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Numerical Solution of Linear Stochastic Volterra Integral Equations via
New Basis Functions

Ali Asghar Cheraghi Tofigh?, Morteza Khodabin®*, Reza Ezzati®

“Department of Mathematics, Karaj Branch, Islamic Azad University,Karaj, Iran

Abstract. In this article, we use a new method based on orthogonal basis functions for the numerical
solution of stochastic Volterra integral equations of the second kind (SVIE). By using this method, a SVIE
can be reduced to a linear system of algebraic equations. Finally, to show the efficiency of the proposed
method, we give two numerical examples.

1. Introduction

Due to increasing usage of stochastic differential equations or stochastic integral equations in applicable
problems, the need to extend the numerical solution for this type of equation is felt. Some authors have
suggested some numerical methods for solving stochastic differential equation [1-3]. M.Khodabin et al.
have used interpolation solution generalized stochastic exponential population growth model [4, 5]. In [6],
authors applied triangular functions for solving numerically stochastic Volterra integral equation. Asgari et
al. suggested stochastic operational matrix based on Bernstein polynomials for obtaining numerical solution
of nonlinear stochastic integral equation[7]. K.Maleknejad et al. used modified block pulse functions for
solving stochastic Volterra integral equations [8].S. Bhattacharya et al. have obtained numerical solutions
of Volterra integral equations by applying Bernstien polynomials [9]. Authors of [10] by using new basis
functions have solved non stochastic and nonlinear Volterra-Fredholm integral equations numerically.

In this article, we apply the new basis functions method proposed in [10] for solving linear stochastic
Volterra integral equation

X

hx) = g(x) + Ay fo ) Ki(x, Hh(Hdt + Ay fo Ka(x, Hh(HdB(t), (1)

where the function g € 12[0,1], and the kernels Ki(.,.),Kx(.,.) € L*([0,1] x [0,1]) are known and h(x) is
stochastic processes defined on the probability space (€, Z, P), and h(x) is unknown. B(t) is a Brownian

motion process and fox Ka(x, )h(x)dB(t) is the It6 integral. To this end we construct the operational matrix of
integration, P and P, as follows:

t
f W(s)ds ~ PW(t),
0
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t
f W(s)dB(s) = PW(1),
0

where, W(t) = [1(t), P2(t), ..., Pu(t)] and clearly the matrices P and Ps can be calculated by using new
orthogonal basis functions. The elements 11(t), 2(t), ..., Pu(t) are the orthogonal basis functions defined
on the certain interval [0,1]. The main advantage of this method is that this method reduces the integral
equation (1) to a collection of algebraic equations by expanding h(x), g(x) ,Ki(.,.) and Ky(.,.) in (1) according
to new orthogonal basis functions.

The rest of the paper is organized as follows: In Section 2, we introduce a new set of orthogonal basis
functions. In Section 3, stochastic integrations operational matrix of new basis functions are introduced.
Function approximation is introduced in Section 4. Error analysis was given in Section 5. The efficiency
of the proposed method, is shown by some examples in Section 6. Finally, Section 7, gives our concluding
remarks.

2. New basis functions

In an n-collection of new basis functions (NBFs) over interval [0,1), the ith left and right functions are
introduced as [10]:

i+1)2— (L) . .
NF1;(u) = GOV ih<u<(i+Dh @)
0, otherwise,
(L1 . .
Nle(M) — e th<u< (l + 1)h, (3)
0, otherwise,

where i = 0,2,3,...,n — 1 is an arbitrary positive integer number, i = %, and NF1;(u) and NF2;(u) are the
terms of ith of NF1(1) and NF2(u), respectively. Suppose that

NF1(u) = [NF1o(u), NF1, (1), ..., NF1,_, ()], (4)

NF2(u) = [NF2o(1t), NF2, (1), ..., NF2, 1 ()], (5)
and

NF(u) = [NF1(u), NF2(u)]". (6)

By using Egs.(2) and (3), we conclude that
NFL’(u) + NFZi(u) = IP,'(L[),

where 1);(1) are the ith block pulse functions.

