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Remarks on an Equation of the Ginzburg-Landau Type

Bei Wang?

?School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, 210013, China

Abstract. This paper is concerned with a priori estimate of the Ginzburg-Landau equation. We study the
uniform bound of classical solutions on the whole space. In addition, we also obtain the Liouville-type
result of finite energy solutions.

1. Introduction
In 1994, Brezis, Merle and Riviere [5] studied the quantization effects of the following equation
—Au=1-uP)u inR%

It is the Euler-Lagrange equation of the Ginzburg-Landau (GL) energy

1 1
Ecu(u) = 5Vl g, + 711 = 1P gy

Here u : R*? — R? is a vector value function. In particular, they proved
lu<1 in R (1.1)

(The same result was also obtained in [8]). Based on this result, they also obtained a Liouville-type theorem
for the finite energy solution by an argument due to Cazenave. Namely,

Vu € L2(R?) = u(x) = C with |C| € {0, 1). (1.2)

Those results can be generalized to the higher dimensions case (cf. [11]).

In 2010, Ma [13] gave a new proof of |u| < 1 on the whole space in the higher dimensions case, where
only the maximum principle was employed. Afterwards, this priori estimate was also obtained for the
Chern-Simons-Higgs type equation which has a more complicated right hand side (cf. [12]).

In 1995, Rubinstein (cf. [14]) introduced another GL functional with a new penalization

1 2 1 2 2112
Eﬁ(u/ G) = §”vu||L2(G) + E”ﬁ - |1/£| ”LZ(G)'
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Here G is a bounded domain in R?, ¢ > 0, and 8 € L*(G). This functional is helpful to study the pinning
effects of GL vortices (cf. [2], [3], [6], [7] and [9]) and other analogous problems appear in the study of
Bose-Einstein condensate (cf. [1] and the references therein).

In this paper, we are concerned with the following equation

—Au = u(ﬁ2 —[uP) inR", (1.3)
where 1 : R" — R is a vector-valued function, and g € L*(R") satisfies

O<m<B(x)<M<oo, VxeR" (1.4)
Here n,k > 2,m, M are positive constants. We will use the idea in [13] to prove a result analogous to (1.1).
Theorem 1.1. Let u € C2(R", R¥) be a classical solution of (1.3) with (1.4). Then

ul <M, VxeR" (1.5)

Next, if u satisfies a stronger assumption |u| < f than (1.5), we will prove a result analogous to a
Liouville-type result (1.2) for the finite energy solutions.

Theorem 1.2. Let u € C3(R", R¥) be a finite energy solution (i.e. Vu € L*(IR")) of (1.3). Assume that f is a piecewise
derivable function satisfying (1.4) and x - VB > 0. If

[u(x)| < B(x), VYxeR", (1.6)
then either u € L2(R",RY), or [u| = B a.e. in € R™.

Remark 1.1.. An obvious fact is, if u € L?(IR", R¥) N C2(R", R¥), then |u| — 0 when |x| — co. In addition, when
B =0inB,and f = 1in R" \ B,, Theorem 1.2 is consistent with Theorem 1.2 in [10].

Remark 1.2.. Let u be a finite energy solution of (1.3). By the regularity result (cf. Lemma A.1 in [4]), one
has supy, |[Vu| < oo, which together with Vu € L?(R"), implies Vu € L”(R") for all y > 2.
2. Proof of Theorem 1.1
For any fixed unit vector ¢ € $¢1, we define v = ¢ u. Then from (1.3) we have

A+ 0B - uf) =0, inR" (2.1)
Let V = v2. Then, using [u[> > V, from the result above we deduce that

AV =2(vrv + Vo) > 20480 > 2V(V - B2). (2.2)
Given any small R € (0,1) and large a > 1, take

w(x) := (R? = |x — xo) ™.

By (1.4) and a direct computation, we can see that

Aw + 2w(f* —w) <0, in Br(xo) (2.3)
for sufficiently large «. Since w(x) = co on dBg(xg), we claim by the comparison lemma that

V(x) < w(x), in Br(xo).
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In fact, if there exists a point x; € R” such that V(x;) > w(x;), then the positive maximum of V(x) — w(x)
can be achieved at some point x,. Therefore, at point x,, one has

0< —%A(V —w) < V(* - V) —w(p* - w) (2.4)

by (2.2) and (2.3). On the other hand, if we write g1(t) = t(t — *(x)), then g;(t) > 0 for t > M?/2 and all
x € R". This implies that
V(> -V)-wp®-w) <0

at x, as long as we notice V(xz) > w(xp) > R > M?/2. This contradicts with (2.4) and the claim is verified.
Then we have some constant C(R) > 0 such that |[v(x)] < C(R) in Bg(xo). Since x; and ¢ are arbitrary, we
deduce that

lu(x) <C, inR". (2.5)

Moreover, we prove |u(x)| < M on IR” by the contradiction argument.
Case 1. Suppose that there exists a point xg € R"” such that v(xg) > M. First, by (2.1) and v < |u| we see
that

A+ 02 -0*) >0 whenv > 0. (2.6)

For small € > 0, we take
Wi (x) == v(x) — v(x0) + € — €]x — xo|*.

