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Abstract. In this article, some new generalized nonlinear versions are established for integral and discrete
analogues of inequalities, with advanced arguments that provide explicit bounds on unknown functions.
The estimation given here can be used as a handy and powerful tool in the study of some classes of sum
difference and integral equations. Some applications are also discussed here in order to illustrate the
usefulness of our results.

1. Introduction

Linear and nonlinear integral inequalities involving functions of one and more than one independent
variables which provide explicit bounds on unknown functions play a fundamental role in the study of
qualitative properties of solutions of differential, integral and integro-differential equations. During the
past few years, such type of inequalities and their applications have been undertaken by many scholars.
For details, we refer to literature [2-5, 7, 8, 10, 13, 16, 18, 19, 21] and references therein.

In 1973, Pachpatte [9] established the following useful integral inequality: If v, z, j are non-negative
continuous functions on R, = [0, o), vy > 0 is a constant and

! )
o(l) < vy + f 2(9)[o(®) + f j(Qo@)dc]ds, )
0 0
then
! )
o(l) < vp[1 + f 2(9)exp( f [2(C) + j(O1AC)ds], 1eR,.
0 0
In 2010, he [14] further studied the integral inequality of two variables of the type

/
v@wSp@m+%hmlL£UWﬁw%ﬂ+ﬂ%ﬂMm%

such that [,u € A, B be a bounded domain in R", n-dimensional Euclidean space, A = B X R, and B =
Y.iLilai, bil(a; < by). Later, Tian et al. [17] discovered the integral inequality as

al)  rpu)
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c is a constant, ¢ be increasing function with @(c0) = oo, &, 8, be nondecreasing and a(l) < [, f(u) < u on
R;. In this paper based on the work above, we establish some variations of (1) involving functions of two
independent variables, that can be beneficial to demonstrate the classifications of integral inequalities and
integral equations. Lastly, we give examples to prove the validity of our results.

2. Preliminaries

For the reader convenience, let R be the set of real numbers, R, = [0,) and Ny = {0,1,2,...}. Iy = [lp, L),
I, = [ugp, U) are the subsets of R and 6 = I; X I. Let C(X, W) denotes the class of continuous functions from
X to W in which empty sums and products are taken to be 0 and 1 respectively. All the integrals, sums
and products exist on the definitions of their respective domain and the functions be real-valued. Div(l, u),
Dyv(l,u) and D1D,v(l,u) = DyD1v(l, u) are the partial derivatives of a function v(l, u) with respect to r, u
and ru respectively for [,u € R. Also Aw(b) = w(b + 1) — w(b), aqw(b, k) = z(b + 1,k) — w(b, k), row(b, k) =
w(b, k+1) —w(b, k) and 2x81w(b, k) = Ay(sw(b, k)) are the operators A, A1, A for the function w(b), w(b, k),
b,k € No. Inaddition P; = {(s,c) €ER2:0<9<(< oo},p2 = {(Z,u,S,C) ERY:0<9<I<0,0<C<u< oo},

Hy=1i(bk)eN2:0<k<b<ooyand Hy = {(L,Lu,b,k) e N*:0<bh<I<00,0<k<u< ool
0 0

3. Results and discussion

Our principle results depend on the accompanying hypotheses of fundamental integral inequalities
with two variables that can be utilized in specific circumstances.

Theorem 3.1. Let v(l, u),z(l, u), m(l,u),a(l,u) € C(R%, R,). Moreover, j(I,u,9,C),D1j(l,u,9,C),Daj(l,u,3,0),
D1Dsj(l,u,9,0) € C(P2,Ry)and n>1, 0> 0. If
! U 9 C
oL u) <a(l,u) +m(, u)f f z(9S, C)[v”(S, Q)+ f f j(9,C, b, kvl (b, k)dkdb]deC, ()
0 Jo 0 Jo

