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Abstract. The double-orbit graph is a generalization of vertex transitive graphs, which contains many
classic network models. Conditional edge-connectivity is an important index to measure the fault-tolerance
and reliability of the networks. In this paper, we characterize the super-λ(2) double-orbit graphs with two
orbits of the same size. Moreover, we give a sufficient condition for regular double-orbit graphs to be
λ(3)-optimal, and characterize super-λ(3) regular double-orbit graphs.

1. Introduction

It is well-known that the network of a multiprocessor system can be represented by a graph,
and the traditional connectivity is an important measure for networks, which can correctly reflect the fault-
tolerance of systems with few processors. However, with the development of VLSI technology and software
technology, multiprocessor systems with hundreds of thousands of processors have become available, and
the traditional connectivity always underestimates the resilience of large networks. There is a discrepancy
because the occurrence of events which would disrupt a large network after a few processor or link failures
is highly unlikely, therefore, the disruption envisaged occurs in a worst-case scenario. To the design
and maintenance purpose of multiprocessor systems, appropriate measure of reliability should be found.
Harary [8] introduced the concept of conditional connectivity, and Fàbrega and Fiol [5, 6] proposed a new
kind of conditional connectivity, called k-extra edge-connectivity defined as follows.

For a positive integer k, the k-extra edge-connectivity of G, denoted by λ(k)(G), is the minimum cardinality
of a set of edges (named as k-extra edge-cut) of G, if any, whose deletion disconnects G, and every remaining
component has at least k vertices. Clearly, λ(1)(G) = λ(G) and λ(2)(G) = λ′(G) is the traditional edge-
connectivity and the restricted edge-connectivity proposed by Esfahanian and Hakimi [4], respectively. We
refer to [3,12,13,17,19,21,23,25] for the studies of restricted edge-connectivity. Known results about the
existence of λ(k)(G) are referred to [2,4,26], and the graphs in which λ(k)(G) exists are said to be λ(k)-connected.
Zhang and Yuan [26] showed that for any graph G with |V(G)| ≥ 2(δ(G) + 1), λ(k)(G) ≤ ξk(G) = min{|ω(X)| :
X ⊂ V(G), |X| = k and G[X] is connected} holds for any k ≤ δ(G) + 1, except for a graph which consists of
some copies of Kδ(G) and a vertex u which is adjacent to all the vertices in those copies, where ω(X) = [X,X]
denotes the set of edges between X and X in G, G[X] is the subgraph of G induced by X, X = V(G) \X, and
δ(G) is the minimum degree of G. Thus, the graphs with λ(k)(G) = ξk(G) are called λ(k)-optimal.
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It seems that the largerλ(k)(G) is, the more reliable the network is. Thus,λ(k)-optimal graphs have received
quit a lot of attention [9,11,12,16,17,23,24,27]. To have a more refined measurement for the fault-tolerance
and reliability of the networks, a stronger concept is proposed. A graph G is super k-extra edge-connected
(super-λ(k) for short), if every minimum k-extra edge-cut isolates at least one component of order k. Not
only does this concept gives us the cardinality of λ(k)(G), but also it shows the construction of minimum
k-extra edge-cut.

In the design of network topology, highly symmetric graphs are popular due to their desirable properties.
It is proved that vertex transitive graph (digraph) has maximum edge-(arc-)connectivity [15,18,20]. And
vertex transitive graph also has many good properties concerning with λ(k)(G) for 2 ≤ k ≤ 3, for example
[16,17,23,27]. It is then natural to consider the relationship between connectivity and the number of orbits
and we refer to [11-14,19,24]. In fact, half vertex-transitive graphs [22], Bi-Cayley graphs [22] and mixed
Cayley graphs [3] all have at most two orbits. This motivates us to study λ(k)(G) of double-orbit graphs.

Let Aut(G) denote the automorphism group of G. For x ∈ V(G), the set {1(x) : 1 ∈ Aut(G)} is an orbit
of Aut(G); we abuse the terminology a little to call it an orbit of G. Let W be a subgroup of the symmetric
group over a set S. We say that W acts transitively on a subset T of S if for any h, l ∈ T, there exists a
permutation ϕ ∈ W with ϕ(h) = l. Clearly, Aut(G) acts transitively on each orbit of Aut(G). A graph G is
called double-orbit graph if G has exactly two orbits. We use G = (G1,G2, (V1,V2)) to denote a double-orbit
graph, where Gi is the subgraph of G induced by the two orbits Vi, i = 1, 2, and G(V1,V2) is the subgraph
of G induced by E(G) \ E(G1) ∪ E(G2).

The remainder of this paper is organized as follows. Section 2 introduces the notations and definitions
used throughout the paper. Note that in 2018, Lin and Yang [14] studied super restricted edge-connectivity
of double-orbit graphs. However, the proof in that paper contains a crucial flaw (mainly in the proof of [14,
Lemma 2]) and the main result is incorrect. In Section 3, we make a correction to their result. In Section
4, we present a sufficient condition for a regular double-orbit graph to be λ(3)-optimal. In Section 5, we
characterize the super-λ(3) regular double-orbit graphs.

2. Preliminaries

For graph-theoretical terminology and notation not given here, we follow [1, 7]. Let G be a connected
graph with vertex set V(G) and edge set E(G). The order of G is the size of |V(G)|. We use dG(v) and NG(v) to
denote the degree and neighbor set of vertex v ∈ V(G) of G, respectively. And NG(A) = (

⋃
v∈A NG(v)) \A for

A ⊆ V(G). We will usually omit subscript G when no confusion can arise. A is called an independent set of
G if no two vertices of A are adjacent in G. The length of a shortest cycle of G is called its girth, denoted by
1(G). For a bijection α ∈ Aut(G), we define α(X) = {α(x) : x ∈ X} for ∅ , X ⊂ V(G). We use K1,n−1, Pn, Cn, Kn
to denote the star, the path, the cycle and the complete graph of order n, respectively.

Let X be a proper subset of V(G). If ω(X) is a minimum restricted edge-cut of G, then X is called a
λ′-fragment of G. Clearly, if X is a λ′-fragment, so is X, and both G[X] and G[X] are connected. We call a
λ′-fragment X strict, if 3 ≤ |X| ≤ |V(G)| − 3. If G contains strict λ′-fragments, then the ones with smallest
cardinality are called λ′-superatom.

The concept of λ(3)-fragment can be defined similarly to λ′-fragment. A λ(3)-fragment with the least
cardinality is called a λ(3)-atom. We call a λ(3)-fragment trivial if it contains exactly three vertices. A
non-trivial λ(3)-fragment with minimum cardinality is called a λ(3)-superatom.

3. Super restricted edge-connectivity

In this section, we always assume that |V1| = |V2|, G[Vi] is ki-regular for i = 1, 2 and G(V1,V2) is
d-regular. For convenience, we write ξ(G) = ξ2(G).

Lemma 3.1 ([24]). Let G = (G1,G2, (V1,V2)) be a connected double-orbit graph with two orbits V1 and V2 such that
|V1| = |V2| ≥ 3 and 1(G) ≥ 5. Then G is λ′-optimal.
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Lemma 3.2. Let G = (G1,G2, (V1,V2)) be a connected double-orbit graph with two orbits V1 and V2 such that
|V1| = |V2| ≥ 3 and k1 ≤ k2. For any λ′-superatom X of G and A ⊂ X with |A| ≥ 3, suppose 1(G) ≥ 5, G[A] is not
connected and G[A] is connected. Then |ω(A)| > λ′(G) holds if one of the following conditions is satisfied:

(i) E(G1) , ∅ and E(G2) , ∅;
(ii) A * V1 when E(G1) = ∅ or E(G2) = ∅.