Also
NF1(u)NF17 (1) =~ diag(NF1(u)), (7)
NF2(u)NF2" (1) ~ diag(NF2(u)), (8)
NF(u).NF'(u).V ~ V.NF(u), )

where V is a 2n-vector and V = diag(V).
It can be clearly concluded that for an n X n matrix B:

NF'(u).B.NF(u) ~ BT NF(u), (10)

where B is a n-vector with elements equal to diagonal entries of matrix B.

It is easy to see that
n-1 n-1

NFL(w)+ Y NF2()=1, 0<u<1.
i=0 i=0
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By some definitions and relations in [10] we can obtain the integration operational matrix as:

2 4 4 0 4 4
0 2 . 0
0 0 4 0 4
. 0 2 0 . 0
P=%hh 2 2 0 2 2
0 1 2 0 2
0 0 2 0 0 2
0 0 1 0 0 01,500
3. Stochastic integration operational matrix
From [4], we have
[a(1) b(1) b(1) b
0 a(2) b(2) . b(2)
0 0 a(3) .. b(3)
P=| . . . . , (11)
| 0 0 0 . a(n)

“nxn

where
(2i — 1)h

a(i) = B(

and P; is stochastic integration operahonal matrix of block pulse functions. By using (5) we can write

)= B((i—1Dh) , b(i) = B(ih) - B((i - Dh),

fo NF1;(t)dB(t) + fo NE2:(t)dB(t) = fo Vi(B)dB(E).

Furthermore, we can show

f NF1;(t)dB(t) = f Vi(t)dB(b),

and
fNFZ(t)dB(t fl/)(t )dB(t).

From (6), stochastic integration operational matrix biassed on new basis function, is introduced as

po._ L[4Ps 2P,
e 6 ZPS PS 2n><2n.

4. Function approximation

An arbitrary real bounded function g(x) € L?[0, 1) can be approximated by:

n-1 n—1
g(x) = Y GLNF1,(x) + Y GZNF2(x) = G'NF(v), (12)
i=0 i=0
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where G is a 2n-vector given by G = [G17,G27], and NF(x) = [NF1(x) , NF2(x)]" are defined in Eq.(5). The
coefficients in G1 and G2 can be computed by G1; = g(ih), G2; = g((i + 1)h).
Suppose that K(x;t) be an arbitrary function defined on L*([0;1) x [0;1)). Clearly, it can be expanded by
NBFs as the following form:

K(x; t) =~ NFT (x)KNE(#).
k11 k12

Also, K = [k21 k22

] ,is 2n X 2n coefficients matrix, where

[k11),n = K(mh, nh), [K12],, = K(mh, (n + 1)h),
[k21],n = K((m + 1)k, (n)h), [k22],, = K((m + 1)k, (n + 1)h).

Now, we proposed a numerical method based on new basis functions to solve linear stochastic Volterra
integral equation:

h(x) = g(x) + Ay f ) Ki(x, Dh(t)dt + A f ) Kao(x, Hh(HdB(t), 0<x <1, (13)
0 0

where, g(x) € L?[0,1) and kernels K;(x, t) € L?([0,1) X [0, 1)), Ka(x, t) € L*([0, 1) X [0, 1)) are known functions,
h(x) is the unknown function. By approximating functions g(x),Ki(x, t), K2(x, t) and h(x) in the matrix form,
we have:

g9(x) =~ G'NF(v), (14)
Ki(x,t) =~ NFT(x)KiNF(t), (15)
Ka(x,t) =~ NFT(x)KoNF(t), (16)
h(x) ~ HTNF(x). (17)

By substituting Eqgs.(14)-(17) in Eq.(13), we obtain:
H'NF(x) = GTNF(x) + A4 fo ' NF(x)K,NF(t)NF! (t)Hdt+
Ao fo ) NFT(x)K,NE(H)NET (H)HAB(t),
HTNF(x) = GTNF(x) + A{NFT (x)K1 j; ) NF(H)NFT(HHdt+

ANFT(x)K; f ) NF(H)NFT(t)HdB(t),
0

by using Eqgs.(9)-(10) we have:

H'NF(x) = GTNF(x) + A{NFT (x)K; f ANF(t)dt + A,NFT (x)K; f V HNE(t)dB(t),
0 0
by applying [ NF(t)dt = PNF(x), [ NF(1)dB() = Pxs.NF(x) we have:
HTNF(x) = GTNF(x) + A{NFL(x)KiHPNF(x) + A,NFT (x)KoHPysNF(x), (18)
let B = K1HP, B, = K;HPyns we have:
HTNF(x) = GTNF(x) + 1,BTNF(x) + A,B, NE(x),

where B and B; are 2n-vectors with elements equal to the diagonal entries of matrix B and B;.
So,
H=G+ /\1B + /\2B~5.

