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Abstract. We study a uniqueness question of meromorphic functions whose certain nonlinear differential
polynomials share a finite nonzero value. The results in this paper extend the corresponding results from
Steuding [14, p.152], Li[9] and Fang [1]. The studied question is concerning a question posed by Fang in
2009.

1. Introduction and main results

In this paper, by L-functions we always mean L-functions that are Dirichlet series with the Riemann

zeta function ζ(s) =
∞∑

n=1
n−s as the prototype and are important objects in number theory. The Selberg class S

of L-functions is the set of all Dirichlet series L(s) =
∞∑

n=1
a(n)n−s of a complex variable s = σ+ it with a(1) = 1,

satisfying the following axioms (cf.[13, 14]):

(i) Ramanujan hypothesis: a(n)� nε for every ε > 0.

(ii) Analytic continuation: There is a nonnegative integer k such that (s− 1)kL(s) is an entire function of
finite order.

(iii) Functional equation: L satisfies a functional equation of type ΛL(s) = ωΛL(1 − s), where ΛL(s) =

L(s)Qs
K∏

j=1
Γ(λ js + ν j) with positive real numbers Q, λ j and complex numbers ν j, ω with Reν j ≥ 0 and |ω| = 1.

(iv) Euler product hypothesis: L(s) =
∏

p exp
(
∞∑

k=1

b(pk)
pks

)
with suitable coefficients b(pk) satisfying b(pk)�

pkθ for some θ < 1/2, where the product is taken over all prime numbers p.

In the last few years, value distribution of L-functions has been studied extensively, which can be found,
for example in Steuding [11]. Value distribution of L-functions concerns the distribution of zeros of an
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L-function L and, more generally, the c-points of L, i. e., the roots of the equation L(s) = c, or the points
in the pre-image L−1 = {s ∈ C : L(s) = c}, here and throughout the paper, s denotes the complex variables
in the complex plane C and c denotes a value in the extended complex plane C ∪ {∞}. L-functions can be
analytically continued as meromorphic functions in C. Two meromorphic functions f and 1 in the complex
plane are said to share a value c ∈ C ∪ {∞} IM (ignoring multiplicities) if f−1(c) = 1−1(c) as two sets in C.
Moreover, f and 1 are said to share a value c CM (counting multiplicities) if they share the value c and if
the roots of the equations f (s) = c and 1(s) = c have the same multiplicities. In terms of sharing values, two
nonconstant meromorphic functions in the complex plane must be identically equal if they share five values
IM, and one must be a Möbius transformation of the other if they share four values CM. The numbers “five”
and “four” are the best possible, as shown by Nevanlinna (cf.[3, 12, 16, 17]), which are famous theorems
due to Nevanlinna and often referred to as Nevanlinnas uniqueness theorems.

Throughout this paper, by meromorphic functions we will always mean meromorphic functions in the
complex plane. To prove the main results in the present paper, we will apply Nevanlinna’s theory and
adopt the standard notations of the Nevanlinna’s theory. We assume that the readers are familiar with the
standard notations which are used in the Nevanlinna’s theory such as the characteristic function T(r, f ), the
proximity function m(r, f ), the counting function N(r, f ) and the reduced counting function N(r, f ) that are
explained in [3, 6, 16, 17]. Here f is a meromorphic function. It will be convenient to let E denote any set
of positive real numbers of finite linear measure, not necessarily the same at each occurrence. In addition,
we will use the lower order µ( f ) and the order ρ( f ) of a meromorphic function f , which can be found, for
example in [3, 6, 16, 17], and are in turn defined as follows:

µ( f ) = lim inf
r→∞

log+ T(r, f )
log r

, ρ( f ) = lim sup
r→∞

log+ T(r, f )
log r

.