Proof. If G[A] contains a component U with |V(U)| ≥ 3, then by the fact that G[X] and G[A] are connected, it
is clear that G[I] is connected, where I = V(U). So ω(I) is a restricted edge-cut with |I| ≥ 3 and |ω(I)| ≥ λ′(G).
Because X is a λ′-superatom and I ⊂ X, we obtain |ω(A)| ≥ |ω(I)| > λ′(G). Otherwise, we assume that every
component in G[A] is an isolated edge or an isolated vertex. If there is an isolated edge in G[A], then by
|A| ≥ 3, we have |ω(A)| ≥ ξ(G) + λ(G) > λ′(G). Thus, now assume that all components in G[A] are isolated
vertices.

If E(G1) , ∅ and E(G2) , ∅, then

|ω(A)| ≥ 3δ(G) = 3(k1 + d) > 2(k1 + d) − 2 = ξ(G) = λ′(G).

If E(G1) = ∅ or E(G2) = ∅, by k1 ≤ k2, we may assume that E(G1) = ∅. Since A * V1, we have A ⊆ V2 or
A ∩ Vi , ∅ for i = 1, 2. If A ⊆ V2, then

|ω(A)| ≥ 3(k2 + d) > k2 + 2d − 2 = ξ(G) = λ′(G).

If A ∩ Vi , ∅, by |A| ≥ 3, we obtain that

|ω(A)| ≥ 2d + (k2 + d) > k2 + 2d − 2 = ξ(G) = λ′(G).

Thus, the lemma follows.

Remark 3.3. In the above lemma, if we replace the λ′-superatom X by X, then we can obtain that
|ω(A)| ≥ λ′(G) under the same condition.

Let F1 = {G : G is a connected double-orbit graph with |V1| = |V2| ≥ 3 and 1(G) ≥ 5, d = 1, k1 = 0, k2 ≥ 2
and G2 is not super-λ or d = 2, k1 = 0 and k2 ≥ 1}. In fact, we can show that, for any G ∈ F1, G is not
super-λ′. For the case d = 1, k1 = 0, k2 ≥ 2 and G2 is not super-λ, there exists some minimum edge-cut S of
G2 such that every component of G2 −S contains at least 2 vertices. As d = 1 and k1 = 0, S is also a restricted
edge-cut of G, which implies that k2 = λ′(G) ≤ |S| = λ(G2) = δ(G2) = k2. We see that S is a minimum
restricted edge-cut of G such that G − S contains no isolated edges, implying that G is not super-λ′. For the
case d = 2, k1 = 0 and k2 ≥ 1, let X ⊆ V(G) and G[X] � K1,2, where |X ∩ V1| = 2 and |X ∩ V2| = 1. Clearly,
λ′(G) = ξ(G) = |ω(X)| = k2 + 2. Since d = 2 and 1(G) ≥ 5, we have that |X ∩ V2| ≥ 2 and |X| ≥ 3. Suppose
G[X] is not connected. If each component of G[X] is a single vertex, then |ω(X)| ≥ 2(k2 + d) + d > |ω(X)|, a
contradiction. If G[X] contains a component of order at least 2, then |ω(X)| ≥ λ′(G) + λ(G) > |ω(X)|, also a
contradiction. Thus, G[X] is connected and X is a λ′-superatom, implying that G is not super-λ′.

Lemma 3.4. Let G = (G1,G2, (V1,V2)) < F1 be a connected double-orbit graph with two orbits V1 and V2 such that
|V1| = |V2| ≥ 3 and k1 ≤ k2. Suppose 1(G) ≥ 5 and G is not super-λ′. If X and Y are two distinct λ′-superatoms
with α(X) = Y, where α ∈ Aut(G), then X ∩ Y = ∅.

Proof. Set A = X ∩ Y, B = X ∩ Y, C = X ∩ Y and D = X ∩ Y. By contradiction, suppose A , ∅. Since
|[A,X]| + |[A,Y]| = |[A,C]| + |[A,D]| + |[A,B]| + |[A,D]|, either |[A,X]| ≥ |[A,B]| or |[A,Y]| ≥ |[A,C]|. In the
following, without loss of generality, assume |[A,X]| ≥ |[A,B]|.

By the definition of λ′-superatom, G[X], G[X], G[Y] and G[Y] are all connected. Thus, G[X ∪ Y] and
G[X ∪ Y] are connected since A , ∅ and D , ∅.
Claim 1. |A| ≤ 2.
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Suppose |A| ≥ 3, we will derive a contradiction by two facts.
Fact 1. |ω(A)| ≥ λ′(G).

If G[A] is connected, then |ω(A)| ≥ λ′(G) since G[A] = G[X ∪ Y] is connected. If G[A] is not connected,
we claim that A * V1 when E(G1) = ∅ or E(G2) = ∅.

Suppose to the contrary that A ⊆ V1 when E(G1) = ∅ or E(G2) = ∅. Since k1 ≤ k2, we may assume
E(G1) = ∅. By |[A,X]| ≥ |[A,B]|, there exists a vertex x ∈ A such that

|[x,B]| ≤ |[x,C]| + |[x,D]|.

Then
|ω(X \ x)| = |ω(X)| + |[x,B]| − |[x,C]| − |[x,D]| ≤ |ω(X)| = λ′(G).

Since G[X] is connected and A is an independent set, we have |[x,B]| ≥ 1, which implies that G[X ∪ {x}] is
connected. We now show that every component in G[X \ x] has at least 3 vertices. In fact, if there exists an
isolated edge in G[X \ x], by |X \ x| = |X| − 1 = |A| + |B| − 1 ≥ 3, we have |ω(X \ x)| ≥ ξ(G) + λ(G) > λ′G),
a contradiction. If there is an isolated vertex y in G[X \ x], then x is the only neighbor of y in G[X], and
thus dG[X](y) = 1. Set X′ = X \ y. Since x ∈ A ⊆ V1, E(G1) = ∅ and y ∈ NG(x), we have y ∈ V2. If d = 1,
then xy is an isolated edge in G[X], contradicting the fact that X is a λ′-superatom. Hence, d ≥ 2. By
dG(y) = 1 + |[y,X]| ≥ d ≥ 2, we see that G[X′] is connected, which implies that

λ′(G) ≤ |ω(X′)| = |ω(X)| − |[y,X]| + 1 ≤ |ω(X)| = λ′(G).

A contradiction arises, since X′ ⊂ X is a smaller strict λ′-fragment than X.
Now, for any component U1 in G[X \ x], set I1 = V(U1), then |I1| ≥ 3 and

λ′(G) ≤ |ω(I1)| ≤ |ω(X \ x)| ≤ λ′(G),

which implies that I1 is a smaller strict λ′-fragment contained in X, again a contradiction. By Lemma 3.2,
Fact 1 follows.
Fact 2. |ω(D)| ≥ λ′(G).

Note that |D| = |V \ (X ∪ Y)| = |V| − |X| − |Y| + |X ∩ Y| and |X| = |Y| ≤ |V(G)|
2 , we have |D| ≥ |A| ≥ 3. In the

following, we only need to show that |ω(D)| ≥ λ′(G) if G[D] is not connected.
Suppose D ⊆ V1 when E(G1) = ∅. By the assumption |[A,X]| ≥ |[A,B]|, we have

|ω(B)| = |[B,A]| + |[B,C]| + |[B,D]| ≤ |ω(X)| = λ′(G) = ξ(G) = k2 + 2d − 2.