then

v(l,u)g{a(l,u)+m(l,u)Q(l,u)[1+ fo l fo uF(S,C)exp( fo ) fo C[F(o,cv)+%B(o,ca)]dcado)dCdS]}q, 3)

provided with
! 1 3 C 0 n-o
= [ [Txsofac o+ [ [ b0k + I adslacas, @
0 Jo 0 Jo n n
/ 1 / U
B(l,u)=j(l,u,l,u)+fDlj(l,u,b,u)db+f Dzj(l,u,l,k)dk+ff D1D5j(l, u, b, k)dkdb, (5)
0 0 0 Jo
F(l,u) = m(l, u)z(l, u), (6)
forl,u € R,.

Proof. Set a function n(l, u) by

/ U 9 C
n(l, u) = f f z(S,C)[v”(S,C)+ f f j(S,C,b,k)vg(b,k)dkdb]dCdS. 7)
0 0 0 0
Then (2) can be rewritten as

o', u) < a(l,u) + n(l, u) = v(,u) < [a(l, u) + m(l, uyn(l, u)]%. (8)
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By applying elementary inequality (See [6, p 30]) and from (8), we deduce

11 0 g
vige < =+ =,
g n o
wherev > 0,9 >0, }] + % =1 with n > 1, we notice that
-1
ouy < W n-b nlw, )
n n
and
17 . N-¢0 ¢ 0
v?(Lu) < |a(l, u) + m(l, u)n(l,u)|"|1] §—+—al,u+—ml,unl,u, 10
(I, 1) < [al, u) + m(l, wyn( ﬂ[] Tt e + L mun(, (10)
substitute (9) and (10) in (7), we get
n(l, u) < Q(, u) f f E(S,0[n(9,0) + f f (9, T, b, Kyn(b, k)dkdb|dzas, (11)

Q(l, u) and F(I, u) are given as in (4) and (6) respectively. First, we assume that Q(/, u) > 0 for [, u € R. From
(11), it is easy to verify that

l,
&%—“” (12)
where
_ " n(s,0) n(b, k)
glu)y=1+ fo fo (3,0 060t f f i(9,C,b,k) ob k)dkdb]dCdS, (13)

and g(0, u) = g(I,0) = v(0,0) = 1. Differentiating (13) and from (12), we have
D1D2g(l,u) < F(I, u)M(L, u), (14)

from which

M, u) =g(l,u)+ = f f j(l,u, b, k)g(b, k)dkdb, (15)

M(0,u) = M(I,0) = M(0,0) =1, (16)
and

g(l,u) < M(I, u). 17)

It is obvious that M(J, u) is nondecreasing and using (17), we get

[DlM(l u)] [

D, F, )+ B0 (18)

where B(l, ) be defined as in (5). By keeping I fixed, u = (, integrate first from 0 to u and then again keeping
u fixed, I = 9 and integrate the resulting inequality from 0 to [ for ], u € R, and using (16), we have

! U
M(, u) < exp fo fo (F(S,C)+§B(S,C))d£d9]. (19)
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Insert (19) in (14) and integrating the resultant inequality first from 0 to # and then from 0 to /, we obtain

/ 1 9 C
g(lu) <1+ fo fo F(s,c)exp[ fo fo (F(a,ca)+%B(a,w))dadca]dca’s. (20)

The desired inequality in (3) follows by combining (12) and (20) in (8).
The above procedure can be executed with Q(l, u) + ¢ instead of Q(/, u) if Q(l, u) is non-negative, where
€ > 0is an arbitrary small constant so if ¢ — 0, we get the required inequality (3). [

Remark 3.2. Ifwe take a(l,u) = c, m(l,u) =1, o = 1and n = 1, then Theorem 3.1 can be reduced to Theorem 2.2(b;)
of [12].

Remark 3.3. It is interesting to note that if u fixed, m(l,u) = 1, o(l,u) = u(x), a(l,u) = up, z(9,0) = f(s),
i(3,C, b, k)o(b, k) = h(m)u(m) and o = 1, then Theorem 3.1 can be converted into Theorem 2.4 of [5].

