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The Characterization of Graphs with Eigenvalue -1
of Multiplicityn —4orn -5

Yuhong Yang?, Qiongxiang Huang?

“College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China

Abstract. Petrovi¢ in [M. Petrovi¢, On graphs with exactly one eigenvalue less than -1, J. Combin. Theory
Ser. B 52 (1991) 102-112] determined all connected graphs with exactly one eigenvalue less than —1 and all
minimal graphs with exactly two eigenvalues less than —1. By using these minimal graphs, in this paper,
we determine all connected graphs having —1 as an eigenvalue with multiplicity #n — 4 or n — 5.

1. Introduction

Throughout this paper all graphs are finite, simple and undirected. Let G be a graph. For v € V(G) and
X c V(G), let Ng(v) = {u € V(G) | u is adjacent to v} be the neighborhood of v, Nx(v) = Ng(v) N X be the set
of neighbors of v in X and G[X] be the subgraph induced by X. Conventionally, we denote the complete
graph, cycle, path and complete bipartite graph by K,,, C;,, P,, and K,,, ,, respectively.

Let G be a graph of order n with adjacency matrix A = (a;;)uxn, where a;; = 1 if the vertex i is adjacent
to j, written as i ~ j, and a;; = 0 otherwise. Clearly, A is real and symmetric, and so all its eigenvalues are
real, which are labelled in non-increasing order as A1 > A; > --- > A,,. These eigenvalues are also called the
eigenvalues of G. The multiplicity of A; is denoted by mg(A;) (or simply m(A;)), and the nullity of G is defined
to be the multiplicity of 0 as an eigenvalue of G, i.e., 1(G) = m¢(0). Denoted by p~, (G) and p*, (G) the number
of eigenvalues of G which are smaller and greater than -1, respectively. Thus n = p~,(G) + mg(-1) + p*,(G).
It means that G has at most six distinct eigenvalues if mg(=1) > n — 5. The join of two graphs G and H ,
denoted by GVH, is a graph obtained from G and H by joining each vertex of G to all vertices of H.

Connected graphs with few eigenvalues have aroused a lot of interests in the past several decades. One
of the reason is that such graphs in general have pretty combinatorial properties and a rich structure [15].
This problem was perhaps first raised by Doob [18] in 1970. Over the past two decades, the investigations
about this problem led to many results, we refer the reader to [2, 3, 7, 9, 10, 12-21, 24, 27] for details.

The graphs with n -5 < 1(G) = mg(0) < n—2 are explicitly characterized in [1, 5, 6, 8, 25, 26]. The graphs
with n — 3 < mg(-1) < n —1 are also characterized in [4, 22]. In this paper, we also focus on the eigenvalue
—1. Here, it is necessary to summarize the known results related to the eigenvalues —1.

Givenanintegeri > 0, let gn([—1]f) denote the set of all connected graphs on n vertices having eigenvalue
—1of multiplicity i. Fori = n—1, weclaim that G € G,([-1]""!)ifand only if G = K,,. Clearly, K,, € G,([-1]"7).
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If G € G,([-1]""") and G % K,,, then P3 will be an induced subgraph of G, and so A3(P3) = — V2 > A(G) = -1
by Interlacing Theorem, a contradiction. For i = n — 2, according to the result of Cdmara and Haemers
[4], there are no graphs in G,([-1]"2). For i = n — 3, by using a result of Oboudi [22] concerning the
distribution of the third largest eigenvalue of graphs, we can easily deduce that G € G,([-1]""%) if and only
if G = (K; U Kp)VK,—s—p (see Lemma 2.2 below). In this paper, we continue to characterize the graphs in
Gn([-17) for large i.

Petrovi¢ in [23] characterized all connected graphs with exactly one eigenvalue less than -1, and also
determined all minimal graphs with exactly two eigenvalues less than —1. By using these minimal graphs, in
this paper, we explicitly characterize all graphs in G,([-1]"*) and G,([-1]""°). Concretely, for a connected
graph G, we prove that G € G,([-1]"™) if and only if its canonical graph (defined in next section) is
isomorphic to one of Ky 3, Py, C4, Ps or C¢; G € gn([—l]”‘5 ) if and only if its canonical graph is isomorphic
to one of Hi—H,3 which are shown in Figure 2 and Figure 3.

2. Preliminaries
In this section, we will cite some lemmas and introduce some notions and symbols for latter use.

Lemma 2.1 (Interlacing Theorem). Let G be a graph with n vertices and eigenvalues Ay > Ay > -+ > A, and
H an induced subgraph of G with m vertices and eigenvalues y1 2 tp > -+ > Uy. Then A; > pi > Ay_y4i where
i=12,...,m

Oboudi in [22] characterized the graphs with A3 < 0 where he gives a distribution of A3 in the following
result.

Lemma 2.2 (Theorem 4.9, [22]). Let G be a graph. Then A3 € {— V2, -1, 1_T‘FS} U (-0.59,-0.5) U (-0.496, o).
Moreover, the following holds:

(1) A3 = —V2ifand only if G = P5.
(2) A3 =—1ifand only if G = K, or G = K; U Kyy—s or G = (K, U Kp)VK,,—4—p, where n,s,a,b > 0 are all integers
andn>a+b.

Let G be a graph of order n. For any u,v € V(G), we say that they have the relation p, denoted by
upv, if u = v, or u ~ vand Ng(u)\v = Ng(v)\u. Clearly, p forms an equivalence relation on V(G). Suppose
that Vy,Vy,..., Vi are all distinct p-equivalence classes of V(G), and v1,v,...,v, are the corresponding
representatives, i.e. v; € V; = {v € V(G) | vpv;}. The canonical graph G, of G is defined as the graph with
vertexset{V1, V3, ..., Vi},and with an edge connecting V;and V; if v; ~ v;in G. Obviously, G, = G[{vy, vy, .. .,
vk}]. A graph H is said to be primitive if Ny(v)\u # Ny (u)\v whenever u ~ v in H, and imprimitive otherwise.
Obviously, the canonical graph G, itself is primitive. By simple observation, we have

Lemma 2.3. Let H be an induced subgraph of G. Then H is isomorphic to some induced subgraph of G, if H is
primitive. Particularly, H = G, if they have the same number of vertices.