If G[B] contains a component U2 with |V(U2)| ≥ 3, then by a similar argument used in the proof of Fact 1,
V(U2) is a strict λ′-fragment contained in λ′-superatom X, also a contradiction. Thus, every component
in G[B] is isomorphic to K1 or K2. By |ω(B)| ≤ λ′(G) = k2 + 2d − 2, we see that one of the following cases
occurs: (i) G[B] is an edge belonging to G(V1,V2), (Suppose it belongs to G2, then k2 , 0. But, in fact, by
k2 + 2d − 2 ≥ |ω(B)| = 2(k2 + d) − 2, it follows that k2 = 0, a contradiction.) or (ii) B = {y1} (y1 ∈ V2), or (iii) B
consists of some vertices in V1.

Let D = {x1, x2, ..., xs}, then s ≥ 3. Since Y = B∪D, G[Y] is connected and D ⊆ V1, case (iii) can not occur.
If (i) holds, let B = {x0, y0} (x0 ∈ V1, y0 ∈ V2). Since α(X) = Y, set C = {x′0, y

′

0} and x′0 ∈ V1, y′0 ∈ V2. Since
G[X] and G[Y] are connected, it follows that xi ∈ NG(y0), x′0 ∪ xi ∈ NG(y′0) for 1 ≤ i ≤ s. Note that 1(G) ≥ 5,
we have s = 1, a contradiction.

If (ii) holds, by α(X) = Y, set C = {y′1} and y′1 ∈ V2. Similarly, xi ∈ NG(y1) and xi ∈ NG(y′1) for 1 ≤ i ≤ s.
Notice that 1(G) ≥ 5, s = 1, again a contradiction. Thus, D * V1 when E(G1) = ∅ or E(G2) = ∅. Then by
Remark 3.3, Fact 2 follows.

Combining Fact 1 with Fact 2, we obtain

2λ′(G) ≤ |ω(A)| + |ω(D)| ≤ |ω(X)| + |ω(Y)| = 2λ′(G).
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It follows that |ω(A)| = λ′(G) and G[A] is connected, which contradicts that X is a λ′-superatom. Therefore,
Claim 1 holds.
Claim 2. |B| ≤ 2.

Suppose |B| ≥ 3. Note that |ω(B)| ≤ λ′(G) = ξ(G). If G[B] is connected, then |ω(B)| = λ′(G) and B is a strict
λ′-fragment contained in X, a contradiction. If G[B] is not connected, we show that B * V1 when E(G1) = ∅
or E(G2) = ∅. By contradiction, let k1 = 0 and B = {v1, v2, ..., vl} ⊆ V1, l ≥ 3. By Claim 1, we have either
|A| = 1 or |A| = 2.

If |A| = 1, set A = {u}. Since G[X] is connected, then u ∈ V2 and vi ∈ NG(u) for 1 ≤ i ≤ l. And so d ≥ l ≥ 3.
We then have

λ′(G) = |ω(X)| =
∑
x∈X

dG(x) − 2|E(G[X])| = k2 + d + ld − 2l > k2 + 2d − 2 = ξ(G),

a contradiction.
If |A| = 2, then since G[X] is connected, we derive that A satisfies one of the following conditions: (a) G[A]

is an edge belonging to G(V1,V2), ε = l + 1 and d ≥ l + 1 ≥ 4, or (b) G[A] is an edge belonging to G2, ε = l + 1
(note that 1(G) ≥ 5), or (c) G[A] = {u1,u2} and u1,u2 are independent vertices in V2, ε = l+1, where ε denotes
the number of edges in G[X]. When (a) holds, λ′(G) = |ω(X)| = (l + 1)d + k2 + d− 2(l + 1) > k2 + 2d− 2 = ξ(G),
a contradiction. If either (b) or (c) holds, λ′(G) = |ω(X)| = ld + 2(k2 + d) − 2(l + 1). Since G < F1 and G is not
super-λ′, d ≥ 3. Thus, λ′(G) = |ω(X)| > ξ(G), again a contradiction.

Thus, by Lemma 3.2, we have that λ′(G) ≥ |ω(B)| > λ′(G), which is impossible. This completes the proof
of Claim 2.

Now, we prove this lemma by considering the following two cases.
Case 1. |A| = 1.

By Claim 2, we have |X| = 3. Since 1(G) ≥ 5, we have G[X] � P3. Note that G < F1 and G is not super-λ′,
then λ′(G) = |ω(X)| > ξ(G), which is impossible.
Case 2. |A| = 2.

In this case, 3 ≤ |X| ≤ 4. If |X| = 3, as the proof of Case 1, we can get a contradiction. If |X| = 4, since
1(G) ≥ 5, we have G[X] � P4 or K1,3. Then, λ′(G) = |ω(X)| > ξ(G), again a contradiction.

Lemma 3.5 ([14]). Let G = (G1,G2, (V1,V2)) < F1 be a connected double-orbit graph with two orbits V1 and V2
such that |V1| = |V2| ≥ 3 and k1 ≤ k2. Suppose 1(G) ≥ 5, G is not super-λ′ and A is a λ′-superatom of G. Then we
have

(i) If A ⊆ V1 (or V2), then V1 (or V2) is a disjoint union of distinct λ′-superatoms and G[A] is a vertex transitive
graph;

(ii) If Ai = A ∩ Vi , ∅ for i = 1, 2, then V(G) is a disjoint union of distinct λ′-superatoms and G[A] is a
double-orbit graph, and |A1| = |A2|.

Lemma 3.6 ([14]). Let G = (G1,G2, (V1,V2)) be a connected double-orbit graph with two orbits V1 and V2 such that
|V1| = |V2| ≥ 3. Suppose 1(G) ≥ 4 and G is λ′-optimal but not super-λ′. Then for any λ′-superatom A of G, we have

|A| ≥

2δ(G) − 2 i f E(G1) , ∅ and E(G2) , ∅;
2d + k1 + k2 − 2 i f E(G1) = ∅ or E(G2) = ∅.

Lemma 3.7 ([10]). If G is a k-regular graph with girth 1, then

|V(G)| ≥ n(k, 1) =

1 + k + k(k − 1) + · · · + k(k − 1)
1−3

2 i f g is odd;
2(1 + k − 1 + · · · + (k − 1)

1

2−1) i f g is even.

Now, we give a factor graph G∗[A], shown in Fig. 1, to obtain a graph family F2, where V(G∗[A]) = A =
A1∪A2 and |A1| = |A2| = 4, A1 is an independent set, G[A2] consists of 2 copies of K2, G(A1,A2) is a 2-regular
bipartite graph, and F2 denotes a family of 3-regular double-orbit graphs with |V1| = |V2| ≥ 3, 1(G) ≥ 5,
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k1 = k2 = 1 and d = 2. For any G ∈ F2 and some positive integer m ≥ 2, G is the disjoint union of m copies
of G∗[A] together with a perfect matching between different copies of A1. Such an example G ∈ F2, which
consists of 3 copies of G∗[A], is shown in Fig. 2.

A2

A1

Fig.1. G∗[A]

Fig.2. An example G ∈ F2

Theorem 3.8. Let G = (G1,G2, (V1,V2)) be a connected double-orbit graph with two orbits V1 and V2 such that
|V1| = |V2| ≥ 3 and k1 ≤ k2. If 1(G) ≥ 5, then G is not super-λ′ if and only if G ∈ F1 ∪ F2.