By (2.5), Wi(x) = —o0 as |x| — oo. In view of Wi (xp) > 0, there exists a point y € R" such that
Wi(y) = max Wi(x) > Wi(xo) =€,
which implies
o(y) = v(xo) + €ly — xo* > M. (2.7)
In view of 0 > AW;(y) = Av(y) — 2ne, by (2.6) we get
2ne = no(y) = v(y)(@*(y) - B2 (Y))- (2.8)

If we write g2 (t) = £(t* — p*(x)), then g;(t) > 0 for t > M/ V3 and all x € R". This, together with (2.7), implies
g2(0(y)) = g2(v(x0) + €ly — xol*). Combining with (2.8) yields

2ne > go(v(xo) + €ly — xolz).

Letting € — 0, we get
0 2 0(x0)(v*(x0) — B*(x0)),

which, together with v(xy) > M, leads to a contradiction.
Case 2. Assume that we can find a point xg € R” such that v(xp) < —M. If replacing W; by

Wa(x) := v(x) — v(xg) — € + €|lx — xol?,

we can also see a contradiction by the same argument above. This shows that v > —M.
Combining Cases 1 and 2 together yields [v(x)] < M for arbitrary x € R" and arbitrary &. We then
conclude that [u(x)| £ M in R". This completes the proof of Theorem 1.1.
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3. Proof of Theorem 1.2
By (1.3) we have
(8> — [uP) = IVul® — A(ul/2). (3.1)

In view of Vu € L*(R"), the Sobolev inequality implies u € L? (R") when n > 3. Here 2* = 2% Thus, we can
find r; — oo such that

rjf [Vul’ds = o(1), whenn >2;
9B,,(0)

r]-f [ul*ds = o(1), whenn > 3.
9B,,(0)

Therefore, by the divergence theorem and the Holder inequality, when r; — oo, there hold

f Aul?/2)dx| < f [u||dyulds
By, (0) 9B,,(0)
1

3
< M[anjf |Vu|2ds] =o0(l), whenn=2;
9B, .(0)
]

f A(ul?/2)dx| < f [u|d, ulds
B, (0) 9B,,(0)

+ !
N _1_1
<|r; f ufds| |r; f VuPds| 9B, (0)[!~2 %2>
2B,,(0) 9B,,(0) :
=0(1)

, whenn > 3.

and

Thus, by (3.1), we have
f P8 ~ i) = Vil ) < 0. (3.2)
Set S. = {x € R"; eg < [u| < m/2} for some fixed small constant €y € (0, m/3). By (1.4) and (1.6),
2002 2 202 2 3m> ,
N [ul*(B° — lul")dx = s [l (B" = lu)dx > ——€lS.l.

This and (3.2) imply |S.| < oo. Thus, there exists suitably large Ry > 0 such that S. C Bg,(0). Since u is
continuous and R" \ Bg,(0) is connected, either |u| < €y or |u| > m/2 holds true on R" \ Bg,(0).
When [u] < €9 on R™ \ Bg,(0), it is led to % — [ul* > m? — €3 on R" \ Bg,(0). Thus,

Iulzdx=f Iulzdx+f [ul?dx
R" Bg, (0) R™\Bg,,(0)

< |Bg,IM? + [ul*(8> — |ul*)dx < oo,

2 _
m= — €y JR"\Bg, (0)

by virtue of (3.2). Namely, u € L2(R", R¥).
When |u| > m/2 on R" \ Bg,(0), by the same argument above, we can see

NGRS
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in view of (1.6). This furthermore implies g% — [u?> € L>(R") by (1.4) and (1.6). Therefore, the C!-functional

EU) = f |VU|2alx+1 (B* — UP)?dx
Rn 2 ]Rn

makes sense for U € Bs(u) for small 6 > 0. In addition, the classical solution u of (1.3) is a critical point of
E(U). Thus, the Frechet derivative of E(U) at u is zero. This leads to

[%E(u(A—lx))L:1 =0. (3.3)

On the other hand, for A # 0,

E(u(A™'x)) = A"2 f |Vu(x)|2dx+§ f (B*(Ax) — [u(x)*)*dx.
R" R”

Therefore, from (3.3) we get

(n-2) ” IVulPdx + g fR ” (B* — |uf*)dx + f ” (B* = lul?)(x - VB*)dx = 0. (3.4)

R
When n = 2, it follows that

f (B> — [uf*)?dx = — f (B* — [ul?)(x - VB)dx < 0,
R2 R2

which implies [u| = f a.e. in R?.
When n > 3,

(B> + (n — 4)ul?) > 0. (3.5)
By (3.2), (3.4) and (3.5), there holds

% jﬂ;(ﬁz - |u|2)(7’lﬁ2 +(n —4)uf)dx = - j]l;n(‘gZ — [uP)Cx - Vﬁz)dx <o.

This result leads to |u| = f a.e. in R".
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