This equation is a linear system of algebraic equations.
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5. Error analysis

Theorem 1. Let f be an arbitrary real bounded function on (0,1) and |f’(f)| < M for all te (0, 1).
Pute(t) = |f(t) - f (t)| where, f (t) is approximation of f(t) biassed on NBFs. Then

lle()I> < O(?),

where, [le()[[2 = [, le(s)ds.
Proof: By using properties of the NBFs, :

m—1

e(t) = If() - fO] = 1f(5) = Y _(FAMNFLi + f((i + DINF2).

i=0
For t € (ih, (i + 1)h), we conclude that

e(t) = [f(t) = f()l = 1f(t) = FENFLi — f((i + DHNF2i| = |f(t) = f{RNFLi = f((i + D)1 ~ NF19)|

< If(®) = f(G+ D)+ |f(G + Dh) = f(ih)INFLi].
By the mean value theorem, there exist n, 1; € (ih, (i + 1)h) such that

e(t) < If ()t — (i + k| + | (1n)hNF1i|
<If'mhl +1f okl = (f' I+ |f (n)hh < 2Mh.

So
1
wwW=f\mW@s@MWsoW>
0
In Eq.(1) let
() = MK (x4 (E) = AaKa(t, 2a(O)HCx),
and

() = 1., a(t) = 2.,

where il(t) and [2(t) are defined by property of the NBFs.
Theorem 2. Let h,(t) is numerical solution of

h(x) = g(x) + f xfl(t)dt+ f fo(t)dB(t),
0 0
Then

k() = ha(t)I* < O(H?),

where, ||x||? = E[+2].
Proof.

t t
h(t) — hy(t) = fo (1(s) — 1(s))ds + fo (12(s) — [2(s))dB(s),

By using (a + b)? < 2(a> + b?), we have

t . t R
Ilh(t)—hn(t)II2SZ(IIfO(ll(S)—ll(S))dSIIZ+||f0(12(5)—12(5))dB(S)||2)
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t t
< 2] fo (11(s) = IL(s))IPds + fo (12(s) = 2(s))dB(s)I), (19)

By using isometry property of the standard Brownian motion we have

f t
h(t) — h,(DII? < 2 11(s) — 11(s)|)d 12(s) — 12(s)||*)d
h(t) = b (BIP < 2 fo 1) — T1(s)l12s + fo 12(5) — P2(9)D)s)
f t
= 2 f 11(s) — 11%(s) + 117(s) — [1(s)|[2ds + f 12(s) = 127(s) + 12" (s) — R2(s)[P)dl(s)
0 0
t f f t
52(2.f0 ||ll(s)—ll”(s)||2ds+2£ ||ll"(s)—i1(s)||2ds+2f0 ||12(S)—12”(S)||2ds+2f0 ||ZZ"(S)—12(S)||2dS)

t t t t
< 4( f 11(s) — I1%(s)|Pds + f 117 (s) - 1(s)|Pds + f 12(s) — 12"(s)|Pds + f 12" (s) — I2(s)|Pds).  (20)
0 0 0 0
By using theorem 1 we have(ky, k, > 0)
111"(s) = IR < kk? , 1117(s) = FLE)IP < kol (21)

By using Lipschitz condition we have

t t
f 11(s) — 11" (s)lPds < Iy f lIh(s) — ha(s)II*ds, (22)
0 0
t t
f 12(s) — 12"(s)I[Pds < I f Ih(s) — hu(s)|[*ds, (23)
0 0
by substituting Eqgs. (21),(22),(23) in Eq. (20) we get
t t
h(t) = ha(DI? < 4(kih? + 1 f Ih(s) = hu(s)IPds + kolt* + 1 f h(s) = h,(s)l12ds). (24)
0 0
or
t
o(t) < O(s)ds,
() <p+n fo (5)ds
where,

p=4al? +kh?), n=4h+hL), 6t = k) - )P
From Gronval inequality we obtain
¢
o) <u(l+ nf exp(O(t — s))ds), te(0,1)
0