Proof. If G ∈ F1, clearly G is not super-λ′. If G ∈ F2, as |ω(A)| = 4 = ξ(G) = λ′(G), G is not super-λ′. In the
following, we prove the necessity by way of contradiction that G is not super-λ′ and G < F1 ∪ F2. Let A be
a λ′-superatom of G. We consider two cases.
Case 1. E(G1) , ∅ and E(G2) , ∅.

By Lemma 3.6, |A| ≥ 2δ(G) − 2. We claim that A * V1 and A * V2. If, to the contrary, A ⊆ V1, then by
Lemmas 3.1 and 3.6, 2δ(G)−2 = λ′(G) = |ω(A)| = |A|d+ |ωG1 (A)| ≥ (2δ(G)−2)d+ |ωG1 (A)|. Thus we have d = 1
and |ωG1 (A)| = 0. Then, |A| = 2δ(G)− 2 = 2k1. On the other hand, by Lemma 3.7, 2k1 = |A| ≥ n(k1, 5) = 1 + k2

1,
thus k1 = 1. Then |A| = 2, contradicting that A is a λ′-superatom of G. Similarly, A * V2. It follows that
Ai = A ∩ Vi , ∅ for i = 1, 2.

By Lemma 3.5, we have |A1| = |A2| ≥
2δ(G)−2

2 = δ(G)−1. We proceed to prove by way of contradiction that
exactly one of A1 and A2 has neighbors in A. In fact, if to the contrary, each vertex of A has a neighbor in A,
as G is λ′-optimal, we have 2δ(G)− 2 = |ω(A)| ≥ |A| = |A1|+ |A2| ≥ 2δ(G)− 2. Thus |A1| = |A2| = δ(G)− 1, and
each vertex of A has exactly one neighbor in A. Let t = k1 +d. Then it is easy to see that t = δ(G) = |A1|+1 ≥ 3.
By Lemma 3.7, we have |A| ≥ n(t − 1, 5) = 1 + (t − 1)2 = t2

− 2t + 2 > 2t − 2 = |A| for all t ≥ 3, a contradiction.
We consider two subcases.
Subcase 1.1. N(A1) ∩ A , ∅ and N(A2) ∩ A = ∅.

In this case, N(A1) ∩ A ⊆ V1. Since |A1| = |A2| ≥ δ(G) − 1, we see that each vertex of A1 has at most 2
neighbors in A.
Subcase 1.1.1. Each vertex of A1 has exactly one neighbor in A.

Then δ(G[A]) = t − 1, |A1| = |ω(A)| = λ′(G) = ξ(G) = 2t − 2 and |A| ≥ n(t − 1, 5) = t2
− 2t + 2. Hence, if

t ≥ 5, then λ′(G) = |ω(A)| = |A1| =
|A|
2 ≥

t2
−2t+2

2 > 2t − 2 = ξ(G), a contradiction. Since d ≥ 1 and k1 ≥ 1, we
have 2 ≤ t ≤ 4.
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If t = 2, then |A1| = |A2| = 2t − 2 = 2, k1 = d = 1 and k2 ≥ 1. Since N(A2) ∩ A = ∅ and |A2| = 2, we see
that k2 ≤ 1. Thus, k2 = 1. Then G is a connected 2-regular graph and thus G is isomorphic to a cycle, which
contradicts that G is not vertex transitive.

If t = 3, then |A1| = |A2| = 4. By Lemma 3.5 and the assumption that N(A2) ∩A = ∅, we see that G[A2] is
a k2-regular vertex transitive graph of order 4. Since 1(G) ≥ 5, then k2 = 1 and G[A2] consists of two copies
of K2. Thus k1 = 1, d = 2, A1 is an independent set and G(A1,A2) is 2-regular. For any two distinct vertices
x, y in A1, the two neighbors of x in A2 lie in different copies of K2 and |NG[A2](x) ∩ NG[A2](y)| ≤ 1. Thus
G[A] � G∗[A] and G ∈ F2, a contradiction.

If t = 4, then |A1| = |A2| = 6. Since G[A2] is a k2-regular graph of order 6 and 1(G[A2]) ≥ 5, we have
1 ≤ k2 ≤ 2. If k2 = 1, then k1 = 1 and d = 3. But then 1(G[A]) ≤ 4, contradicting that 1(G) ≥ 5. If k2 = 2,
G[A2] � C6 and we can also obtain that 1(G[A]) ≤ 4, again a contradiction.
Subcase 1.1.2. Each vertex of A1 has exactly two neighbors in A.

Then δ(G[A]) = t − 2, 2|A1| = |ω(A)| = λ′(G) = ξ(G) = 2t − 2 and |A| ≥ n(t − 2, 5) = t2
− 4t + 5. Thus, if

t ≥ 5, then λ′(G) = |ω(A)| = 2|A1| = |A| ≥ t2
− 4t + 5 > 2t − 2 = ξ(G), a contradiction. Clearly, k1 ≥ 2. Hence,

3 ≤ t ≤ 4.
If t = 3, then |A1| = |A2| = t − 1 = 2, k1 = 2 and d = 1. But k2 ≥ k1 = 2, which is impossible, since G[A2] is

a k2-regular graph of order 2.
If t = 4, |A1| = |A2| = 3. Thus, G[A2] � C3, contradicting that 1(G) ≥ 5.

Subcase 1.2. N(A1) ∩ A = ∅ and N(A2) ∩ A , ∅.
In this case, we may assume k2 > k1. Similarly as above, each vertex of A2 has at most two neighbors

in A. If each vertex of A2 has exactly one neighbor in A, then δ(G[A]) = t and |A| ≥ n(t, 5) = 1 + t2.
But then λ′(G) = |ω(A)| = |A2| = |A|

2 ≥
1+t2

2 > 2t − 2 = ξ(G), a contradiction. If each vertex of A2 has
exactly two neighbors in A, then δ(G[A]) ≥ t − 1 and |A| ≥ n(t − 1, 5) = t2

− 2t + 2. When t ≥ 3, we have
λ′(G) = |ω(A)| = 2|A2| = |A| ≥ t2

− 2t + 2 > 2t − 2 = ξ(G), a contradiction. When t = 2, |A1| = |A2| = t − 1 = 1,
contradicting that |A| ≥ 3.
Case 2. E(G1) = ∅ or E(G2) = ∅.

As k1 ≤ k2, we may assume E(G1) = ∅. Thus, k1 = 0. By Lemma 3.6, we have |A| ≥ 2d + k2 − 2. Since G[A]
is connected, A * V1. If A ⊆ V2, by an argument similar to that of Case 1, we get a contradiction. Thus,
Ai = A ∩ Vi , ∅ for i = 1, 2.
Subcase 2.1. Each vertex of A has a neighbor in A.

Since 2d + k2 − 2 = ξ(G) = λ′(G) = |ω(A)| ≥ |A| ≥ 2d + k2 − 2, we have |A1| = |A2| =
|A|
2 = d + k2

2 − 1, and
each vertex of A has exactly one neighbor in A. Thus, k2 is even, G(A1,A2) is (d − 1)-regular and G[A2] is
k2-regular. On the other hand, by d + k2

2 − 1 = |A2| ≥ n(k2, 5) = 1 + k2
2, then d ≥ k2

2 −
k2
2 + 2. If k2 ≥ 2, then

d ≥ 5. For any vertex v ∈ A2, |N(v) ∩ A1| = d − 1, N(ui) ∩N(u j) ∩ A2 = {v}, and N(ui) ∩N(v) ∩ A2 = ∅, where
ui , u j ∈ N(v)∩A1. Hence, we have |A| = 2|A2| ≥ 2[(d−1)(d−2)+k2 +1] > 2d+k2−2 = |A|, a contradiction. If
k2 = 0, then |A| = 2d− 2. Thus, G[A] is a (d− 1)-regular graph and |A| ≥ n(d− 1, 5) = 1 + (d− 1)2 > 2d− 2 = |A|
when d ≥ 3, a contradiction. If d = 2, then G is isomorphic to a cycle, also a contradiction. If d = 1, G � K2,
contradicting that |V1| = |V2| ≥ 3.