For a nonconstant meromorphic function h,we denote by S(r, h) any quantity satisfying S(r, h) = o(T(r, h)), as
r→∞ and r < E.We say that a meromorphic function a is a small function with respect to h, if T(r, a) = S(r, h)
(cf.[16]). We also need the following two definitions:

Definition 1.1. ([7, Definition 1]). Let p be a positive integer and a ∈ C
⋃
{∞}. Next we denote by Np)

(
r, 1

f−a

)
the

counting function of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than
p, and denote by N(p

(
r, 1

f−a

)
the counting function of those a-points of f (counted with proper multiplicities) whose

multiplicities are not less than p. We denote by Np)

(
r, 1

f−a

)
and N(p

(
r, 1

f−a

)
the reduced forms of Np)

(
r, 1

f−a

)
and

N(p

(
r, 1

f−a

)
respectively. Here Np)

(
r, 1

f−∞

)
, Np)

(
r, 1

f−∞

)
, N(p

(
r, 1

f−∞

)
and N(p

(
r, 1

f−∞

)
mean Np)

(
r, f

)
, Np)

(
r, f

)
,

N(p
(
r, f

)
and N(p

(
r, f

)
respectively.

Definition 1.2. Let a be an any value in the extended complex plane and let k be an arbitrary nonnegative integer.
We define

Θ(a, f ) = 1 − lim sup
r→∞

N
(
r, 1

f−a

)
T(r, f )

, δk(a, f ) = 1 − lim sup
r→∞

Nk

(
r, 1

f−a

)
T(r, f )

,

where

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+ N(2

(
r,

1
f − a

)
+ · · · + N(k

(
r,

1
f − a

)
.

Remark 1.3. By Definition 1.2 we have

0 ≤ δk(a, f ) ≤ δk−1(a, f ) ≤ δ1(a, f ) ≤ Θ(a, f ) ≤ 1.

We first recall the following result due to Steuding [11], which actually holds without the Euler product
hypothesis:
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Theorem 1.4. ([14, p.152]). If two L-functions L1 and L2 with a(1) = 1 share a complex value c , ∞ CM,
then L1 = L2.

Remark 1.5. Recently Hu and Li pointed out that Theorem 1.4 is false when c = 1. A counter example was
given by Hu and Li, see [5].

In 2010, Li [9] introduced the following question posed by Chung-Chun Yang:

Question 1.6. ([9]). If f is a meromorphic function in C that shares three distinct values a, b CM and c IM
with the Riemann zeta function ζ, where c < {a, b, 0,∞}, is f equal to ζ ?

Li [9] also proved the following result to deal with Question 1.6:

Theorem 1.7. ([9]). Let a and b be two distinct finite values, and let f be a meromorphic function in the
complex plane such that f has finitely many poles in the complex plane. If f and a nonconstant L-function
L share a CM and b IM, then L = f .

Remark 1.8. In 2012, Gao and Li completely solved Question 1.6, see [2].

Concerning the value distribution of nonlinear differential polynomials of meromorphic functions, we
recall the following result proved by Fang in 2002:

Theorem 1.9. ([1, Theorem 2]). Let f and 1 be two nonconstant entire functions, and let n, k be two positive
integers satisying n ≥ 2k + 8. If ( f n( f − 1))(k) and (1n(1 − 1))(k) share 1 CM, then f = 1.

Regarding Theorem 1.9, one may ask, what can be said about the relationship between two meromorphic
functions f and 1, if ( f n( f − 1))(k) and (1n(1 − 1))(k) share 1 CM (IM), where n and k are positive integers ?
which was also posed by Professor M. L. Fang in 2009. By now this question is still open. In this paper,
we will prove the following result by considering the nonlinear differential polynomials of L-functions, we
will prove the following result, which deals with the special case of this question:

Theorem 1.10. Let f be a nonconstant meromorphic function, let L be an L-function, and let n and k be two
positive integers with n > 3k + 9 and k ≥ 2. If ( f n( f − 1))(k) and (Ln(L − 1))(k) share 1 CM, then f = L.

In the same manner as in the proof of Theorem 1.10 in Section 3 of this paper, we can get the following
result by Lemma 2.3 in Section 3 of this paper:

Theorem 1.11. Let f be a nonconstant meromorphic function, let L be an L-function, and let n and k be two
positive integers satisfying n > 7k + 17 and k ≥ 2. If ( f n( f − 1))(k) and (Ln(L − 1))(k) share 1 IM, then f = L.

