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Abstract. This paper deals with the two set sharing problem related to the uniqueness of a function and
its shift operator. With the help of two new range sets we shall significantly improve a number of results
in the literature. At the last section we shall exhibit certain examples to show that some conditions used in
our results are the best possible.

1. Introduction, Definitions and Results

Throughout the paper we shall assume that all considered meromorphic functions are defined on C and
that they are non-constant.

For such a function f and a € C =: C U {0}, each z with f(z) = a will be called a-point of f. We also
denote C* = C\ {0}.

Next we need the following definition of set sharing.

Definition 1.1. For a non-constant meromorphic function f and any set S C C U {oo}, we define

E¢(S) = U {(z, p) € C XN : f(z) = a, with multiplicity p},
aeS

Exs) = J {(z, 1) eCx{1): f(z) = a}.

aeS

IfEf(S) = E4(S) (Ef(S) = Eg(S)) then we simply say f and g share S Counting Multiplicities(CM) (Ignoring
Multiplicities(IM)).

In 2001, Lahiri [13, 14] further refined the definition of sharing and introduced a scaling between CM
and IM known as weighted sharing of values and sets. Gradually in terms of relaxation of sharing, this
notion renders an useful tool to find new directions of research in the uniqueness theory. Below we are
recalling the well known definition.
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Definition 1.2. [13, 14] Let k be a non-negative integer or infinity. For a € C U {co}, we denote by Ef(a, k), the
set of all a-points of f, where an a-point of multiplicity m is counted m times if m < k and k + 1 times if m > k. If
Ef(a, k) = E(a, k), we see that f and g share the value a with weight k.

We write f and g share (a, k) to mean that f and g share the value a with weight k.

Definition 1.3. [13, 14] Let S be a set of distinct elements of C U {oo} and k be a non-negative integer or co. We
denote by E¢(S, k) the set U Ef(a, k). If U Ef(a k) = U Ey(a, k), then we say that f and g share the set S with k.

aes aes aes
Thus we see that f and g share the set S CM or IM if U Ef(a, 00) = U E,(a, o) or if U Ef(a,0) = U E,(a,0)
a€es a€es a€es a€es

respectively.

For a non-constant meromorphic function, we define its shift and difference operator respectively by f(z+w)
and A, f = f(z + w) — f(z), where w is a non-zero constant.

In connection with the question of Gross [8], a handful number of results have been obtained by many
mathematicians [1, 2, 5, 6, 9, 10, 17, 19] concerning the uniqueness of meromorphic functions sharing two
sets. But in most of the earlier results, in the direction, one set has always been kept fixed as the set of poles
of a meromorphic function.

Recently set sharing corresponding to a function and its shift or difference operator have been given
priority by the researchers than that of the original one.

In this respect, we would first like to mention here a result of Zhang [18].

Theorem 1.4. [18] Let m > 2, n > 2m + 4 with n and n — m having no common factors. Let a and b be two non-zero
constant such that the equation w" + aw"™ + b = 0 has no multiple roots. Let S = {w : w" + aw"™ + b = 0}.
Suppose that f(z) is a non-constant meromorphic function of finite order. Then Ef)(S,0) = Ef1w)(S, ) and
Ef()({oo}, ) = E¢(z4a)({00}, 00) imply that f(z) = f(z + w).

With the help of some extra supposition Qi-Dou-Yang [16] studied the above Theorem for m = 1 and
reduced the lower bound of the range set as follows.

Theorem 1.5. [16] Let n > 6 be an integer and S be given same as in Theorem 1.4. Suppose f is a non-constant
meromorphic function of finite order. Then Ef)(S, ) = Ef¢1)(S, ), Ef)({00},00) = Efia)({oo}, 00) and

ﬁ(r,f) < %T(r,f) + S(r, f) implies that f(z) = f(z + w).

As in Theorem 1.4, gcd(n, m) = 1, so we see that the lower bound of cardinality of the range set considered
in Theorem 1.4, is 9, and that in Theorem 1.5, is 6. However, in 2013, Bhoosnurmath-Kabbur [7] improved
Theorem 1.4 by reducing the lower bound of the cardinality of range set and obtained the following result.

-1n-2
Theorem 1.6. [7]Letn > 8beaninteger and c(# 0, 1) isa constant such that the equation P(w) = wwn—

2
-1
n(n—2)w" ! + nn=1) —c. Let us suppose that S = {w : P(w) = 0} and f is a non-constant meromorphic func-

tions of finite order, then Ef;)(S, ) = Ef(z14)(S, ) and E ) ({00}, 00) = Efz14)({o0}, 00) imply that f(z) = f(z+w).