If A1 has neighbors in A, then since E(G1) = ∅, A2 also has neighbors in A. In view of Subcase 2.1, this
is impossible.
Subcase 2.2. Only A2 has neighbors in A.

By Lemma 3.6, we see that each vertex of A2 has at most 2 neighbors in A. And these neighbors of A2
lie in V2 \ A. We consider the following two cases.
Subcase 2.2.1. Each vertex of A2 has exactly one neighbor in V2 \ A.

In this case, 2d + k2 − 2 = λ′(G) = |ω(A)| = |A2|. By a similar argument as above, we obtain that
|A2| ≥ k2 + d(d − 1). If d ≥ 3, |A2| ≥ k2 + d(d − 1) > 2d + k2 − 2 = |A2|, a contradiction. Since k1 = 0 and G is a
connected double-orbit graph which is not super-λ′, when 1 ≤ d ≤ 2, G ∈ F1, a contradiction.
Subcase 2.2.2. Each vertex of A2 has exactly two neighbors in V2 \ A.

In this case, k2 ≥ 2 and 2|A2| = |ω(A)| = 2d + k2 − 2. Clearly, |A2| ≥ k2 + d(d − 1) − 1. If d ≥ 2,
|A| = 2|A2| ≥ 2[k2 + d(d − 1) − 1] > 2d + k2 − 2 = |A|, a contradiction. When d = 1, G ∈ F1, also a
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contradiction.

4. 3-Extra edge-connectivity

In this section, we will investigate 3-extra edge-connectivity for k-regular double-orbit graphs.

Lemma 4.1 ([2]). A λ(3)-connected graph G is λ(3)-optimal if and only if the cardinality of any λ(3)-atom is three.

Theorem 4.2 ([12]). Let G be a k-regular connected double-orbit graph with k ≥ 3 and girth 1(G) ≥ 6. Then G is
λ′-optimal.

Lemma 4.3. Let G be a k-regular connected double-orbit graph with k ≥ 3 and girth 1(G) ≥ 6. If G is not λ(3)-optimal,
then any two distinct λ(3)-atoms are disjoint.

Proof. We prove this lemma by contradiction. Assume that X and Y are two distinct λ(3)-atoms of G
with non-empty intersection A, using the same notation as Lemma 3.4. Since G is not λ(3)-optimal, then
λ(3)(G) < ξ3(G) = 3k − 4 and |X|, |Y| ≥ 4. By Theorem 3.2, we have that λ′(G) = ξ(G) = 2k − 2 and thus G is
λ-optimal, i.e. λ(G) = δ(G). Clearly, G[X ∪ Y] and G[X ∪ Y] are connected.
Claim 1. |A| ≤ 2.

Suppose |A| ≥ 3. If G[A] is connected, then |ω(A)| ≥ λ(3)(G). If G[A] is not connected, we will show
|ω(A)| > λ(3)(G). In fact, if G[A] contains exactly two components, then one of them has more than one
vertex, and thus |ω(A)| ≥ λ′(G) + λ(G) = ξ(G) + δ(G) > 3k − 4 = ξ3(G) > λ(3)(G). Otherwise, we may assume
that G[A] contains at least three components, then |ω(A)| ≥ 3λ(G) > λ(3)(G).

Note that |D| ≥ |A| ≥ 3. By a similar argument as above, we have |ω(D)| ≥ λ(3)(G). By submodular
inequality, we obtain that

2λ(3)(G) ≤ |ω(A)| + |ω(D)| ≤ |ω(X)| + |ω(Y)| = 2λ(3)(G).

It follows that |ω(A)| = λ(3)(G) and G[A] is connected, which contradicts that X is a λ(3)-atom. Therefore,
Claim 1 holds.
Claim 2. |A| = 2.

Suppose |A| = 1. Since |X|, |Y| ≥ 4, we have |B|, |C| ≥ 3. By an argument similar to the proof of Claim 1,
we can always derive a contradiction that B is a λ(3)-fragment contained in X.
Claim 3. |X| = 4.

Suppose |X| > 4, then |B| = |X| − |A| ≥ 3 and |C| = |Y| − |A| ≥ 3. By a similar argument to that of the proof
of Claim 1, we can obtain a contradiction.

Since |X| = 4 and G[X] is a connected subgraph with 1(G[X]) ≥ 6, we have G[X] � P4 or K1,3, which gives
that 4k − 6 = |ω(X)| = λ(3)(G) < ξ3(G) = 3k − 4 and k ≤ 1, again a contradiction.

Similar to the proof of Lemma 3.5, and by Lemma 4.3, we have the following result.

Lemma 4.4. Let G be a k-regular connected double-orbit graph with two orbits V1 and V2, k ≥ 3 and 1(G) ≥ 6.
Suppose that G is not λ(3)-optimal and A is a λ(3)-atom of G. Then we have

(i) If A ⊆ V1 (or V2), then V1 (or V2) is a disjoint union of isomorphic λ(3)-atoms and G[A] is a vertex transitive
graph;

(ii) If Ai = A ∩ Vi , ∅ for i = 1, 2, then V(G) is a disjoint union of distinct λ(3)-atoms, G[A] is a double-orbit
graph and G[Ai] is vertex transitive for i = 1, 2.

By the above lemma, in this section we may assume that G[Ai] is a ki-regular graph for i = 1, 2, |[x,A2]| = r1
and |[y,A1]| = r2 for x ∈ A1 and y ∈ A2.

Lemma 4.5. Let G be a k-regular connected double-orbit graph with two orbits V1 and V2, k ≥ 3 and 1(G) ≥ 4.
Suppose that G is not λ(3)-optimal and A is a λ(3)-atom of G, then |A| ≥ 2k − 3.



S. Zhao, J. X. Meng / Filomat 33:18 (2019), 5935–5948 5943

Proof. Since G is not λ(3)-optimal and 1(G) ≥ 4, we have |ω(A)| = λ(3)(G) < ξ3(G) = 3k − 4 and |A| ≥ 4. Then
by Turán’s Theorem,

|A|2

2
≥

∑
x∈A

dG[A](x) =
∑
x∈A

dG(x) − |ω(A)| > k|A| − (3k − 4),

which implies that ( |A|2 − k + 3
2 )(|A| − 3) + 1

2 > 0 and thus |A| ≥ 2k − 3.

Lemma 4.6. Let G be a k-regular connected double-orbit graph with two orbits V1 and V2, k ≥ 3 and 1(G) ≥ 6.
Suppose that G is not λ(3)-optimal and A is a λ(3)-atom of G, then |Ai| = |A ∩ Vi| ≥ 3 for i = 1, 2.

Proof. Without loss of generality, we assume that |A1| ≤ |A2|. By contradiction, suppose |A1| ≤ 2. We
consider three cases.
Case 1. |A1| = 0 (A ⊆ V2).

