ > 0. In addition, the classical solution u of (1.3) is a critical point of
E(U). Thus, the Frechet derivative of E(U) at u is zero. This leads to[

d
dλ

E(u(λ−1x))
]
λ=1

= 0. (3.3)

On the other hand, for λ , 0,

E(u(λ−1x)) = λn−2
∫
Rn
|∇u(x)|2dx +

λn

2

∫
Rn

(β2(λx) − |u(x)|2)2dx.

Therefore, from (3.3) we get

(n − 2)
∫
Rn
|∇u|2dx +

n
2

∫
Rn

(β2
− |u|2)2dx +

∫
Rn

(β2
− |u|2)(x · ∇β2)dx = 0. (3.4)

When n = 2, it follows that∫
R2

(β2
− |u|2)2dx = −

∫
R2

(β2
− |u|2)(x · ∇β2)dx ≤ 0,

which implies |u| ≡ β a.e. in R2.
When n ≥ 3,

(nβ2 + (n − 4)|u|2) > 0. (3.5)

By (3.2), (3.4) and (3.5), there holds

1
2

∫
Rn

(β2
− |u|2)(nβ2 + (n − 4)|u|2)dx = −

∫
Rn

(β2
− |u|2)(x · ∇β2)dx ≤ 0.

This result leads to |u| ≡ β a.e. in Rn.
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