Proof. Suppose V(H) = {u1,uy, ..., up} € V(G). We claim that any two adjacent vertices of H cannot have
the relation p in G. Otherwise, assume that u; and u; are two adjacent vertices which are contained in
the same p-equivalence class. Then u; and u; have the same neighbors in V(G)\{u;, u;}, and so the same
neighbors in V(H)\{u;, u;}. This implies that H is imprimitive, a contradiction. Thus there are at least i
different p-equivalence classes, and H is isomorphic to some induced subgraph of G.. This proves the first
part of the lemma, and the second part follows immediately. [J

For a graph H with vertex set V(H) = {v1,v,,...,v} and complete graphs K,,(i = 1,2,...,k), we can
construct a graph I' from H and K, such that each v; is replaced with K, and the vertices of K,, join that of
Ky, if v;v; is an edge of H. As usual, we write I = H[K,,, K,, ..., Ky, ]. Such a graph is called the generalized
lexicographic product of H (by K,,,Ky,,...,Ky,). Obviously, each graph can be viewed as a generalized
lexicographic product of its canonical graph, i.e., G = G¢[Ky,, Ky, . .., Ky, ]. However the canonical graph of
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I' = H[Ky,, Ky, . .., Ky, ] is not necessary to be H. Clearly, the canonical graph of I is H if H is primitive. It
implies that, to characterize a class of graphs, it suffices to characterize all canonical graphs in this class.
The following result is useful.

Lemma 2.4 (Theorem 5, [23]). IfG.isa canonical graphofa graph G, thenp”,(G) = p~,(G) and p*(G) = p*,(G).

Corollary 2.5. Let G = G[Ky,,Ky,, ..., Ky ], m1+12+--+nm=nand1 <i <k ThenG e Gu([-11"7) if and
only if G, € Gr([-11F).

Proof. By Lemma 2.4,
meg(=1)

n—-p4(G)-p5(G)
=n- p:l(Gc) - Pil(Gc)
=n—k+mg(-1)

Thus mg(-1) =n —iif and only if mg (-1) =k—i. O

Corollary 2.6. A graph G € G,([-11""%) if and only if G = (K, U Ky)VK,,_,_y, where n,a,b > 0 are all integers and
n>a+b.

Proof. Let G € G ([-11"3). If n = 3, we have G = P3 = (K; U K;)VK;. Now suppose n > 4. By Lemma 2.2,
we have A3(G) > —1. Also, we claim that A,,(G) < —1, since otherwise G cannot contain Pj as its induced
subgraph by Interlacing Theorem, i.e., G must be isomorphic to K, a contradiction. Then we must have
A3(G) = =1 due to mg(—1) = n -3, and so G = (K, U K;)VK,_,— again by Lemma 2.2.

Conversely, suppose G = (K, U K)VK,,_,—p. It is clear that P; (€ G5([-1]°)) is just the canonical graph of
G. Then, by Corollary 2.5, we may conclude that G € G,([-1]"%). O

Gy

Figure 1: On graphs with exactly one eigenvalue less than —1.

Let G1—-Gy be the graphs shown in Figure 1, in which ellipses denotes the independent sets; such two
ellipses joining with exactly one full line denote a complete bipartite graph; such two ellipses joining with
a sequence of k (k > 1) dotted parallel lines denote a complete bipartite graph on k + k = 2k vertices with
k edges of a perfect matching excluded; such two ellipses joining with a sequence of k (k > 1) full parallel
lines denote a bipartite graph on k + k = 2k vertices with k edges of a perfect matching.

Let G be a connected graph. By argument above, if p~,(G) = 0, then G does not contain P3 as an
induced graph and so G = K, which means p~,(G) = 0 if and only if G = K;,. The following elegant result
characterizes the graph G with p~,(G) = 1.

Lemma 2.7 (Theorem 7, [23]). A connected graph G # K, has exactly one eigenvalue less than —1 if and only if its
canonical graph G, is an induced subgraph of any of the graphs G1 — Gy in Figure 1, so G, is an bipartite graph.

Lemma 2.8. Let G € G,([—1]') have n vertices. If 0 < i < n — 4 then A3(G) > =1 > A,(G).
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Proof. First we prove A3(G) > —1. On the contrary, let A3(G) < —1. By Lemma 2.2, we get that
G = P3, K, or (K, U Ky)VK,,_sp.

However, mp,(-1) = 0 > 3 — 4, mg,(-1) = n — 1 > n — 4, and mx,uk,)vk,_, ,(—1) = n =3 > n — 4, which are all
contrary toi < n —4.
Next we show -1 > A,(G). Obviously, G # K, since A3(G) > —1. Thus G has an induced path P3, which

implies that — V2 = A3(P3) = A,(G) by Lemma 2.1. Our result follows. 0O

n-a-b

3. The characterization of G,([-1]""%)

Lemma 2.2 implies that G € G,([-1]""%) if and only if G = (K, U Kp)VKj,_,—p if and only if G, = P3. In this
section, we will explicitly characterize the graphs in G,([-1]""*). It suffices to give all canonical graphs of

Gu([-11").

Theorem 3.1. A graph G € G,([-11""*) if and only if its canonical graph G, is isomorphic to one of Ky 3, Py, Cs, Ps
or Ce.

Proof. By Lemma2.8, A3 > —1 > A,,. Thus the spectrum of G can be written as Spec(G) = [A}, A}, A, =174, A}],
where A1 > A, > A3 > -1, Ay =--- = A1 = =1 and -1 > A,. In accordance with p-partition, we have
G = G/JK,,,Ky,,...,Ky]. From Lemma 2.4, G, also has exactly three eigenvalues more than —1 and
one eigenvalue less than —1. From Lemma 2.7, G, is a bipartite graph and then the spectrum of G, is
symmetric about 0. Thus we may assume that Spec(G.) = [y, u3, 3, (=1, 1, where g = pp > 3 > -1,

pa = -+ = g1 = =1 and =1 > p = —pq. Clearly, k > 4. Additionally, if k > 8, then py = -3 =1, a
contradiction. Next we consider k = 4,5,6,7.
If k =4, then1 > up = —us > —1. Since Kj3, P4 and C4 are the only three connected bipartite

graphs of 4 vertices, their spectra Spec(K;3) = [V3,0% —V3], Spec(P,) = [1.618,0.618,—-0.618,-1.618] and
Spec(Cy) = [2,0,0,—2] meet with the requirement. Thus G, = Ky 3, P4 or Cy.

If k =5, then pp = —py = 1 and pz = 0. We find that Ps5 is the only bipartite graph of 5 vertices whose
spectrum Spec(Ps) = [1.73,1,0, -1, —1.73] meets with the requirement. Thus G, = Ps.

If k = 6, then yp = —ps = 1and p3 = —py = 1. Similarly, we find that Ce, with Spec(Ce) = [2!,1%,-12,-21],
is the only bipartite graph of 6 vertices as our required, and so G, = Cs.

If k = 7, then uy = 0, which contradicts 4 = —1.

Conversely, each canonical graph G, which is isomorphic to one of Kj3, P4, C4, P5, Cg, has spectrum
of the form Spec(G.) = [A}, AL, AL (=1)%*, A(], where k = 4,5 0r 6, Ay > A2 > A3 > —1, and -1 > A;. Hence
Gc € Gi([-11F%). Tt follows that G € G,([-1]""*) by Corollary 2.5.