By Lemmas 4.4 and 4.5, if each vertex of A has at least two neighbors in G[A], then

|ω(A)| ≥ 2|A| ≥ 2(2k − 3) > 3k − 4 = ξ3(G) > λ(3)(G),

a contradiction. Thus, we see that each vertex of A has exactly one neighbor in G[A] and G[A] is (k − 1)-
regular. Then

λ(3)(G) = |ω(A)| = |A| ≥ n(k − 1, 6) = 2(k2
− 3k + 3) > 3k − 4 = ξ3(G),

again a contradiction.
Case 2. |A1| = 1.

Then k1 = 0, r2 = 1 and r1 = |A2| = |A| − |A1| ≥ 3. Clearly, if k2 ≥ 1, then 1(G[A]) = 3. Hence, k2 = 0 and

λ(3)(G) = |ω(A)| = (k − r1) + |A2|(k − r2) = r1(k − 2) + k > 3k − 4 = ξ3(G),

a contradiction.
Case 3. |A1| = 2.
Subcase 3.1. k1 = 1.

If r2 ≥ 2, then 1(G[A]) = 3, contradicting that 1(G) ≥ 6. Thus, r2 = 1 and |A2| = r1|A1| = 2r1. Clearly, if
k2 ≥ 1, then 1(G[A]) ≤ 4, a contradiction. Hence, k2 = 0 and then

λ(3)(G) = |ω(A)| = 2(k − k1 − r1) + |A2|(k − r2) = 2r1(k − 2) + 2(k − 1) > 3k − 4 = ξ3(G),

a contradiction.
Subcase 3.2. k1 = 0.

When r1 = 1, by |A1| = r2|A2| ≤ |A2|, we have r2 = 1 and |A1| = |A2| = 2. Since G[A] is connected, k2 = 1.
Thus,

λ(3)(G) = |ω(A)| = 2(k − r1) + 2(k − k2 − r2) > 3k − 4 = ξ3(G),

a contradiction.
When r1 ≥ 2, we have 2r1

r2
= |A2| ≥ 2r1 − 1, and so r2 = 1 and |A2| = 2r1. If k2 ≥ 2, then 1(G[A]) ≤ 4, a

contradiction. Thus, 0 ≤ k2 ≤ 1 and

λ(3)(G) = |ω(A)| = 2(k − r1) + |A2|(k − k2 − r2) = 2r1(k − k2 − 2) + 2k > 3k − 4 = ξ3(G),

which is impossible.

Theorem 4.7. Let G be a k-regular connected double-orbit graph with two orbits V1, V2, k ≥ 3 and 1(G) ≥ 7. Then
G is λ(3)-optimal.
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Proof. We prove this theorem by way of contradiction that G is not λ(3)-optimal. Let A be a λ(3)-atom of
G. Then |ω(A)| = λ(3)(G) < ξ3(G) = 3k − 4. By Lemma 4.6, Ai = A ∩ Vi , ∅ for i = 1, 2 and |Ai| ≥ 3. We
distinguish two cases.
Case 1. N(A1) ∩ A , ∅ and N(A2) ∩ A , ∅.

In this case, λ(3)(G) = |ω(A)| = |A1|(k − k1 − r1) + |A2|(k − k2 − r2). Assume that k − k1 − r1 ≤ k − k2 − r2. We
claim that k − k1 − r1 = 1. In fact, if otherwise k − k1 − r1 ≥ 2, by Lemma 4.5, |ω(A)| ≥ 2|A1| + 2|A2| = 2|A| ≥
2(2k − 3) > ξ3(G), which is impossible.

If k − k2 − r2 ≥ 2, then since 1(G) ≥ 7, by counting the neighbors of A1 in A2, we have |A2| ≥ r1(1 + k1).
Therefore,

|ω(A)| ≥ |A1| + 2|A2| = |A| + |A2| ≥ (2k − 3) + r1(1 + k1) = −r2
1 + kr1 + (2k − 3) ≥ 3k − 4 > λ(3)(G),

a contradiction.
If k − k2 − r2 = 1, then G[A] is (k − 1)-regular. Hence,

|ω(A)| = |A1| + |A2| = |A| ≥ n(k − 1, 7) = k3
− 4k2 + 6k − 2 > 3k − 4 > λ(3)(G),

again a contradiction.
Case 2. Either N(A1) ∩ A , ∅ or N(A2) ∩ A , ∅.

Without loss of generality, we assume that only vertices in A1 have neighbors in A, thenλ(3)(G) = |ω(A)| =
|A1|(k − k1 − r1) and k2 + r2 = k. We claim that 2 ≤ r2 ≤ k − 1.

Suppose r2 = k, then k2 = 0. By Lemma 4.6 and 1(G) ≥ 7, |A1| ≥ 3r2 − 2 = 3k − 2. Thus |ω(A)| ≥ |A1| ≥

3k − 2 > ξ3(G) > λ(3)(G), a contradiction. Thus r2 ≤ k − 1.
Suppose r2 = 1, then G[A2] is (k− 1)-regular and |A2| ≥ n(k− 1, 7). Since k− k1 − r1 ≥ 1, then r1 ≤ k− 1 and

|A1| ≤ 3k− 5. When k ≥ 4, |A2| ≥ n(k− 1, 7) > (k− 1)(3k− 5) ≥ r1|A1| = |A2|, which is impossible. When k = 3,
k2 = 2 and G[A2] is a cycle of order |A2|. If r1 = 1, then |A2| = |A1| ≤ 3k − 5 = 4, contradicting that 1(G) ≥ 7.
If r1 = 2, then |A2| = 2|A1| ≤ 8. Since 1(G) ≥ 7 and |A2| is even, then |A1| = 4, |A2| = 8 and 1(G[A]) ≤ 6, which
is impossible. This completes the proof of the claim.

In the following, we consider four subcases.
Subcase 2.1. k − k1 − r1 = 1.

In this case, δ(G[A]) = k− 1 and |A| ≥ n(k− 1, 7). On the other hand, we have |A| = |A1|+ |A2| =
r1+r2

r2
|A1| ≤

(k−1)+(k−1)
2 (3k − 5) = (k − 1)(3k − 5). When k ≥ 4, |A| ≥ n(k − 1, 7) > (k − 1)(3k − 5) ≥ |A|, a contradiction. When

k = 3, |A1| ≤ 3k − 5 = 4, and by the claim 2 ≤ r2 ≤ k − 1 and k2 + r2 = k, we have r2 = 2 and k2 = 1. If r1 = 1,
then |A1| = 2|A2| ≤ 4 and A2 ≤ 2, contradicting Lemma 4.6. If r1 = 2, then k1 = 0 and |A1| = |A2| ≤ 4. So,
|A2| = 4 and 1(G[A]) ≤ 6, again a contradiction.
Subcase 2.2. k − k1 − r1 = 2.

Then |ω(A)| = 2|A1| ≤ 3k−5 and |A1| ≤
3k−5

2 . If k ≥ 5, |A| ≥ n(k−2, 7) = k3
−7k2 +17k−13 > (k−2)+(k−1)

2
3k−5

2 ≥
r1+r2

r2
|A1| = |A|, a contradiction. If k = 3, then |A1| ≤ 2, contradicting Lemma 4.6. If k = 4, then 1 ≤ r1 ≤ k−2 = 2

and 2 ≤ r2 ≤ k − 1 = 3. By Lemma 4.6, 3 ≤ |A1| ≤
3k−5

2 = 7
2 , thus |A1| = 3. When r2 = 3, then |A2| =

r1 |A1 |

r2
≤ 2,

contradicting Lemma 4.6. When r2 = 2, k2 = 2 and G[A2] is a cycle of order |A2|. But |A2| = r1 |A1 |

r2
≤ 3,

contradicting that 1(G) ≥ 7.
Subcase 2.3. k − k1 − r1 = 3.