Remark 3.4. The inequality established in Theorem 3.1 can be generalized into Theorem 2.2(a1) of [11] withn =1,
j(8,C,b,k) = 0and [ (8, 0)dC = fy * (s, t)dt.

Corollary 3.5. Suppose that v,z, j,a,m,D1j(l,u,9,C), D2j(l,u,8,C), D1D,j(,u,9,C) and n be mentioned as in
Theorem 3.1. Then

I pu S C
o1, u) < a(l, u) + m(l, ) f f FO,0[0"(9,0) + f f (9, ¢, b, kyo(b, k)dkdbdcds,
0 Jo 0 0
implies

o(l,u) < {a(l, u) + m(, u)Q*(l, u)[l + % j; l fo ' F(8, Oexp( fo ' fo C[F(a,ca) + %B(a,ca)]dcada)dCdS]}u,

where B(l, u) and F(I, u) be given as in (3.4), (3.5) respectively and

Q*(Lu)= f f 2(9,0)[a(9,0) + f f j(8,C,b, (= ”(b 9, )dkdb]dCdS

forl,u € R,.

Remark 3.6. By letting u fixed, m(l,u) = 1, v(l,u) = u(x), a(l,u) = uy, j(3,C,b,k)o(bk) = h(m)u(m) and
fo fo z(9,0)dC = f o0 f(s)ds where a(t) < t, Corollary 3.5 becomes Theorem 2.1 of [1].

Remark 3.7. Corollary 3.5 is the generalization of Theorem 2.2 (ap) [11] by puttingn =1, m(l,u) = 1, j(3,C, b, k) = 0
and [} [ 2(8,0dcds = [ [ (s, tds.

Theorem 3.8. Let v(l, u),z(l, u), j(I,u),a(l,u) € C(6,R.). Further, « € C'(I1,11), B € CX(Ir, ) be nondecreasing
witha(l) <lonl, p(u) <uonlandn> 1. If

a(l) )
(L u) < all, u) + f f (8,00(8,0) + f " f( ) (b, Kyo(b, Kydkdb|dcds. (1)

Then

1 9 a(®) RO 7
v(l,u)s{a(l,u)+H(l,u)[1+ﬁ f] f O 2(9, Qexpl( L 0 fc 2(0, @) + f j(o, @) dcado]dCdS]} , (22)

a(8) JB(Co)
where

H(l,u) = f f 2(9, c)[“(‘9 29 f Y o o, ) ”(b K, )dkdb]dCdS (23)

Bluo)

forl,ue@.
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Proof. Denote

a(l) B(11)
ni(l,u) = f f z(9, C) (9, Q) + f j(b, k)v(b, k)dkdb]dCdS, (24)
Iy (lo) JB(uo)
(21) can be restated as
o(l,u) < a(,u) + m(, u)] (25)
from (25) and (9) in (24), we attain
[ ru a(]) ﬁ(u)
mtw <t [ [z o®e [ 26)
lo Juo n a(lo) (uo>
H(x, y) be shown as in (23). By the nondecreasing nature of H(/, ) and from (26), we have
il u)
Tl <0w, @)
where
/ U a(l)
m (9, 0) f f m (b k)
Luy=1 9, b, k dkdb|dCds. 28
gy =1+ fl f R oo R I G- o L (28)

and g1(lp, u) = g1(I, uo) = g1(lo, up) = 1. Obviously g1(l, u) > 0 and using (27), we obtain

Dugr(,u) < f 20, OM; (1, OdC,

I o) i) b,
Mi(,u gl( 4, f bk)gl( O dkdb; Mo 1) = My ) = Ma(lo, 0) = —
a(lp) JB(ug)

and g1(J, u) < Mi(l, u). The remaining proof can be completed by following a suitable modifications at the
proof of Theorem 3.1. Here we omit the details. [J

Remark 3.9. Taken) = 1,v(l,u) = ®(u(x, ), a(, u) = a(x)+b(y), j,u) = 1, [} [*2(9,0)dds = I " [P £t s)dsdt

with a(x) < x, f(y) < y and f Tl(o; ﬁ[:f:)) z(9,0)dCdd = g(t,s), Theorem 3.8 converts to Theorem 1 of [17].