2. Preliminaries

In this section, we will give the following lemmas that play an important role in proving the main results
in this paper. First of all, we introduce the following lemma from [11]:

Lemma 2.1. (Valiron-Mokhonoko, [11]). Let f be a nonconstant meromorphic function, and let

F =

∑p
k=0 ak f k∑q
j=0 b j f j

be an irreducible rational function in f with constant coefficients {ak} and {b j}, where ap , 0 and bq , 0. Then
T(r,F) = dT(r, f ) + O(1), where d = max{p, q}.
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The following two lemmas are from Li-Yi[10]:

Lemma 2.2. ([10, Lemma 2.5]). Let F and G be two nonconstant meromorphic functions such that F(k)
− P

and G(k)
− P share 0 CM, where k ≥ 1 is a positive integer, P . 0 is a polynomial. If

(k + 2)Θ(∞,F) + 2Θ(∞,G) + Θ(0,F) + Θ(0,G) + δk+1(0,F) + δk+1(0,G) > k + 7

and

(k + 2)Θ(∞,G) + 2Θ(∞,F) + Θ(0,G) + Θ(0,F) + δk+1(0,G) + δk+1(0,F) > k + 7,

then either F(k)G(k) = P2 or F = G.

Lemma 2.3. ([10, Lemma 2.4]). Let F and G be two nonconstant meromorphic functions such that F(k)
− P

and G(k)
− P share 0 IM, where k ≥ 1 is a positive integer, P . 0 is a polynomial. If

(2k + 3)Θ(∞,F) + (2k + 4)Θ(∞,G) + Θ(0,F) + Θ(0,G) + 2δk+1(0,F)
+ 3δk+1(0,G) > 4k + 13

and

(2k + 3)Θ(∞,G) + (2k + 4)Θ(∞,F) + Θ(0,G) + Θ(0,F) + 2δk+1(0,G)
+ 3δk+1(0,F) > 4k + 13,

then either F(k)G(k) = P2 or F = G.

Lemma 2.4. ([8, Theorem 1.2]). Suppose that f is a meromorphic of finite order in the plane, and that f (k)

has finitely many zeros for some k ≥ 2. Then f has finitely many poles in the complex plane.

Lemma 2.5. ([18, Lemma 6]). Let f1 and f2 be two nonconstant meromorphic functions such that

N(r, f j) + N
(
r,

1
f j

)
= S(r)

for 1 ≤ j ≤ 2 Then, either N0(r, 1; f1, f2) = S(r) or that there exist two integers p and q satisfying |p| + |q| > 0,
such that f p

1 f q
2 = 1, where N0(r, 1; f1, f2) denotes the reduced counting function of the common 1-points of

f1 and f2 in |z| < r, T(r) = T(r, f1) + T(r, f2) and S(r) = o(T(r)), as r < E and r→∞.Here E ⊂ (0,+∞) is a subset
of finite linear measure.

Lemma 2.6. ([4]). Let f be a transcendental meromorphic function in the complex plane. Then, for each
K > 1, there exists a set M(K) ⊂ (0,+∞) of the lower logarithmic density at most d(K) = 1− (2eK−1

− 1)−1 > 0,
that is

log densM(K) = lim inf
r→∞

1
log r

∫
M(K)∩[1,r]

dt
t
≤ d(K),

such that, for every positive integer k, we have

lim sup
r→∞

r<M(K)

T(r, f )
T(r, f (k))

≤ 3eK.

Lemma 2.7. ([18]). Let s > 0 and t be relatively prime integers, and let c be a finite complex number such
that cs = 1, then there exists one and only one common zero of ωs

− 1 and ωt
− c.
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3. Proof of the main results

Proof of Theorem 1.1. First of all, we denote by d the degree of L. Then d = 2
K∑

j=1
λ j > 0 (cf.[14, p.113]),

where K and λ j are respectively the positive integer and the positive real number in the functional equation
of the axiom (iii) of the definition of L-function. Therefore, by Steuding [14, p.150] we have

T(r,L) =
d
π

r log r + O(r). (1)

Next we set

F1 = f n( f − 1), G1 = Ln(L − 1). (2)

Now we let

∆1 = (k + 2)Θ(∞,F1) + 2Θ(∞,G1) + Θ(0,F1) + Θ(0,G1) + δk+1(0,F1) + δk+1(0,G1) (3)

and

∆2 = (k + 2)Θ(∞,G1) + 2Θ(∞,F1) + Θ(0,G1) + Θ(0,F1) + δk+1(0,G1) + δk+1(0,F1). (4)