The proof is complete. [

By Theorem 3.1 and Corollary 2.5, we have the following result immediately.

Corollary 3.2. A graph G € G,([-11""*) if and only if G = H[K,,, Ky, . .., Ky, ] where H is isomorphic to one of
K1,3,P4,C4,P5,C6andn1 +1ny+---+ng=n > 4.

It is worth mentioning that Corollary 3.2 gives some classes of graphs with a few eigenvalues. In fact, for G €
G.([-1]"*), we see that G has at most five distinct eigenvalues and d(G) < 4. Especially, K1 3[Ky, , Ky, , Kiy, K, ]
and Cy4[K,,, Ky,, Ky;, Ky, ] are two classes of graphs. Each of them has at most five distinct eigenvalues and
d(G) = 2.

4. The characterization of G,([-1]"7%)

Recall that G,([—1]"7°) is the set of all connected graphs on 7 vertices in which each graph has eigenvalue
-1 of multiplicity n — 5, where n > 5. Clearly, each G € G.([-1]"7%) has at most six distinct eigenvalues.
Denote by G}([-1]"°) the connected graphs with spectra {A], A}, A}, A}, =177, A}} where Ay > A; > A3 >
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Ay > =1 > A,. Similarly, denote by G%([—1]""°) the connected graphs with spectra {A], A}, A}, -1"7>, AL, A}},
where Ay > A; > A3 > =1 > 4,1 > A,. By Lemma 2.8, G,([-1]"") is the disjoint union of G}([-1]""%) and
Ga([-11").

Firstly, we characterize the graphs in G} ([-1]""°). By using the software SageMath 8.0, we can find all
bipartite graphs on 5-8 vertices such that they have four eigenvalues greater than —1 and one eigenvalue
smaller than —1, then they are Hi—H1; (see Figure 2), whose spectra are listed in Table 1. From which it is
clear that Hi—H11 € G}([—1]"7) are all primitive. We will show that they are exactly all canonical graphs of

Gu([-11").

Graph | Spectrum | Graph | Spectrum
H, 21,03, -21] H, | [1.93%,1%,052,-0.52, 11, -1.93!]
H, | [1.85%,0771,01,—0771,-1.85'] | Hs | [2411,11,041!,-0.411,-11,-2.411]
H, | [214!,0.66',0',-0.66!,-2141] | Hy | [2!,12,0,-12,-21]
Hy | [245',0°-2.45!] Hio | [2.651,12,0!,-12,-2.65!]
Hs | [2.24!,1!,02,—11,-2.24] Hu | [31,13,-13,-31]
Hg [2%,11,0%,-1', 2]

Table 1: The spectra of H1—-Hj;.

/ JERTANY
¢ o o o

H; H; Hs Hy Hs Hg Hy

Figure 2: The canonical graphs of G} ([-1]"75).

Theorem 4.1. A graph G € G([—11"°) ifand only if its canonical graph G, is isomorphic to one of Hy, Hy, . .., H11.

Proof. Let G € GL([-1]""%). Then G = G [Ky,, Ky, - - ., Ky, ] and G, € Gx([-1]5) by Corollary 2.5 and so k > 5.
From Lemma 2.4, the canonical graph G, also has four eigenvalues greater than —1 and one eigenvalue
less than —1. Hence the spectrum of G, can be written by Spec(G.) = [ul, ub, il ul, (-1)F, 1], where
g1 > po > Uz > pg > =1, us =+ = gy = =land -1 > y = —p1. From Lemma 2.7, G, is a bipartite graph,
and then the spectrum of G, is symmetric about 0. Thus, if k > 10, then ys = —ux—4 = 1, a contradiction.
Next we consider k =5,6,7,8,9.

Ifk=5,then1> pp = —pgy > —1 and p3 = 0. From Table 1 it is clear that Hy, H», H3 and H, are the only
four bipartite graphs on 5 vertices with this property. Hence G, = H;, H», H3, Hy.

If k =6, then up = —us =1and 1 > —u3 = yy > —1. From Table 1 we find that Hs, Hs, Hy and Hg are the
only four bipartite graphs on 6 vertices satisfying this property. Hence G. = Hs, He, H7 or Hg.

Ifk=7then uy = —ug =1, uy3 = —us = 1 and py = 0. Similarly, Hg and Hyg in Table 1 are the only two
bipartite graphs on 7 vertices we needed. Hence G, = Hy or Hyp.

If k=8, then yp = —uy =1, uys = —ug = 1 and py = —us = 1. We have G, = Hy; in Table 1.

If k =9, then us = 0, which is impossible.

Conversely, it is clear from Table 1 that each of Hi—H;; belongs to Gr([-1]°°) where k = 5,6,7 or 8. By
Corollary 2.5, G = G.[Ky,, Ky, - - ., Ky ] € GE([-1]"°) foreach G, = H;and 1 > i > 11wheren = ny+np+- - -+1y.

The proof is complete. [

It remains to characterize those graphs in G2([-1]"°). By the software SageMath 8.0, we can find all
graphs on 5-7 vertices satisfying the following properties:

(1) they are connected non-bipartite.
(2) they are graphs belonging to G5([-1]"") (that is, p.(-1) = 3 and pZ(-1) = 2).
(3) they are primitive.
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Graph | Spectrum | Graph | Spectrum
Hp [2.48',0.69',0',-1.171, -21] His [3.78',0.711,0!, -1, -1.49!, -21]
His [2.94',0.62!, -0.46!,-1.47", -1.62] Hio [4.20',1,0.55!, 12, -1.75!, -21]
Hiy [2.691,0.331,01, 1271 —1. 751] Hy [2.81',1',0.53!,-11,-1.34!, -21]
His [3.241,02, -1.241, -21] Hy [3.22,11,0.11%, -1, -1.53!, -1.81']
Hie [2.301,0.621,0!, -1.30!, -1.62'] Hy [3.59',0.621,0.16!, -1, -1.62", -1.75']
Hiy [21,0.622, -1.622] Hys [3.65,12,-12,-1.65!, -21]

Table 2: The spectra of Hjp—Ha3.

V1 U2
U3
U5 o
Hiz
U1 U2
U3
v
Us 04
His Hig

Figure 3: The canonical graphs of gﬁ([—l]”‘5).

All these graphs are Hi,—Hp3 shown in Figure 3, and their spectra are listed in Table 2. In what follows, we
will give a series of lemmas and theorems to show that G € G2([-1]"") if and only if G. is isomorphic to
one of the graphs Hio—Hps.

One can directly verify the following result by Interlacing Theorem.