Zn—2

By considering “entire” function, Bhoosnurmath-Kabbur [7] obtained the following result.

-1)n-2
(n )2(11 )w"—
n(n —2)w" "' + —c. Let us suppose that S = {w : P(w) = 0} and f is a non-constant entire functions of
finite order, then E)(S, 00) = Ef40)(S, ) and Ef)({00}, 00) = Ef(z14)({00}, 00) imply that f(z) = f(z + w).

Theorem 1.7. [7]Letn > 7 bean integer and c(# 0, 1) isa constant such that the equation P(w) =

-1
Tl(?l )Zn—Z

It is worth noting that no attempts have so far been made by any researcher to deal with a range set
from C. That is to say, to associate elements of C with oo in the range set.



A. Banerjee, M. B. Ahamed / Filomat 33:18 (2019), 60556072 6057

In this paper, we would like to investigate in this direction. In fact, we shall show that under this new
approach of construction of the range sets, the cardinality of the main range set can significantly be reduced.
We have also paid attention to relax the nature of sharing of the range sets by the help of weighted sharing
method. Thus the purpose of the paper is to improve all the above theorems in two directions at the expense
of suitable choice of the sets.

To this end, we next suppose that Q(z) is defined by

Qz) = az" + bz*" + cz" +d,

2

-2 i
where n,m € N and a,b, ¢,d € C* be such that n > 2m, ged(n,m) = 1, —4de = —n((:_ m?;) #landa ¢ {Vi, %},
(2mbe?™ + cmel") ,
Vi with ¢; be the roots of the equation

2nd

"= T (m—-m)’

One can easily check that the polynomial Q(z) has distinct zeros and let them be 61, 65, ..., 0,. Clearly,

, 2mbs>™ + cms™
for any zero ‘s’ of Q (z) we have nas"™' + 2mbs*™~! + cms™! = 0. i.e., as" = —Q.

n
Sofors=0,
Q0)=d#0
and hence fors # 0
2m m
Qls) = _ (@mbs™ + ems™) n+ cms”) + 5P +cs™ +d
_ (n=2m)bs™™ + (n — m)cs™ + nd
B n
_ *(n—m)*s®" + dedn(n — m)s™ + 4d*n?
B 4nd?
_ (c(n—m)s™ + 2dn)?
B 4dn?
v . _an . .
So, ‘s’ is a zero of Q(z), if s" = m ie, if s € {er,ez,...,e4}. But then we would have ae! =

(2mbe™ + cme!") . o o
——  fori € {1,2,...,m}, which is a contradiction as a # y; = —

n ne;1

(2mbe?™ + cme'™)
1 1
——L — 1~ Hence,

Q(z) has only simple zeros.
Let 7 (z) = bz*" + cz" + d. We claim that all the roots a3, as, ..., az, (say) of the polynomial 7 (z) are
simple. Now 77(z) = 0 implies

mz" 1 (2bz™ + c) = 0. (1.1)

We see that 0 and the roots 6;(j = 1,2, ..., m) of the polynomial of 2bz™ +c are the only roots of the polynomial
T'(z). Again we see that 7(0) = d # 0 and since ¢? # 4bd

2 2
)62 4o +d = b(—L) 4oL 4 g I
T5,) = b5 + ¢ +d_b( Zb) +c( 2b)+d— o 0.

Thus we conclude that all the zeros of 7 (z) = 0 are simple.
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Next, we see that
(b2 + ¢z + d)ynaz"' — az" 2mbz?" ' + mcz" 1)

R@ = - (022" + 2 + d)?
c(n —m) :
n-1 _ m
. az"'b(n — 2m) (z + 31 2m))
B (bz2" + czm + d)?
ond \
n—1 _ m
az"'b(n — 2m) (z + o m))

(bz2" + cz™ + d)?
az"'b(n — 2m) H (z —e)*
i=1

(bz2M + cz™ + d)?

Also we see that

a yiz" + bz?" + cz" +d
Riz)—-— = -
Vi yi(bz?™ + ¢z + d)
iy I'(z)
yi(bz?" + cz" + d)’
where T'(z) = ;2" + bz?" + ¢z +d. One can easily check that T'(e;) = 0, T"(e;) = 0 and I'’(¢;) = 0 but T®(e;) # 0
for 3 < k < n. Therefore we get

m

(z - 61’)3 Ap-3m(2)
i=1

R@) -~ = -2 ,
b - a)
i=1

where A,_3,,(2) is a polynomial of degree n — 3m.