By Lemma 2.1 we have

Θ(∞,F1) = 1 − lim sup
r→∞

N(r,F1)
T(r,F1)

= 1 − lim sup
r→∞

N(r, f )
(n + 1)T(r, f ) + O(1)

≥ 1 −
1

n + 1
, (5)

δk+1(0,F1) = 1 − lim sup
r→∞

Nk+1

(
r, 1

F1

)
T(r,F1)

(6)

≥ 1 − lim sup
r→∞

(k + 1)N
(
r, 1

f

)
+ N

(
r, 1

f−1

)
(n + 1)T(r, f ) + O(1)

≥ 1 −
k + 2
n + 1

and

Θ(0,F1) ≥ 1 −
2

n + 1
, Θ(0,G1) ≥ 1 −

2
n + 1

, δk+1(0,G1) ≥ 1 −
k + 2
n + 1

. (7)

By noting that an L-function has at mostone pole z = 1 in the complex plane, we have by (1) that

Θ(∞,G1) = 1. (8)

By (3), (5)-(8) we have

∆1 ≥ k + 8 −
3k + 10
n + 1

, ∆2 ≥ k + 8 −
2k + 10
n + 1

. (9)

By (9) and the assumption n > 3k + 9, we have ∆1 > k + 7 and ∆2 > k + 7. This together with (3), (4), Lemma
2.2 and the assumption that F(k)

1 and G(k)
1 share 1 CM gives F(k)

1 G(k)
1 = 1 or F1 = G1.We consider the following

two cases:

Case 1. Suppose that F(k)
1 G(k)

1 = 1. Then, by (2) we have

( f n( f − 1))(k)(Ln(L − 1))(k) = 1. (10)
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On the other hand, by (1) and (10), Lemma 2.1, a result from Whittaker [15, p.82] and the definition of the
order of a meromorphic function we have

ρ( f ) = ρ( f n( f − 1)) = ρ(( f n( f − 1))(k)) = ρ((Ln(L − 1))(k)) = ρ(Ln(L − 1))
= ρ(L) = 1. (11)

By (11) we can see that f is a transcendental meromorphic function. Since an L-function at most has one
pole z = 1 in the complex plane, we deduce by (10) that ( f n( f − 1))(k) at most has one zero z = 1 in the
complex plane. Combining this with (11), Lemma 2.4 and the assumption k ≥ 2,we have that f n( f − 1), and
so f has at most finitely many poles in the complex plane. This together with (10) implies that (Ln(L − 1))(k)

has at most finitely many zeros in the complex plane. Therefore, by (2) we have

N(r,F(k)
1 ) + N

r,
1

F(k)
1

 ≤ O(log r) (12)

and

N(r,G(k)
1 ) + N

r,
1

G(k)
1

 ≤ O(log r). (13)

We now set

f1 =
F(k)

1

G(k)
1

, f2 =
F(k)

1 − 1

G(k)
1 − 1

. (14)

By (14) and the assumption that f and L are transcendental meromorphic functions, we have f1 . 0 and
f2 . 0. Suppose that one of f1 and f2 is a nonzero constant. Then, by (14) we see that F(k)

1 and G(k)
1 share ∞

CM. Combining this with F(k)
1 G(k)

1 = 1 we deduce that ∞ is a Picard exceptional value of f and L. Next we
suppose that f1 and f2 are nonconstant meromorphic functions. We set

F2 = F(k)
1 , G2 = G(k)

1 . (15)

Then, by (14) and (15) we have

F2 =
f1(1 − f2)

f1 − f2
, G2 =

1 − f2
f1 − f2

. (16)

By (16) we can find that there exists a subset I ⊂ (0,+∞) with infinite linear measure such that S(r) = o(T(r))
and