Lemma4.2. Let G € G2([-1]"°) and n > m > 6. If H is an induced subgraph of G on m vertices with eigenvalues
U1 2 Ho 2o 2 Uyt 2 P, then gy = .00 = lyp = =1

Lemma 4.3 (Theorem 8, [23]). If a graph G has exactly two eigenvalues less than —1, then G contains at least one
induced graph which is isomorphic to one of M1—My (see Figure 4) or Hip—Hay (see Figure 3).

K <o XX <ER &<
ug =0 g =0 g =0 g =0 g =0
M; Mg My Mo Mn

Figure 4: The minimal graphs M;-M;s.

Lemma 4.4. The graphs Hiy—Ha7 displayed in Figure 3 are exactly six minimal graphs in G>([-1]""°) (it means that
any G € GA([-1]""°) contains at least one induced subgraph which is isomorphic to one of Hio—Hi7), where n > 5.

Proof. Let G € G*([-1]""). Then G contains exactly two eigenvalues less than —1. By Lemma 4.3, G contains
at least one induced graph which is isomorphic to one of M1—M;; (see Figure 4) or Hi,—H17 (see Figure 3).
On the other aspect, let H be any induced subgraph of G, where n = |V(G)| 2 m = |V(H)| > 6. By Lemma 4.2
we have py(H) = —1. However, the fourth largest eigenvalues of the graphs M;-M; are all not equal to —1
(see Figure 4). Hence M;—M;; should be eliminated. Indeed, Hi,—H;7 are the six minimal graphs belonging
to G2([-1]"°) (see Table 2). [
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In terms of Lemma 4.4, we will give a series of lemmas and theorems that exhaust all canonical graphs of
G>([-1]"") that contain at least one induced subgraph which is isomorphic to one of Hi,—Hj7. This leads to
the final characterization of the graphs in G([-1]"°) for any n > 5. First, we give a lemma that is frequently
used later on.

01 92 U1

U5 & &0y Vs

U2

Figure 5: I'1-T'1¢ (some connected graphs on 6 vertices with 14 = —1).

Lemma 4.5. Let G € G*([-1]""%). Then the canonical graph G, has 6 vertices if and only if G, is isomorphic to
one of Hig, Hao, Hy1 or Hyp (shown in Figure 3), in which Hig and Hyg contain induced Hyp; Hy and Hy, contain
induced Hq3; Hig contains induced Hys; Hoo contains induced Hig.

Proof. From Figure 3 and Table 2, it is clear that H1g, Hyo, H»1 and Hp; are primitive and belong to GA([-1]"?)
for n = 6. The sufficiency follows.

Let G € G2([-1]"") and its canonical graph G, has 6 vertices. By Lemma 2.4 and Lemma 4.2, we get
ua(Ge) = —1. By Lemma 4.4, G, contains at least one induced graph which is isomorphic to one of Hi»—Hj7.
By using Table A3 in [11] (one can also use software SageMath 8.0 under the restriction of 14(G.) = —1), we
find that there are only twenty connected graphs on 6 vertices belonging to G2([—1]"~%), in which I'1-T' are
shown in Figure 5 and others are Hig, Hy, Hz1 and Hy, in Figure 3. From which we choose, according to
Lemma 4.4, the primitive graphs that contain one of Hi,—Hj7 as their induced subgraphs. It is clear from
Figure 5 that I';, I';, I'; are generalized lexicographic products of Hi, (where the vertices satisfying vpv; are
labelled as hollow dots, the edges connecting v and Hj, are labelled as dotted lines, and the following is
similar), I'; (i = 4,5, 6) are the products of Hy3, I'; (i = 7,8,9,10) are the products of Hys, I'; (i = 11,12) are
the products of His, I'; (i = 13, 14, 15) are the products of Hye, and I'i¢ is a product of Hyy. Hence all the T;
are imprimitive and will be excluded. The remainders Hig, Hy, H>1 and Hy; are the only primitive graphs
containing one of Hi,—Hyy as induced subgraph. In fact, Hig and Hyg contains Hio; Hy; and Hy, contain His;
Hig contains His; Hy, contains Hig.

The proof is complete. [

U1

| b
Us & g0y
g = =039
Sy
U1 U2 Ule- U1 o U2 U1 902
i w10 i
Us 7');1'0 [ a— —'v'j;o Us & ey 05 5224y Us 5——os
e
s =0 g = —0.51 us=0 g = =0.56 g ~ =048 ug = —0.36
Sg Sy S0 Si S12 S13

Figure 6: Forbidden subgraphs 4 # —1.

Lemma 4.6. Let G, € Q%([—l]”‘5) contain an induced subgraph which is isomorphic to Hyp and H, = G,[V(H12) U
{v}] for v € V(G)\V(H1z2). Then H, = Hig or Hyo (shown in Figure 3).
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Proof. The graph H, has six vertices and u4(H,) = —1 by Lemma 4.2. Additionally, H, will be connected
since otherwise H, = S; (see Figure 6) but 114(S1) = 0. By using the Table A3 in [11] (also can using software
SageMath 8.0 under the restriction of 4(G.) = —1), we find that there are only five connected graphs on 6
vertices whose fourth largest eigenvalues equal —1 and each of them contains an induced subgraph which
is isomorphic to Hjy, in which I'y, I';, I'; are shown in Figure 5 and others Hig, Hy. Thus we have H, = Iy,
I';, '3, Hig or Hyp. It suffices to eliminate the graphs: I'1-T’.

If H, = I'1, then v4pv in I'; (see Figure 5). Since G, is primitive, v4 and v has no relation p in G, and
so Ng,(v4)\v # Ny, (v)\vs. Since p is symmetric, we may assume that G, has another vertex u ~ v4 but
u + v. Thus H, = G.[V(H12) U {u}] € {I'1,I2,I's, Hig, Hy} by above arguments, where we regard u as v in
these graphs. Now H,, = G[V(Hi2) U {v,u}] consists of two induced subgraphs which are isomorphic
to I'1 and H,, respectively. Clearly, H,, will be S, or S; if H, takes I'y (where H, = H,, = I'; corresponds
to Sp; H, = I't = H, corresponds to S3). Similarly, H will be S4, S5, S¢ and Sy if H,, takes I'p,I's, Hig and
Hy, respectively. However, Sy, S3, S4, S5, S¢ and Sy are all forbidden induced subgraphs of G, because their
fourth largest eigenvalues are not equal to —1.

If H, = I';, then v3pv in I'; (see Figure 5). Similarly, there exists some u with u ~ v3 but u + v, and then
H, = G[V(H12) U {u}] € {I'1, T, T3, His, Hy}. Again we consider H,,, = G.[V(H12) U {v,u}]. Clearly, H, =TI’
or Hyy cannot appear in H,,, since u + v3 in I'; and Hyg (but u ~ v3 in H, ;). Additionally, {H,, H,} # {I';, T2}
as above. Thus H,, € {I';, Hig}, and H will be Sg and Sy if H,, takes I'; and Hig, respectively. However, Sg and
Sg are all forbidden induced subgraphs of G.