Since 1 ≤ r1 ≤ k−3, we have k ≥ 4. If k ≥ 6, then |A| ≥ n(k−3, 7) = k3
−10k2 +34k−38 > (k−3)+(k−1)

2
3k−5

3 ≥ |A|,
a contradiction. If k = 4, then |A1| ≤

3k−5
3 < 3, contradicting Lemma 4.6. If k = 5, then 3 ≤ |A1| ≤

3k−5
3 = 10

3 ,
thus |A1| = 3. When r1 = 1, then |A2| =

|A1 |

r2
< 3, contradicting Lemma 4.6. When r1 = 2, by |A2| =

2|A1 |

r2
≥ 3

and the claim r2 ≥ 2, we have r2 = 2, k2 = 3 and |A2| = 3, which is impossible for G[A2] is a k2-regular graph.
Subcase 2.4. k − k1 − r1 ≥ 4.

In this case, k ≥ 5 and 2 ≤ r2 ≤ |A1| ≤
3k−5

4 . Thus k2 ≥
k+5

4 and |A2| ≥ n( k+5
4 , 7) > k−4

2
3k−5

4 ≥
r1
r2
|A1| = |A2|, a

contradiction.
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Fig.3. A 3-regular graph G ∈ F3

Remark 4.8. Now, we show that the girth bound given in Theorem 4.7 is best possible.
We construct one family of graphs with 1(G) ≥ 6, which is not λ(3)-optimal, to illustrate that the

girth bound is best possible. Using the same notation as Theorem 4.7, A1 is an independent set with
2k − 2 ≤ |A1| ≤ 3k − 5, G[A2] is a (k − 1)-regular subgraph, every vertex of A1 has k − 1 neighbors in A2 and
every vertex of A2 has 1 neighbors in A1. Let F3 be a family of k-regular double-orbit graphs such that for
any G ∈ F3, G consists of m copies of G[A] by adding a perfect matching between different copies of A1. A
3-regular example G ∈ F3 is shown in Fig. 3.

Since a λ′-connected graph is super-λ′ if and only if either G is not λ(3)-connected or λ(3)(G) > ξ(G), we
deduce the following result by Theorem 4.7.

Corollary 4.9. Let G be a k-regular connected double-orbit graph with k ≥ 3 and 1(G) ≥ 7. Then G is super-λ′.

5. Super 3-extra edge-connectivity

Lemma 5.1. Let G be a k-regular connected double-orbit graph with k ≥ 3 and girth 1(G) ≥ 7. If G is not super-λ(3),
then any two distinct λ(3)-superatoms are disjoint.

Proof. Assume that X and Y are two distinct λ(3)-superatoms of G. Use the same notation as Lemma 3.4 and
we suppose to the contrary that A , ∅. Since G is not super-λ(3), then |X|, |Y| ≥ 4. And by Theorems 4.2 and
4.7, λ(3)(G) = ξ3(G) = 3k − 4, λ′(G) = ξ(G) = 2k − 2 and thus λ(G) = δ(G). Clearly, G[X ∪Y] and G[X ∪Y] are
connected.
Claim 1. |A| ≤ 3.

Suppose |A| ≥ 4. If G[A] is connected, then |ω(A)| ≥ λ(3)(G). If G[A] is not connected, we will show
|ω(A)| > λ(3)(G).

If G[A] contains a component, say U3, such that |V(U3)| ≥ 3, then |ω(A)| ≥ λ(3)(G) + λ(G) > λ(3)(G).
Otherwise, we may assume that every component in G[A] is an isolated edge or an isolated vertex. If
there is an isolated edge in G[A], then we have |ω(A)| > ξ(G) + λ(G) > λ(3)(G). Thus, now assume that all
components in G[A] are isolated vertices, then |ω(A)| ≥ 4λ(G) > λ(3)(G).

Note that |D| ≥ |A| ≥ 4. By a similar argument as above, we have |ω(D)| ≥ λ(3)(G). By submodular
inequality, it follows that A is a non-trivial λ(3)-fragment contained in X, a contradiction.
Claim 2. |B| ≤ 3.

Suppose |B| ≥ 4, then G[B],G[C] is connected. By an argument similar to the proof of Claim 1, we can
always derive a contradiction that B is a non-trivial λ(3)-fragment contained in X, which is impossible.

We prove this lemma by considering three cases.
Case 1. |A| = 1.

Since |X| = |A| + |B| = 1 + |B| ≥ 4, then |B| = 3 by Claim 2. Thus G[X] is a connected subgraph of order 4
with 1(G[X]) ≥ 7, and we see that G[X] is a tree of order 4, which implies that 4k−6 = |ω(X)| = λ(3)(G) = 3k−4
and k = 2, contradicting k ≥ 3.
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Case 2. |A| = 2.
Since |X| = 2 + |B| ≥ 4, then 2 ≤ |B| ≤ 3 by Claim 2. Thus we see that G[X] is a tree of order 4 or 5, which

implies that |X|k − 2|E(G[X])| = |ω(X)| = λ(3)(G) = 3k − 4 and k = 2, a contradiction.
Case 3. |A| = 3.

In this case G[X] is a tree of order 4, 5 or 6, which implies that k = 2, again a contradiction.

Lemma 5.2. Let G be a k-regular connected double-orbit graph with two orbits V1 and V2, k ≥ 3 and 1(G) ≥ 7.
Suppose that G is not super-λ(3) and A is a λ(3)-superatom of G. Then we have

(i) If A ⊆ V1 (or V2), then V1 (or V2) is a disjoint union of isomorphic λ(3)-superatoms and G[A] is a vertex
transitive graph;

(ii) If Ai = A∩Vi , ∅ for i = 1, 2, then V(G) is a disjoint union of distinct λ(3)-superatoms, G[A] is a double-orbit
graph and G[Ai] is vertex transitive for i = 1, 2.

In this section, we use the same notation as Section 4. By an argument similar to the proof of Lemma
4.5, we have the following lemma.

Lemma 5.3. Let G be a k-regular connected double-orbit graph with two orbits V1 and V2, k ≥ 3 and 1(G) ≥ 4.
Suppose that G is λ(3)-optimal but not super-λ(3) and A is a λ(3)-superatom of G, then |A| ≥ 2k − 4.

Lemma 5.4. Let G be a k-regular connected double-orbit graph with two orbits V1 and V2, k ≥ 3 and 1(G) ≥ 7.
Suppose that G is not super-λ(3) and A is a λ(3)-superatom of G, then |Ai| = |A ∩ Vi| ≥ 3 for i = 1, 2.

Proof. The outline of the proof is similar to that of Lemma 4.6 except for the case |A1| = 0. In the following,
we assume |A1| = 0.

By Lemmas 5.2 and 5.3, if each vertex of A has at least two neighbors in G[A], then |ω(A)| ≥ 2|A| ≥
2(2k − 4) = 4k − 8. If k ≥ 5, then |ω(A)| ≥ 4k − 8 > 3k − 4 = λ(3)(G), contradicting Theorem 4.7. If k = 3, by
0 ≤ k2 ≤ k − 2 = 1, then 5 = 3k − 4 = λ(3)(G) = |ω(A)| = (k − k2)|A| ≥ 2|A| ≥ 8, which is impossible. If k = 4,
λ(3)(G) = 8. When 0 ≤ k2 ≤ 1, 8 = |ω(A)| = (k − k2)|A| ≥ 12, a contradiction. When k2 = 2, G[A] � Ct and
t ≥ 7. But, 8 = |ω(A)| = 2t ≥ 14, which is impossible. Thus, we see that each vertex of A has exactly one
neighbor in G[A], G[A] is (k − 1)-regular, and

λ(3)(G) = |ω(A)| = |A| ≥ n(k − 1, 7) > 3k − 4 = ξ3(G),

a contradiction.