Remark 3.10. The inequality established in Theorem 3.8 generalizes Theorem 2.5 of [20] (with j = 0 and v(l,u) =
u(t1(s), T2(t)) on time scales where (s, t) € Ty X TB, 11 € (To, T), 11(x) < x,—00 < a = inf{11(x), x € Ty} < x9 and
72 € (Tg, T), 2(y) < y, —o0 < B = inf{12(y), y € To} < o.

Theorem 3.11. Assume that v(l, u), z(l, u), j(I, 1), a(l, u) be non-negative functions defined on No and n > 1, 0 > 0.
If
-1 u— 9-1 C-1
oI, u) < a(xl,u) + z(9, C) v9(9,0) + i, k)yv'(b, k)], (29)
9=0 ¢ b=0 k=0

[uny
h

I
[=}
o
o~

Il

then

I—

—_
=
—_

9-1 [

o(l, u) < {a(l, u) + E(,w)[1 + 2(8,0) H (1+
b=0 k

1 1
[22(b, k) + j(b, k)])]} , (30)
4

<
Il
[==}
[t
I
(=]
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such that
-1 u-1 -1 u-1
E _ Q
(u) = Z z(9, C a(S Q) Lh-ey, j(b, ka(b, k) (31)
9=0 =0 9=0 (=0
for 1, u € N.
Proof. Consider
-1 u-1 9-1 C-1
m(,u) =YY 2(8,004(8,0) + (b, ko' (b, k)| (32)
9=0 (=0 b=0 k=0
(29) takes the form
1L u) < a(l,u) +na(l,u), (33)

utilizing (33) and (10) in (32), we easily obtain

=

-1 u-1 9-1 -
na(l,u) < E(Lu) + 29,0 2m(3,0) + (b, Kyna(b, b)), (34)
9=0 (=0 n b=0 k=0

—_

where E(x, y) be mentioned as in (31). Clearly E(/, u) is non-negative, continuous and nondecreasing. Hence
from (34)

I,
B < m), )
so that
-1 u-1 9-1 (-1
om(d nz(b k)
I =1 36
gp(lu)=1+ ys z(3,0)| = 0 EGS, C) + L, k:O] E(b k) (36)

The inequality (36) implies the estimate

-1 u-1 9-1 c-1
g(lu) <1+ 28,01+ Z 2(b, k) + j(b, K))], (37)
9=0 =0 b=0 k=0
from (37) and (35), we get
-1 u-1 9-1 -1
my(l,u) < E(Lu)1+ 20,0 [[1+Y (8 peCURg L 0] (38)
9=0 ¢=0 b=0 k=0

Using (38) in (33) to get the acquired inequality in (30). O

Remark 3.12. When a(l,u) = c, j(b,k) = k(s,t,m,n) and n = o = 1, the inequality given in Theorem 3.11 can be
changed into Theorem 2.4 (dy) of [12].

Remark 3.13. Ifweputn=1,j=0, 0=1and z(,u) = b(x,y)c(s, t), then the inequality established in Theorem
3.11 reduces to Theorem 2.6 (py) of [11].