If H, = I';, then v5pv in I'; (see Figure 5). Similarly, there exists some u with u ~ v5 but u + v, and then
H, = G/[V(H12) U {u}] € {I's, His, Hyo} (I'1, I'> will be abandoned as above). Thus H = G.[V(Hy2) U {v, u}] will
be Sqg or Sq; if H, takes I's; H will be S15, S13 if H,, takes Hig and Hyy, respectively. However, Sy, S11, S12 and
S13 are all forbidden induced subgraphs of G,.

The proof is complete. [
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Figure 7: Forbidden subgraphs py # -1.

Theorem 4.7. A graph G € GA([—1]""°) contains an induced subgraph which is isomorphic to Hyy if and only if its
canonical graph G, is isomorphic to one of Hi», His, H19 or Hag (see Figure 3).

Proof. Assume that G, = Hyp, Hig, Hi9 or Hy. Then G, has an induced subgraph which is isomorphic to
Hj; since each of Hig, Hi9 and Hyp has an induced subgraph which is isomorphic to Hy,. Consequently, G
contains an induced subgraph which is isomorphic to Hi,.

Conversely, suppose that G contains an induced graph which is isomorphic to Hi». Since Hy; is primitive,
by Lemma 2.3 G, has induced Hi,, and G, = Hy, if [V(G¢)| = 5. Assume that |V(G.)| > 5. By Lemma 4.6,
H, = G [V(Hi2) U {v}] € {His, Hy) for v € V(G.)\V(H12). Itis all right if G. = H,. Otherwise, there exists
u € V(G)\V(Hy) such that H, = G[V(Hi2) U {u}] € {H1s, Hyo} again by Lemma 4.6. We will distinguish the
following cases.

Case 1. If H, = Hijg = H, then Ny, (v) = V(Hi2) = Np,(u) (see Hig in Figure 3). If v » u then H =
G:[V(Hi2) U {v, u}] = F; (see Figure 7), but u4(F1) # —1. Thus v ~ u and so vpu in H. Since G, is primitive,
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we have Ng, (v)\u # Ng, (u)\v. Thus we may assume that G, has a vertex w ~ v but w » u. Again we have
H,, = G.[V(H12) U {w}] € {H1s, Hxo} and so Hy, = Hyo due to w + u. Thus, Ny, (w) = {v1,v2} or {vs4, v5}. Then
G:[V(Hi2) U {w, u}] = F, (see Figure 7), however u4(F,) # —1, a contradiction.

Case 2. If H, = Hyy = H,, then Ny, (v), Ny, (1) = {v1, 02} or {vg, Us} (see Hyg in Figure 3). We first assume that
Nu,(©) = {v1,v2} = Np, (1). Thenv ~ u, since otherwise G.[V(H12)U{v, u}] = F3 (see Figure 7), but u4(F3) # —1.
Similarly as in Case 1, G, has a vertex w ~ v but w + u. Obviously, H,, = G[V(Hi2) U {w}] € {His, Hao}. If
H,, = Hig, then G [V(H12) U {w, u}] = F; (see Figure 7), but us(F;) # —1. If Hy, = Hp, then

F , if N, w) =101,0
Ge[V(H12) U {w, u}] E{ Fi ifNﬁfvgw; = ivzlx 02

i (see F1, F, in Figure 7)
which are impossible since F3 and F; are all forbidden subgraphs of G..

By symmetry (see Hpy in Figure 3), the case of Ny, (v) = {v4,v5} = Np,(u) is equivalent to that of
Ny, (v) = {v1, 02} = Ng, (1) in above discussion. It remains to consider Ny, (v) = {v1, v2} and Ny, (1) = {v4, vs}.
Clearly,

F,, ifo+u

G[V(Hy2) U {v,u}] = { s ifo~u (see F4, Fs5 in Figure 7)

which are impossible since F4 and F5 are forbidden subgraphs of G,.

Case 3. If H, = Hig and H,, = Hjy then G.[V(Hy2) U {v,u}] = G.. Since otherwise, G, has another vertex
w # v, u such that H, = G[V(Hi2) U {w}] = Hig or Hyg by Lemma 4.6. However, the case of H, = Higs = H,
is eliminated as in Case 1 and the case of H,, = Hyy = H, is eliminated as in Case 2. Now, if v » u then
G:[V(Hi2) U {v,u}] = F, (see Figure 7), but u4(F,) # —1; if v ~ u then G, = G [V(Hi2) U {v,u}] = Hig (see
Figure 3), as required.

The proof is complete. [
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Figure 8: Forbidden subgraphs py # —1.

Lemma 4.8. Let G, € G3([-1]""°) contain an induced subgraph which is isomorphic to Hyz and H, = G.[V(H3) U
{0}] for v € V(G )\V(H13). Then H, = Hy or Hp.

Proof. The graph H, has six vertices and p4(H;) = —1 by Lemma 4.2. Additionally, H, will be connected,
since otherwise H, = S% (see Figure 8) but lu4(5%) ~ —0.46. By using the Table A3 in [11] (also can using
software SageMath 8.0 under the restriction of 4(G.) = —1), we find that there are five connected graphs
on 6 vertices whose fourth largest eigenvalues equal —1 and each of them contains an induced subgraph
which is isomorphic to Hy3, in which I'y, I's and I'y are shown in Figure 5 and others Hy1, Hp. Thus we have
H, =Ty, TI5, T4, Hy or Hy. It suffices to eliminate the graphs: I'y;—T.

If H, = Iy, then v1pv in I'y (see Figure 5). Since G, is primitive, we have N¢_ (v1)\v # Ng (v)\v1. Thus
we may assume that there exists u ~ v; but u » v. We have H, = G.[V(H13) U {u}] € {I'y,I'5,I'¢, Ho1, Hp} by
above arguments. Now H,,, = G.[V(Hi3) U {v, u}] contains H, = I'y and H,, as its induced subgraphs. From
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Figure 5 and Figure 8, clearly, H,, will be S}, S}, S}, S and S} if H, takes I'y, I's, T's, Hz1 and Ha, respectively.
However, S}, 5,51, 51 and S} are all forbidden induced subgraphs of G..

If H, = I's, then v3pv in I's (see Figure 5). Similarly, there exists some u# with u ~ v3 but u » v, and
then H, = G.[V(Hi3) U {u}] € {['4,T'5, T, H21, Ha2}. Thus Hy, = G[V(Hy3) U {v,u}] has H, = I's and H, as its
induced subgraphs. First H, # H; since u + v3 in Hyy. Additionally, {H,, H,} # {I'4,I's} as above. It is clear
from Figure 8 that H,, will be S} or S} if H, takes I's (where H, = H, = I's corresponds S}; Hy, H, = T’
corresponds Sg) and H,,, will be S§ and S} if H, takes I's and Ha, respectively. However, S}, S, S5, and 57,
are all forbidden induced subgraphs of G..