Let F4 be a family of 4-regular connected double-orbit graphs with two orbits V1,V2 and girth at least 7.
For any G ∈ F4, G is the disjoint union of m copies of G[A] by adding a perfect matching between different
copies of A1, where A1 is an independent set of order 8, G[A2] is a 3-regular vertex transitive graph of order
24, G(A1,A2) is the disjoint union of 8 copies of K1,3 and Ai = A ∩ Vi for i = 1, 2.

Theorem 5.5. Let G be a k-regular connected double-orbit graph with two orbits V1, V2, k ≥ 3 and 1(G) ≥ 7. Then
G is super-λ(3) except the graphs in F4.

Proof. We prove this theorem by way of contradiction that G is not super-λ(3) and G < F4. By Theorem 4.7,
λ(3)(G) = ξ3(G) = 3k − 4. Let A be a λ(3)-superatom of G. Then by Lemma 5.4, Ai = A ∩ Vi , ∅ for i = 1, 2
and |Ai| ≥ 3. We distinguish two cases.
Case 1. N(A1) ∩ A , ∅ and N(A2) ∩ A , ∅.

In this case,λ(3)(G) = |ω(A)| = |A1|(k−k1−r1)+|A2|(k−k2−r2). Assume that k−k1−r1 ≤ k−k2−r2, and we have
k− k1 − r1 = 1. In fact, if k− k1 − r1 ≥ 2, by Lemma 5.3, when k ≥ 5, |ω(A)| ≥ 2|A| ≥ 2(2k− 4) > 3k− 4 = λ(3)(G),
a contradiction. When 3 ≤ k ≤ 4, by lemma 5.4, |ω(A)| ≥ 2|A1| + 2|A2| ≥ 12 > λ(3)(G), again a contradiction.

If k − k2 − r2 ≥ 2, we claim that 2 ≤ r1 ≤ k − 2. If r1 = 1, then k1 = k − 2. Thus, G[A1] is (k − 2)-regular and
|A1| ≥ (k− 2, 7) = k3

− 7k2 + 17k− 13. Then |ω(A)| ≥ |A1|+ 2|A2| ≥ (k3
− 7k2 + 17k− 13) + 6 > 3k− 4 = λ(3)(G), a
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contradiction. If r1 = k−1, then k1 = 0. By 1(G) ≥ 7 and |A1| ≥ 3, then |A2| ≥ 3r1−2 and |ω(A)| ≥ |A1|+2|A2| ≥

3 + 2(3r1 − 2) > 3k − 4 = λ(3)(G), which is impossible. So, the claim follows.
By the claim, we have k ≥ 4. When k = 4, 8 = λ(3)(G) = |ω(A)| ≥ 9, which is impossible. When k ≥ 5,

|ω(A)| ≥ |A1| + 2|A2| = |A| + |A2| ≥ (2k − 4) + r1(1 + k1) = −r2
1 + kr1 + (2k − 4) > 3k − 4 = λ(3)(G), again a

contradiction.
If k−k2−r2 = 1, then G[A] is (k−1)-regular. Hence, |ω(A)| = |A1|+ |A2| = |A| ≥ n(k−1, 7) > 3k−4 = λ(3)(G),

also a contradiction.
Case 2. Either N(A1) ∩ A , ∅ or N(A2) ∩ A , ∅.

Without loss of generality, we assume that only vertices in A1 has neighbors in A, then λ(3)(G) = |ω(A)| =
|A1|(k − k1 − r1) and k2 + r2 = k. We claim that 3 ≤ r2 ≤ k − 1.

Suppose r2 = k, then k2 = 0 and |ω(A)| ≥ |A1| ≥ 3k − 2 > 3k − 4 = λ(3)(G), a contradiction.
Suppose r2 = 1, then k2 = k − 1. When k ≥ 5, |A2| ≥ n(k − 1, 7) > (k − 1)(3k − 4) ≥ r1|A1| = |A2|, a

contradiction. When k = 3, k2 = 2 and G[A2] is a cycle. If r1 = 1, then |A2| = |A1| ≤ 5, contradicting that
1(G[A2]) ≥ 7. If r1 = 2, then |A2| = 2|A1| = 10, contradicting 1(G[A]) ≥ 7. When k = 4, k2 = 3. If 1 ≤ r1 ≤ 2,
then 16 ≥ r1|A1| = |A2| ≥ n(3, 7) = 22, which is impossible. If r1 = 3, then |A2| = 3|A1| = 24 and it is easy to
see that G ∈ F4, a contradiction.

Suppose r2 = 2, then k2 = k−2. When k ≥ 6, |A2| ≥ n(k−2, 7) > k−1
2 (3k−4) ≥ r1

r2
|A1| = |A2|, a contradiction.

When k = 3, k2 = 1 and 1 ≤ r1 ≤ k − 1 = 2. If r1 = 1, then |A2| =
1
2 |A1| < 3, contradicting Lemma 5.4. If

r1 = 2, then |A1| = |A2| ≤ 5. By k2 = 1, we have |A1| = |A2| = 4, contradicting 1(G[A]) ≥ 7. When k = 4, k2 = 2
and G[A2] is a cycle of order |A2|. If r1 = 1, then |A2| =

1
2 |A1| ≤ 4, contradicting 1(G[A2]) ≥ 7. If r1 = 2, then

|A1| = |A2| ≤ 8. By 1(G) ≥ 7, we have |A1| = |A2| = 8, contradicting 1(G[A]) ≥ 7. If r1 = 3, then k1 = 0, |A1| = 8
and |A2| = 12. Since δ(G[A]) = 3, we have |A| ≥ n(3, 7) = 22 > 20 = |A1| + |A2| = |A|, which is impossible.
When k = 5, |A2| ≥ n(3, 7) = 22 ≥ r1

r2
|A1| = |A2|, thus |A2| = 22. Since 11 = 3k−4 ≥ |A1| =

r2
r1
|A2|, we have r1 = 4

and |A1| = 11. By δ(G[A]) = 4, |A| ≥ n(4, 7) = 53 > 33 = |A|, which is impossible. Hence, the claim follows.
We complete the proof by considering four subcases.

Subcase 2.1. k − k1 − r1 = 1.
By the claim, k ≥ 4, then |A| ≥ n(k − 1, 7) > (k−1)+(k−1)

3 (3k − 4) ≥ r1+r2
r2
|A1| = |A|, a contradiction.

Subcase 2.2. k − k1 − r1 = 2.
In this case, k ≥ 4, |A| ≥ n(k − 2, 7) > (k−2)+(k−1)

3
3k−4

2 ≥ |A|, again a contradiction.
Subcase 2.4. k − k1 − r1 = 3.

By 3k − 4 = λ(3)(G) = |ω(A)| = 3|A1|, we have |A1| =
3k−4

3 = k − 4
3 , contradicting that |A1| is an integer.

Subcase 2.3. k − k1 − r1 ≥ 4.
In this case, k ≥ 5 and 3 ≤ r2 ≤ |A1| ≤

3k−4
4 . Thus k2 ≥

k+4
4 and |A2| ≥ n( k+4

4 , 7) > k−4
3

3k−4
4 ≥ |A2|, a

contradiction.
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