Remark 3.14. Setting o =1, j = 0 and z(3, Q)v(I, C) = b(x, ylc(s, )u(s, t) + e(s, t)], the inequality given in Theorem
3.11 changes to Theorem 1 of [6].
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Theorem 3.15. Let v(l,u), z(I,u), m(l,u), a(l,u), j(l,u,$,0), s1j{l,u,d,0C), 225, u,9,C) and A105(1,u,,C) be
nonnegative functions for 0 < 9 < 1,0 < C < ufor 3,1, uin No and 1, o be same as in Theorem 3.11. The inequality

-1 u-1 9-1 C-1
1L, u) < a(l,u) + m(l,u) z(9, C U 9,0 + j(3,C, b, k), k)], (39)
9=0 C=0 b=0 k=0
satisfies
-1 u-1 9-1 1 -1 lll
o(l,u) < {a(l, u) + m(, u)Ad, w)|1 + F@S, 0| (=) [oF®, k) + N, k)] } (40)
{ [ EEreo [ R - von)
where
-1 u-1 9-1 C-1
bk
A, u) = 2(S, C)[Qa(S 0+ u + (8, ¢, b, ) ”( ), 170 (41)
9=0 (=0 b=0 k=0 n
-1 I-1 u-1
N u) = jl+1,u+1,1, u)+ZA1](l u+1,b, u)+ZA2] (+1,u,lk + Madju,b k),  (42)
b=0 k=0 b=0 k=0
and F(l, k) be given as in (22) for I, u € N.
Proof. Define a function n3(l, u) by
-1 u-1 9-1 C-1
ma(lu) =Y Y 29,0048, Q) + (8, ¢, b, kyo(b, k)| (43)
9=0 (=0 b=0 k=0
Then (43) leads to
o(l,u) < [a(l, u) + m(, uyns(l, )], (44)
using (9) and (10) in (43), we achieve
-1 u-1 0 9-1 C-1 Tl(bk)
na(L ) < AdLu) + F(3, o[ (9, 0) + (8, ¢, b, =], (45)
9=0 =0 b=0 k=0

where A(l, u) and F(I, u) are defined by (41) and (6) simultaneously. Now by the definition of A(x, y) and
(45), we observe that

7’13([, M)
A S 90w, (46)
such that
-1 u-1 9-1 C-1
_ 0713(\9 0) n3(b, k)
gs(l,u)—1+S:O c:OF( 0|2 o TER H;](, u, b, k) A(b,k)]’ 47)

and g3(/, u) is nondecreasing function, we have

M 22g3(l, u) < F(L u)Mo(1, u), (48)
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from (46) and the function M;(J, u) is defined by

9-1 C-1 (b k)
Mo(l, ) -93(1 0+ Y Y j,ub, k)g3 (49)
b=0 k=0

and
g3(l,u) < Ma(l, u), (50)

also My (I, u) > 0, Ma(l,u + 1) < My(l, u) and from (48) and (50) in (49), we attain
£142Ma(l, 1) < %[QF(Z, u) + N(I, 1) |Ma(l, u). (51)

or, equivalently

[Mz(l +1,u+ 1 Mg(l u+ 1)] [Mz(l +1, M Mg(l, u)

1
My (L) ham = pleEtw+ NGw], 52)

take [ fixed with # = C and summing over C = 0,1,2,..u — 1 in (3.51) first and then again u fixed in the
resulting inequality, / = 9 and summing over 9 = 0,1,2,... — 1, where § and C are an arbitrary in Ny, we get

I—l -1
Ma(l,u) < 2 oF(9,0)+ N3, 0. (53)
S=0 C=
(53) and (48) give
-1 1 u—l
mmagaLu) < FAu) [ [1+ = ) [oF®,0 + N, 0], (54)
9=0 n =0
which implies the estimate
-1 u-1 9-1 1 [ 1
gs(Lu) <1+ FS,O 1+ =) [eF® b + N, b)]], (55)
$=0 (=0 b:O =

the required inequality (40) can be obtained by putting (55)in (46) and the resulting inequality in (44). O
Remark 3.16. Theorem 3.15 converts to Theorem 2.4(d>) of [12] if m(I,u) = 1andn =0 = 1.

Remark 3.17. When j =0, m(l,u) = 1 and n = ¢ = 1, the inequality given in Theorem 3.15 becomes to Theorem 2.1
of [15].