If H, = I's, then vppv in Iy (see Figure 5). Similarly, there exists some u with u ~ v, but u + v, and then
H, = G[V(H13) U {u}] € {T'4,I'5,T6, Hy, Hap}. Clearly, H, # Hy, since u + v in Hp,. I'y, I's will be abandoned
as above. Thus H = G.[V(H13) U {v, u}] will be S}, and S}, if H, takes I'; and H,1, respectively. However, 5},
and S}, are all forbidden induced subgraphs of G..

The proof is complete. [

Theorem 4.9. A graph G € GA([-1]""°) contains an induced subgraph which is isomorphic to Hs if and only if
Ge = His, Ha1, Hyp or Hps.

Proof. Assume that G, = Hi3, Hy, Hyp or Hp;. Obviously, G, contains an induced subgraph which is
isomorphic to Hyz since each of Hji, Hy» and Hy; has an induced subgraph which is isomorphic to His.
Consequently, G contains an induced subgraph which is isomorphic to Hys.

Conversely, assume that G contains an induced subgraph which is isomorphic to Hi3. Since Hi3 is
primitive, from Lemma 2.3 we know that G, also has an induced subgraph isomorphic to Hy3, and G, = Hi3
if [V(Go)l = 5. If [V(G.)| = 6 then, by Lemma 4.8, H, = G.[V(H13) U{v}] € {H1, H,} for each v € V(G)\V(H13).
If |V(G.)| > 6, then G, has another vertex u # v such that H, = G.[V(Hi3) U {u}] € {Hp1, Hp}. We will
distinguish the following cases.

Case 1. Assume that H, = H»; and H,, = Hyp. We have Ny, (v) = {v1, 02} or {v1, vs}, and Ng, (1) = {v1, v3,v4).
Thus

Fe, ifvo~u

GV(Hiz) U{v,ul] = { F, ifoxu (see F¢, F7 in Figure 7)

which are impossible since F¢ and F7 are forbidden subgraphs.

Case 2. Assume that H, = Hy» = H,. We have Ny (v) = {v1,v3,04} = Np,(u). If v » u then H,, =
G:[V(Hi3) U {v,u}] = Fg (see Figure 7), but us(Fg) # —1. Thus v ~ u and so vpu in H,,. Since G, is
primitive, Ng (v)\u # Ng (u)\v. Thus we may assume that there exists w ~ v but w + u. Again we have
Hy,, = G[V(Hi3) U {w}] € {H2, Hp} and so Hy, = Hy; due to w + u. Thus Ny, (w) = {v1, vz} or {v1,vs5}. Then
G:[V(Hi3) U {w, u}] = F7 (see Figure 7), however u4(F7) # —1, a contradiction.

Case 3. Assume that H, = Hy; = H,,. Then Ny, (v), Ny, (4) = {v1,v2} or {v1,vs}. By the symmetry of {v1, vs}
and {v1,v,} in Hy, or H,,, Ny, (v) = {v1,vs} = Np, () is equivalent to Ny, (v) = {v1, v2} = Ny, (4). We only need
to consider the following two subcases.

If Ny, (v) = {v1,v2} = Np,(u), then v ~ u since otherwise G.[V(Hi3) U {v,u}] = F9 (see Figure 7), but
pa(Fo) # —1. Similarly as in Case 2, there exists some w with w ~ v and w + u such that H, = G.[V(H13) U
{w}] € {Hy1, Hp}. If Hy, = Hyy then we turn to Case 1. If H,, = H», then

" Fg, if NH21(w) = {01,02} . .
G J[V(H13) U {w, u}] = { Fio, if Nig. (@) = {o1,05) (see Fy, Fyg in Figure 7)

However, Fg and Fyg are forbidden subgraphs of G, a contradiction.

If Ny, (v) = {v1,v2} and Ny, (u) = {v1, vs}, then v ~ u since otherwise G.[V(H13) U {v, u}] = Fyo (see Figure
7), but uy(Fio) # -1, and so Hy,, = G [V(Hi2) U {v, u}] = Hys (see Figure 3). If G, = H,,, there is nothing to
do. Otherwise, G, has another vertex w # v, u such that H, = G.[V(Hi3) U {w}] € {H21, H»} by Lemma 4.8.
First let H,, = H»;. Then Ny, (w) = {v1, 02} or {v1, vs}. If the former occurs then Ny (w) = {v1, v2} = Ng, (0v); if
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the later occurs then Ny, (w) = {v1, v5} = Ny, (1). The both are impossible by the above arguments. Next let
H, = H»,. Then we turn to Case 1 since H, = H»;.
The proof is complete. [

Figure 9: Forbidden subgraphs py # —1.

Theorem 4.10. A graph G € G2([-1]"") contains an induced subgraph which is isomorphic to Hys if and only if
its canonical graph G, = Hiy4 (see in Figure 3).

Proof. The sufficiency is obvious. We show the necessity. Since H14 is primitive and G contains an induced
subgraph which is isomorphic to Hy4, by Lemma 2.3, G, also has an induced subgraph which is isomorphic
to Hi4 and G, = Hyy if |[V(G.)| = 5. For |V(G.)| = 6, let H, = G[V(H14) U {v}] for v € V(G,)\V(H14). Thus
us(Hy) = =1 by Lemma 4.2. Additionally, H, will be connected, since otherwise H, = 5% (see Figure 9) but
14(5?) = 0. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of
ua(Ge) = 1), we find that I'>-T'jp, shown in Figure 5, are the only four connected graphs of 6 vertices whose
fourth largest eigenvalue is equal to —1 and each of them contains an induced subgraph which is isomorphic
to Hiy. Thus we have H, € {I'7,T3,I'9,I'1o}. Clearly H, is imprimitive (in fact, v3pv in I'7, v,pv in I'g, v1pv
in I'y, vspv in I'1g(see Figure 5)). However, since G, is primitive, H, must be a proper induced subgraph of
G.. There exists u # v such that H, = G.[V(H1) U {u}] € {I'7,Ts, 9,10} for u € V(G,)\V(H,) by the above
arguments. Now H,, = G,[V(H14) U {v, u}] contains two induced subgraphs H,, H, € {I'7,I's,I'9,T10}. On
the other hand, since v,pv in I's, we may take u ~ v, and u » v. Thus H,, can not contain two induced
subgraphs isomorphic to I's or I';g simultaneously because u + v, in I'yg. Similarly, H,, can not contain two
induced subgraphs isomorphic toI'g or I'jg simultaneously because v1 pvinI'g but vy * uinTI'yg. Furthermore,
from Figure 9, H,, will be S3, 53,53, S3, S2, S5, S and S if {H,, H,) equals {I'7,I'7}, {T'7, Tg}, {T'7, o}, {7, T10},
{Ts, Ts}, {T's, o}, {To, To} and {T'10, 10}, respectively. However, 3,53, 5%, 52, 52, 53, S% and S} are all forbidden
induced subgraphs of G..
The proof is complete. [
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Figure 10: Forbidden subgraphs py # —1.