2

Theorem 1.8. Let S = {z : Qz) = 0}, S, = {el,ez,...,em} U {oo}, where n > 2m + 3, a,b,c,d € C*, -

n(n — 2m)
(n —m)?
(i) Ef)(S1,3) = Efz+w)(S1,3) and E¢;)(S2,1) = Efz4w)(S2, 1), or
(i1) Efz)(81,2) = Efw)(S1,2) and E¢)(S2,2) = Efz1)(S2,2),
then f(z) = f(z + w).

Next for the sake of convenience for n > 3, ¢,d € C*, we define

= (=1
ed -2\ 2d n)’
forn>3,c,d e C".
Putting m = 1 in Theorem 1.8, we can easily deduce the following corollary.

Vi

#1,gcdnm)=1,a¢ {)/i, E} Let f(z) be a finite order meromorphic function satisfying

Corollary 1.9. Let 1 = {z ca" + bR 4 cz+d = 0}, S, = { - (nzfi)c} U {0}, where n > 5, a,b,c,d € C*,
i _ In=2) #1la¢ {6" (id} Let f(z) be a finite order meromorphic function satisfyin
4bd ~ (1’1—1)2 ’ cd” o f ﬁ P f fy 8

(i) Ef)(S81,3) = Efz40)(S1,3) and Ef5)(S2, 1) = Efz14)(S2, 1), or
(i1) Ef)(51,2) = Ef4w)(S1,2) and E¢)(S2,2) = Ef1w)(S2,2),

then f(z) = f(z + w).
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2. Auxiliary definitions and lemmas

Though the standard definitions and notations for the value distribution are available in [11], we now
explain here notations which are used throughout the paper.

Definition 2.1. [12] Let a € C U {co}, we denote by N(r,a; f| = 1) the counting function of simple a-points of f. For
a positive integer k, we denote by N(r,a; f| > k)(N(r,a; f| < k)) the counting function of those a-points of f whose
multiplicities are not less (greater) than k, where each a-point is counted according to its multiplicity.
N(r,a; f| > K)(N(r, a; f| < k)) are defined similarly, where in counting the a-points of f we ignore the multiplicities.
Also N(r,a; f| > k), N(r,a; f| < k), N(r,a; f| > k) and N(r,a; f| < k) are defined analogously.

Theorem 2.2. Let f and g be two non-constant meromorphic functions such that f and g share (a, k) wherea € CU{co}.

Let zg be a a-point of f with multiplicity p, a a-point of g of multiplicity q. We denote by Ny (r,a; f) the counting
—(k

function of those a-points of f and g where p > g, by Nfg +1(r, a; f) the counting function of those a-points of f and

g where p = q > k + 1; each point in these counting function is counted only once. In the same way we can define

ﬁL(r, a;9), N;k”(r, a; g). It is clear that Ngﬂ(r, a; f) = Ngﬁl(r, a; g).

Definition 2.3. [13, 14] Let f and g share a IM. We denote by N.(r,a; f, g) the reduced counting function of those
a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.

Clearly N.(r, a;f,g9) = N*(r,a;g,f) and N.(r, a;f,g9) = IT]L(r,a;f) + N (r,a; ).

Next, we are going to discuss the lemmas which will be needed in sequel. Given meromorphic functions

f(z) and f(z + w), we define ¥, G

F=R(f), G=R(fG+w), where RE) =z, @.1)
and to ¥, G we associate H and W by the following formulas
_ T’l 3 ZT/ 3 g 3 Zgl
H‘(?' ?—1) (g g—l)’ o
(I Ty (¢ e\ T G
W‘(¢—1 ?) (g )= FF-D 6D @3)

Lemma 2.4. [15] Let f be a non-constant meromorphic function and let

n

Y af

i=1

R (f) = — ,
Y. bf
=1
be an irreducible rational function in f with constant coefficients {a;}, {b;}, where a,, # 0 and by, # 0. Then
T(r, R¥(f)) = max{n, m} T(r, f) + S(r, ).
Lemma 2.5. Let ¥, G be given by (2.1) and 81, S be defined as in Theorem 1.8 with H # 0. If Ef)(S1,9) =
Ef(z+w)(81,q) and Ef(z)(Sz, k) = Ef(z+a,)(82, k), where 1 < g<oo,0< k < oo, then

(Bk+2) | Y. Nirei f 12 k+1)+N(r,00; f |2 k+1)

i=1

< N(@r,0; f(2)) + N(r,0; f(z + 0)) + No(r, , F, G) + S(1, f(2)) + S(r, f(z + w)).
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Proof. We shall now discuss the following cases.