SO
lI7() = Ba(B)IP < O(?).
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6. Numerical examples
Here, we apply the proposed method in Section 4 for solving SVIE of the second kind. To illustrate the

efficiency of the presented method, we compare the numerical solution with the exact solution.
Example 1. Consider the following stochastic Volterra integral equation of the second kind:

u(t) = %+ f(; cos(s)u(s)ds + j{; sin(s)u(s)dB(s), (25)

with the exact solution u(t) = 1/12 exp(—t/4 + sin(t) + sin(2t)/8) + fot sin(s)dB(s)), 0<t<1.
The numerical results are shown in Table 1.

Table 1:The error mean(Xr), mean of analytical solution X4, mean of numerical solution Xy and 95%confidence
interval for error mean values of x (n=32)

X Xe Xa Xy 95%confidence interval forXg
Lower Upper

0 | 4.938e-04 | 0.0833651 | 0.0846491 4.939¢-04 4.939e-04
0.1 | 8.524e-04 | 0.0921918 | 0.0926241 8.524e-04 8.525e-04
0.2 | 2.076e-03 | 0.1014824 | 0.1010376 2.074e-03 2.078e-03
0.3 | 2.090e-03 | 0.1117954 | 0.1096639 2.085e-03 2.095e-03
0.4 | 3.026e-03 | 0.1230248 | 0.1181889 3.012e-03 3.041e-03
0.5 | 6.452e-04 | 0.1336782 | 0.1315328 6.078e-04 6.826e-04
0.6 | 6.363e-04 | 0.1477232 | 0.1387214 5.802e-04 6.924e-04
0.7 | 5.380e-04 | 0.1629618 | 0.1444476 4.958e-04 5.803e-04
0.8 | 3.410e-04 | 0.1750085 | 0.1482378 2.761e-04 4.059e-04
0.9 | 2.746e-03 | 0.1889018 | 0.1497249 2.65%e-03 2.833e-03

Example 2. Consider the following linear stochastic Volterra integral equation,
t t
u(t) = % + f In(s + 1u(s)ds + f VIn(s + 1)u(s)dB(s) s,t €[0,0.5), (26)
0 0

with the exact solution u(t) = %e_%t+%l”(t+1)t+%l”(t+1)+f<; VinG+DdBEs) for 0 <t < 0.5.

The numerical results are shown in Table 2 .

Table 2: The error mean(Xg), mean of analytical solution X4, mean of numerical solution Xy and 95%confidence
interval for error mean values of x (n=32)

X X Xa Xy 95%confidence interval for X
Lower Upper

0 2.78015e-05 | 0.333334 | 0.333333 2.78014e-05 2.78011e-05
0.1 | 1.72133e-05 | 0.336691 | 0.334142 6.996e-06 2.7430e-05
0.2 | 3.52856e-05 | 0.345342 | 0.336481 -5.481e-06 7.6052e-05
0.3 | 7.26905e-05 | 0.359038 | 0.340248 -3.848e-06 1.4922¢-04
0.4 | 1.10451e-04 | 0.377406 | 0.365839 -1.699e-05 2.3789%e-05
0.5 | 1.70366e-04 | 0.408059 | 0.381858 -5.009e-05 3.9083e-04
0.6 | 2.41803e-04 | 0.437881 | 0.459660 -5.899e-05 5.4260e-04
0.7 | 3.16882e-04 | 0.473096 | 0.468789 -9.168e-05 7.2545e-04
0.8 | 3.97393e-04 | 0.514373 | 0.479251 -1.354e-04 9.3015e-04
0.9 | 4.92036e-04 | 0.562033 | 0.491097 -1.854e-04 1.1695e-04
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7. Conclusions

In this article, we used a new orthogonal basis functions for solving SVIE of the second kind. By

using this method, we reduce Eq.(1) to the linear stochastic system. Also, numerical examples are show the
accuracy of presented method. We can extend this idea to SVIE by fractional Brownian motion.
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