T(r,F2) ≤ 2(T(r, f1) + T(r, f2)) + S(r) ≤ 8T(r,F2) + S(r) (17)

or

T(r,G2) ≤ 2(T(r, f1) + T(r, f2)) + S(r) ≤ 8T(r,G2) + S(r), (18)

as r ∈ I and r → ∞, where T(r) = T(r, f1) + T(r, f2). Without loss of generality, we suppose that (17) holds.
Then we have S(r) = S(r,F2), as r ∈ I and r → ∞. By F2G2 = 1 we see that F2 and G2 share 1 and −1 CM.
By noting that F2 and G2 are transcendental meromorphic functions such that F2 and G2 share 1 CM, we
deduce by (12)-(14) that

N
(
r,

1
f j

)
+ N

(
r, f j

)
= o(T(r)), j = 1, 2, (19)
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as r ∈ I and r → ∞. By noting that F2 and G2 share −1 CM, we deduce by (14), (15) and the second
fundamental theorem that

T(r,F2) ≤ N(r,F2) + N
(
r,

1
F2

)
+ N

(
r,

1
F2 + 1

)
+ o(T(r,F2))

≤ N
(
r,

1
F2 + 1

)
+ O(log r) + o(T(r,F2))

≤ N0(r, 1; f1, f2) + o(T(r,F2)), (20)

as r ∈ I and r→∞. By (17) and (20) we have

T(r, f1) + T(r, f2) ≤ N0(r, 1; f1, f2) + o(T(r)), (21)

By (12)-(15), (19), (21) and Lemma 2.5 we find that there exist two relatively prime integers s and t satisfying
|s| + |t| > 0, such that f s

1 f t
2 = 1. Combining this with (14) and (15), we have( F2

G2

)s ( F2 − 1
G2 − 1

)t

= 1. (22)

We discuss this as follows:

Suppose that st < 0, say s > 0 and t < 0, say t = −t1, where t1 is some positive integer. Then, (22) can be
rewritten as( F2

G2

)s

=
( F2 − 1

G2 − 1

)t1

. (23)

Let z1 ∈ C be a pole of F2 of multiplicity p1 ≥ 1. Then, by F2G2 = 1 we can see that z1 be a zero of G2
of multiplicity p1. Therefore, by (23) we deduce that 2s = t1 = −t. Combining this with the assumption
that s and t are two relatively prime integers, we have s = 1 and t = −t1 = −2. Therefore, (3.23) can be
rewritten as F2(G2 − 1)2 = (F2 − 1)2G2, this equivalent to the obtained result F2G2 = 1. Next we can deduce
a contradiction by using the other method. Indeed, by (11), (13), the right equality of (2) and the fact that
L, and so (Ln(L − 1))(k) has at most one pole z = 1 in the complex plane, we deduce

(Ln(z)(L(z) − 1))(k) =
P1(z)

(z − 1)p2
eA1z+B1 , (24)

where P1 is a nonzero polynomial, p2 ≥ 0 is an integer, A1 , 0 and B1 are constants. By (24), Hayman[3,
p.7], Lemmas 2.1 and 2.6 we deduce that there exists a subset I ⊂ (0,+∞) with logarithmic measure logmeas
I =

∫
I

dt
t = ∞ such that for some given sufficiently large positive number K > 1, we have

(n + 1)T(r,L) = T(r, (Ln(L − 1)))

≤ 3eKT(r, (Ln(L − 1))(k)) =
3eK|A1|r

π
(1 + o(1)) + O(log r), (25)

as r ∈ I and r→∞. By (1) and (25) we have a contradiction.

Suppose that st = 0, say s = 0 and t , 0. Then, by (22) we can see that F2 and G2 share ∞ CM. This
together with (2), (15) and the assumption F2G2 = 1 implies that∞ is a Picard exceptional value of f and L.

Suppose that st > 0, say s > 0 and t > 0. Then, by (22) we can see that F2 and G2 share ∞ CM. This
together with (2), (15) and the assumption F2G2 = 1 implies that∞ is a Picard exceptional value of f and L.

By (2), (13) and the assumption n > 3k + 9 we deduce that L has at most finitely many zeros in the
complex plane. This together with the obtained result that∞ is a Picard exceptional value of f and L gives

L(z) = P3(z)eA2z+B2 , (26)
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where P3 is a nonzero polynomial, A2 , 0 and B2 are constants. By (26) and Hayman[3, p.7] we have

T(r,L(z)) = T(r,P3(z)eA2z+B2 ) =
|A2|r
π

(1 + o(1)) + O(log r), (27)

which contradicts (1).