Remark 3.18. Put p =1, j = 0and z(8, Q)v(9, C) = c(s, t)u(s, t) + e(s, t), then the inequality established in Theorem
3.15 reduces to Theorem 2 of [6].

Remark 3.19. Settingn =1, j =0, 9 = 1 and z(3,C) = c(s,t), the inequality given in Theorem 3.15 changes to
Theorem 2.6 (p1) of [11].
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4. Application

In this segment, we are presenting some theorem 3.1 implementations. Consider the following nonlinear
hyperbolic partial integro-differential equation

/ U
ol (Lu) = X(1u, v, w), f f h(l, u,0,@,v(0, ®))dado), (56)
0 Jo

with the boundary conditions
v'](ll 0) =m (l)/ Uq(ol M) = Elz(u), vq(ol 0) = Or (57)
where v € C(R2,R),h € C(My X R,R), X € C(R2 x R?>,R)and 1 > 1.

Example 4.1: Now, we deal with the assumptions as follows:

1X(1,u, t,0] < z(Lw)lt + [0l], (58)
lar() + ax ()l < a(l, u), (59)
Ih(l,u,9,C,0 < j(,u, 9,0l (60)

Every solution v(l, u) of (56) satisfying (57) implies

I pu S ’ll
|v(l,u)|S{la(l,u)|+|Q(l,u)|[1+% fo fo IF(S,C)Iexp(% fo fo [|F(cr,®)+B(a,ca)|]dcada)dtds]} . (61)

for [, u € Ry, where Q(l,u), B(l,u), F(l,u), j, z and a(l, u) with m(l, u) = 1 be defined as in Theorem 3.1.
Certainly, the solution v(l, 1) of (56) satisfies the following equivalent equation

! U 9 C
(L, u) = ay (1) + ax(u) + f f F(9,¢0, f f 1(8,¢,0,@,v(0, ®))dado )dLds, (62)
0 JO 0 0

it follows from (58)-(60) that

lo(, )| < a(l, u) + fo l fo "0, O)|lus, £)l + fo : fo C j(8,C,0, @)lu(o, ®)ldodo|dCds. (63)
An appropriate application of the Theorem 3.1 in (63) yields the preferred estimate in (61).
Our next result manages with the uniqueness of the solutions (56) and (57).
Example 4.2: The hypotheses
|X(,u, Uz,v;’) - X(,u, pz,p;)l <z, u)[lv’l7 - vgl + p'f - pZI], (64)

|h(l/ u, ‘9/ C/ 'U;’) - h(l/ u, ‘9/ C/ U;)I < ](lr u, ‘9/ C)lv;] - v;”r (65)

Then the problem (56) and (57) has at most one solution on Ri. Indeed, let v1(I,u) and v,(l, 1) be two
solutions of (56)-(57). It follows from (62) and using (64)- (65) that

! U 9 C
07, u)~0l(L, ) < f f 2(3, O[10(3, O)—ol(8, O)l+ f f (9,0, @)0)(0, @) ~v)(0, ®)ldads]|dCds, (66)
0 Jo 0 0

by Theorem 3.8 and from (66), we have

[0](1, u) — 0, )| < 0 = v](I,u) = vy (1, u),
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which shows that the problem (56) and (57)has at most one solution on R%. This completes the proof of
example 4.2.

The following partial sum-difference equation can be discussed in order to get the boundedness and
uniqueness of Theorem 3.15

-
AZAl’UTI(Z/ M) = B(l/ u, 'U(l, u)/ g(l/ u, b/ k)U(b, k))/ (67)
0 k=0

[y
[y

u—

[S3
Il
o~
Il

with the conditions
Un(l/ 0) = 7/1(1)/ U’](O, M) = 7/2(1’[)/ UU(OI O) = 0/ (68)

under some suitable conditions on the functions involved in (67) and (68). The proof can be completed by
closely looking at the proof of Theorem 3.15 given above. Here we omit the details.
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