Lemma 4.11. Let G, € G>([-1]""°) contain an induced subgraph which is isomorphic to His and H, = G.[V(Hi5)U
{v}] for v € V(G)\V(His). Then H, = His.
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Proof. The graph H, has six vertices and u4(H,) = —1 by Lemma 4.2. Additionally, H, will be connected,
since otherwise H, = S3 (see Figure 10) but 114(S?) = 0. By using the Table A3 in [11] (also can using software
SageMath 8.0 under the restriction of 14(G.) = —1), we find that I';1, I'1» and Hjg are only three connected
graphs on 6 vertices whose fourth largest equals —1 and contain an induced subgraph which is isomorphic
to His. Thus Hy € {I'11, 12, Hig). It suffices to eliminate the graphs I'1q, I'12.

If H, = I'y1, then v1pv in I'1; (see Figure 5). Since G, is primitive, we may assume that there exists
another vertex u ~ v; but u » v. Let H, = G.[V(H15) U {u}]. We have H,, € {T'11,T1», H1g} as above. Thus
H,, = G[V(Hi5) U {v, u}] consists of I';; and H,,. From Figure 5 and Figure 10, clearly, H,, will be Sg, Sg and
S3if H, takes I'11, 1, and Hig, respectively. However, S3,53 and S3 are all forbidden induced subgraphs of
Ge.

If H, = TI'p, then vspv in I'yp (see Figure 5). Similarly as above, G, has a vertex u ~ vs but u + v
such that H, = G[V(Hi5) U {u}] € {I'11, 12, His}. Additionally, {Hy, H,} # {I'11,T'12} as above. Now H,,, =
G:[V(Hi5) U {v,u}] contain induced subgraphs which are isomorphic to H, or H,. Clearly, H,, will be Sg
and S if H, takes I';; (H, = H, = I'1z corresponds S3; Hy, H, = Iy corresponds S?); H,,, will be S if H,
takes Hjs, respectively. However, Sg, Sg and S:; are all forbidden induced subgraphs.

The proof is complete. [

Theorem 4.12. A graph G € G2([-1]"") contains an induced subgraph which is isomorphic to Hus if and only if
its canonical graph G, = His, Hig or Hyo.

Proof. Assume that G, = Hjs, Hig or Hyg. Since each of Hig and Hjg has an induced subgraph which is
isomorphic to His, G, also has the induced subgraph which is isomorphic to His, and so has G.

Conversely, assume that G contains an induced subgraph which is isomorphic to His. By Lemma 2.3,
G, also has an induced subgraph isomorphic to His, and G, = Hjs if [V(G.)| = 5. If [V(G.)| = 6 then
H, = G,[V(His) U {v}] = Hyg for each v € V(G,)\V(Hi5) by Lemma 4.11. If G, has exactly 6 vertices then
G. = H, = Hyg as desired. Otherwise, G, has another vertex u # v such that H, = G.[V(His) U {u}] = Hig
again by Lemma 4.11. Thus, H,,, = G.[V(H15) U {v, u}] contains induced H,, H,, which are isomorphic to Hys.
Comparing Hig, clearly Ny, (v), N, (1) = {v1,v3,v4}, {v1, 02,05}, {v1, 02,03}, or {v1, 04, Us}. By the symmetry of
Hjis, we only need to distinguish the following cases.

Case 1. If Ny, (v) = {v1, 02, vs} and Ny, (1) = {v1, v3, v4}, then

F11, ifo~u

Fpo. ifv+u (see F11, F1p in Figure 7)

G[V(His) U {v, u}] = {

However, F1; and Fy; are forbidden subgraphs of G, a contradiction.

Case 2. If Ny, (v) = {v1, 02, s} = Np, (1), thenu ~ v, since otherwise H,,, = G.[V(H15)U{v, u}] = F13 (see Figure
7), but u4(F13) # —1. Thus upv in H,,, and so H,, is a proper subgraph of G.. There exists w € V(G,) such
that w ~ v but w » u. Again by Lemma 4.11, H,, = G.[V(Hi5) U {w}] = Hig. Similarly, Ny, (w) = {v1,v3, 74},
{01, 02, U5}, {v1, V2, U3}, Or {v1, V4, Us}. Now we consider Hy,, = G.[V(H15) U {w, v}]. Regarding w = u we know
that Ny, (w) = {v1,v3,v4} should be eliminated because of the reason in Case 1. If Ny, (w) = {v1,v2,v3} or
{v1,04, 05} then Hyw = Fiy (see Figure 7), but [.14(F14) # —1. Atlast, NHW(ZU) ={v1,0p, 05} = NHU(U) = Ny, (u). It
means w ~ u by arguments above. It contradicts the selection of w + u.

Case 3. If Ny, (v) = {v1, vz, vs} and Ny, (1) = {v1, 2, v3}, then

F14, ifo~u

Hy  ifo+u (see Figure 3)

Hiu = G.[V(His) U fo,ul] = {

Since Fy4 is a forbidden subgraph, we have finished the argument if H,, = G.. Otherwise, H,, is a
proper subgraph of G.. There exists a vertex w # v, u such that H, = G.[V(Hi5) U {w}] = Hig by Lemma
4.11. Similarly, Np, (w) = {v1,v2,0s5},{v1, 02,03}, {v1,03,04} oOr {v1,04,05}. However, the case of Ny, (v) =
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{v1, 02,5} = Np, (w) (similarly, Ny, (1) = {v1,v2,v3} = Np,(w)) should be eliminated as in Case 2; the case of
Ny, (©) = {v1,v2, 5} and Ny, (w) = {01, v3, v4} (similarly, Ny, (u) = {v1, v2, v3} and Ny, (w) = {v1,v4,v5}) should

be eliminated as in Case 1. It is a contradiction.

Case 4. Ny, (v) = {v1,v2,v5) and Ny, (1) = {v1,v4,vs}. The two graphs corresponding to H,,, = G.[V(His5) U
{v, u}] will be isomorphic in the Cases of 3 and 4. Thus the Case 3 is equivalent to the Case 4.

The proof is complete. [
* U1.—’ (%)
' “ >Us
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Figure 11: Forbidden subgraphs p4 # —1.

Lemma 4.13. Let G, € G>([-1]""%) contain an induced subgraph which is isomorphic to Hig and H, = G[V (Hi6) U
{0}] for v € V(G )\V(Hi¢). Then H, = Hy,.