Case 2. Suppose that F1 = G1. Then, by (2) we have

f n( f − 1) = Ln(L − 1). (28)

Set

H =
L
f
. (29)

By (28) and (29) we deduce

(Hn+1
− 1) f = Hn

− 1. (30)

We consider the following two subcases:

Subcase 2.1 Suppose that H is a nonconstant meromorphic function. Then, by (30) we have

f =
1 −Hn

1 −Hn+1 . (31)

By noting that n and n + 1 are two relatively prime positive integers, we know by Lemma 2.7 that ω = 1 is
the only one common zero of ωn

− 1 and ωn+1
− 1. Therefore, (31) can be rewritten as

f =
1 + H + · · · + Hn−1

1 + H + · · · + Hn , (32)

By (32) and Lemma 2.1 we have

T(r, f ) = T
(
r,

1 + H + · · · + Hn−1

1 + H + · · · + Hn

)
= nT(r,H) + O(1). (33)

By (11), (28), (32) and the second fundamental theorem we have

N(r,L) = N(r, f ) =

n∑
j=1

N
(
r,

1
H − λ j

)
+ o(T(r,H)) ≥ (n − 2)T(r,H), (34)

as r → ∞. Here λ1, λ2, · · · , λn are n distinct finite complex numbers satisfying λ j , 1 and λn+1
j = 1 for

1 ≤ j ≤ n. By noting that L is a transcendental meromorphic function such that L has at most one pole
z = 1 in the complex plane, we deduce by (34) that there exists some small positive number ε0 satisfying
0 < ε0 < 1, such that

(n − 2 − ε0)T(r,H) ≤ N(r,L) = log r + O(1). (35)

By (35) and the assumption n > 3k + 9 and k ≥ 2 we deduce that H is a nonconstant rational function such
that

T(r,H) ≥ log r + O(1). (36)

By (35) and (36) we can get a contradiction.
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Subcase 2.2 Suppose that H is a constant. If Hn+1 , 1. By (30) we get (31), which contradicts the
assumption that f is a nonconstant meromorphic function. Therefore, Hn+1 = 1, and so it follows by (3.30)
that Hn+1

− 1 = Hn
− 1 = 0, which implies that H = 1. Combining this with (29), we get the conclusion of

Theorem 1.10. This completes the proof of Theorem 1.10.

Proof of Theorem 1.2. First of all, we denote by d the degree of L. Then d = 2
K∑

j=1
λ j > 0 (cf.[14, p.113]),

where K and λ j are respectively the positive integer and the positive real number in the functional equation
of the axiom (iii) of the definition of L-function. Therefore, by Steuding [14, p.150] we have (1). Now we let
(2), and let

∆3 = (2k + 3)Θ(∞,F1) + (2k + 4)Θ(∞,G1) + Θ(0,F1) + Θ(0,G1)
+ 2δk+1(0,F1) + 3δk+1(0,G1) (37)

and

∆4 = (2k + 3)Θ(∞,G1) + (2k + 4)Θ(∞,F1) + Θ(0,G1) + Θ(0,F1)
+ 2δk+1(0,G1) + 3δk+1(0,F1). (38)

In the same manner as in the proof of Theorem 1.10 we have 5-8. By (5)-(8), (37) and (38) we have

∆3 ≥ 4k + 14 −
7k + 18
n + 1

, ∆4 ≥ 4k + 14 −
7k + 17
n + 1

. (39)

By (38)-(39) and the assumption n > 7k + 17 we deduce ∆3 > 4k + 13 and ∆4 > 4k + 13. This together with
Lemma 2.3 gives F(k)

1 G(k)
1 = 1 or F1 = G1. We consider the following two cases:

Case 1. Suppose that F(k)
1 G(k)

1 = 1. Then, in the same manner as in Case 1 of the proof of Theorem 1.10
we have a contradiction.

Case 2. Suppose that F1 = G1. Then, in the same manner as in Case 2 of the proof of Theorem 1.1 we
get the conclusion of Theorem 1.11. This completely proves Theorem 1.11.

Acknowledgments. The authors want to express their thanks to the referee for his/her valuable sugges-
tions and comments concerning this paper.
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