Proof. Obviously, the graph H, has six vertices and p4(H,) = —1 by Lemma 4.2. Additionally, H, will be
connected, since otherwise H, = S‘f (see Figure 11) but [,14(5‘1*) = 0. By using the Table A3 in [11] (also can
using software SageMath 8.0 under the restriction of p4(G.) = —1), we find that I'i3, I'14, I'15 and Hy, are only
four connected graphs on 6 vertices whose fourth largest eigenvalue equal —1 and each of them contains
an induced subgraph isomorphic to His. Thus we have H, € {I'13,I'14,I'15, H2p}. It suffices to eliminate the
graphs: I';3-T'ys.

If H, = I'13, then v4pv in I'13 (see Figure 5). Thus I'i3 is a proper subgraph of G, and we may assume
that there exists u ~ vy but u + v such that H, = G./[V(Hs) U {u}] € {I'13,114,T15, Hp} as above. Now
H,, = G[V(Hi6)U{v, u}] consists of induced subgraphs isomorphic to I'i3 and H,,. From Figure 11, obviously,
H,,, will be S} or Sj if H, takes I';3 (where H, = H, = I';3 corresponds S3; H,, H, = I'13 corresponds S3),
and H,, will be S}, St and S if H,, takes I'14, 5 and Hp, respectively. However, S3, 53, S}, 52 and S are all
forbidden induced subgraphs of G..

If H, = I'14, then v3pv in I'14 (see Figure 5). Similarly as above, G, has another vertex u ~ v3 but u + v
such that H,, = GC[V(H16) U {u}] € {I'13,T14, 15, H}. Additionally, {Hy,,H,} # {I'13,T14} as above. Now
H,, = G/[V(His) U {v,u}] contains induced subgraphs isomorphic to I'i4 and H,. Since u +» v3 in I'ts,
H, # T's. Clearly, Hy, will be S and S§ if H, takes I'iy and Hy,, respectively. However, S and S are all
forbidden induced subgraphs of G..

If H, = I't5, then v5pv in I'5 (see Figure 5). Similarly, G, has another vertex u ~ vs but u + v such that
H, = G[V(Hi6) U {u}] € {T'15,Hao} (I'13,'14 will be abandoned as above). Thus H,, = G[V(His) U {v,u}]
will be S5 and S} if H, takes Hys and Hy,, respectively. However, S5 and S} are all forbidden induced
subgraphs of G..

The proof is complete. [

Theorem 4.14. A graph G € G2([-1]""°) contains an induced subgraph which is isomorphic to He if and only if
its canonical graph G, = Hi¢ or Hyp .

Proof. Assume that G, = His or Hy. Since Hy, has an induced subgraph isomorphic to Hig, G, has the
induced subgraph isomorphic to His, and so has G.



Y. Yang, Q. Huang / Filomat 33:18 (2019), 5919-5933 5932

Conversely, assume that G contains an induced subgraph which is isomorphic to His. By Lemma
2.3, G has induced subgraph isomorphic to Hig, and G, = Hye if [V(G.)| = 5. If [V(G.)| > 6 then H, =
G:[V(Hi6) U {v}]] = Hy for each v € V(G.)\V(His) by Lemma 4.13. If G, has exactly 6 vertices then
G. = H, = Hy, as desired. Otherwise, G, has another vertex u # v such that H, = G[V(H1) U {u}] = H»,
againby Lemma 4.11. Thus H,,, = G.[V(H16)U{v, u}] contains induced subgraphs H, and H,,. From Figure 3,
we see that Ny, (v) = V(Hig) = Nu, (u). If v » uthen H,,, = Fi5 (see Figure 7), but u4(Fi5) # —1. Thusv ~ uand
vpu in H, . Since G, is a primitive, there exists another vertex w # u,v. Again, Hy, = G.[V(H16) U{w}] = Hy,.
Now Ny, (w) = V(His) = Nu,(v) = Ny, (u). We have w ~ u by arguments above, however w + u by our
choice. It implies that such u and w do not exist.

The proof is complete. [

Figure 12: Forbidden subgraphs py # -1.

Theorem 4.15. A graph G € G3([-1]""°) contains an induced subgraph which is isomorphic to Hy7 if and only if
its canonical graph G, = Hjy.

Proof. The sufficiency is obvious. For the necessity, let G contain an induced subgraph isomorphic to Hy.
By Lemma 2.3, G, has an induced subgraph isomorphic to Hi7, and G. = Hyy if |V(G.)| = 5. If [V(G.)| > 6,
then H, = G.[V(H17) U {v}] for each v € V(G.)\V(H17), and thus pu4(H,) = —1 by Lemma 4.2. Additionally,
H, will be connected, since otherwise H, = 57 (see Figure 12) but 4(S3) = 0. By using the Table A3 in
[11] (also can using software SageMath 8.0 under the restriction of 14(G.) = —1), we find that I'i¢, shown in
Figure 5, is the only connected graph of 6 vertices whose fourth largest eigenvalue equals —1 and contains
an induced subgraphs isomorphic to Hi;. Thus we have H, = I'i¢. Obviously, I';¢ is imprimitive (in
fact, v1pv in I';¢ (see Figure 5)). However, since G, is primitive, H, should be a proper subgraph of G..
There exists u € V(G.)\V(H,) such that H, = G.[V(Hi7) U {u}] = I'i¢ by the arguments above. Now the
subgraph H,, = G.[V(Hi7) U {v,u}] contains two induced subgraphs H,,, H, which are all isomorphic to
I'6. Furthermore, H,,, will be S5 or S; if H,, takes I'i¢ (in fact, H, = H, = I'; corresponds S3; H,, H, = I'16
corresponds S3). However, S and S are the forbidden induced subgraphs of G..
The proof is complete. [

Finally, we obtain our main result below.

Theorem 4.16. A graph G € G,([-1]"7°) if and only if its canonical graph G is isomorphic to H;, for 1 > i > 23(see
Hi—Hys in Figure 2 and Figure 3 ).

Proof. By definition we know that G,,([-1]""°) = G:([-1]"°) U GA([-1]").

The Theorem 4.1 completely characterize G ([-1]""), i.e.,, G € G-([-1]"") if and only if its canonical
graph G, is isomorphic to one of H1—Hjy.

By Lemma 4.4 we know that Hi,—H17 are exactly six minimal graphs in G2([-1]"7?), i.e, G must contain
at least one induced subgraph which is isomorphic to one of Hi,—H17 if G € G>([-1]"7°). Thus, by Theorems
4.7-4.15, we know that G contains an induced subgraph isomorphic to one of Hi;—Hj7 if and only if its
canonical graph is isomorphic to one of Hi,—H>s.

The proof is complete. [
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