Case 1. Let if possible W # 0. Let zy be a pole or a ‘e;/-point (i € {1,2,...,m}) of f(z) of multiplicity p;. Since
Ef(82,k) = Efz14)(S2, k), then that would be a zero of W of multiplicity at least min{(n — 2m)p; —1,3p; — 1} =
3p;i — 1 when p; < k and is of multiplicity at least min{(n — 2m)(k + 1) — 1,3k + 2} = 3k + 2, when p; > k.
Therefore in view of the definition of ¥, we get that

Gk +2) Zﬁ(r,ei;f 1> k+1) + N(r,00; f [> k + 1)
i=1

N(r,0; W)
N(r,00; W) + S(r, f(2)) + S(r, f(z + w))
N(1,0; f(2)) + N(1,0; f(z + @) + N.(r, 1, F, G) + S(r, f(z)) + S(r, f(z + w)).

INIA

IA

Case 2. Let W=0. Then after integrating, we have

F -1 ﬂg—l

= G (2.4)

where A(# 0) € C. Clearly in view of Lemma 2.4, from (2.4), we have

T(r, f(z) = T(r, f(z + w)) + S, f(z + w)). (2.5)

It is obvious that A # 1, otherwise we would have ¥ = G, which implies H = 0.
From (2.4), we get
1 1

1—7:532{(1—5). 2.6)

After rewriting (2.6), we get

AF

FA-D+1 - G (2.7)

and consider the following subcases.
Subcase 2.1. Let us consider f(z) and f(z + w) share (c0,0). Then we discuss the following subcases.
Subcase 2.1.1. Let if possible ‘o0’ is an e.v.P of both f(z) and f(z + w).

* i. Then ¥ (A — 1) + 1 has only simple zeros (say) {1, (o, ..., Gy} ie., we

Sub 21.11.S
ubcase uppose —— ”

get from (2.7) that

A .St 2.8)

n 2m
A-D]]F-0  b]](Fe+ @) -a)
j=1 i1

Now by using Second Fundamental Theorem for finite order meromorphic functions and Lemma 2.4, (2.5),
we get

(=T, f@) < Y NG C;f)+Nr,o0; f)+ S0, )
i=1

IA

2m

Y NG, ai; f(z + @) + 50, f)
i=1

2m T(r, f(2)) + S(r, f),

IA
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which contradics n > 2m + 3.

= i. Then we can rewrite (2.6) as

Sub 21.1.2. 5
ubcase uppose —— »

G

F= GA-A) + A

(2.9)

a
Vi -1
A1 # %. If soie., A1 7%,’cherh?zl: ﬂy_l. Alsowehaveﬂ_1 = %i.e.,

Vi

It is obvious that

a_, a a4y

_ i Yi Vi
- a 1_ a

a 1 i
and hence — = =. ie,a = % which is a contradiction.

A
vi 2

—— S0 we get that

Vi vi Vi
Therefore G(1-A)+Amusthave n distinct zeros say 01, 0y, . . ., 0,. Again from (2.9), we getZT] (r, A g) =

2m
N(r,00;F) = ) Nir,ai; f(2).
i=1

By the Second Fundamental Theorem for the finite order meromorphic function f(z + w) and using Lemma
2.4 and (2.5), we have

(n=1DT(r, f(z + w))

Y NG, 6 f(z + @) + NGz, 09; f(z + w)) + 81, f(z + @)

i=1

IA

2m
< Y. N(ai; f(2) + 501, fz + w))
i=1
< 2mT(r, f(z+ w)) + S(r, f(z + w)),
which is a contradiction for n > 2m + 3.
Subcase 2.1.2. Let if possible ‘o0’ is not an e.v.P of both f(z) and f(z + w).
Then proceeding exactly same way as done in Subcases 2.1.1.1, we get a contradiction for n > 2m + 3.
Subcase 2.2. Let if possible f(z) and f(z + w) do not share (o, 0).
So, there must exits at least one point zp such that f(zo) = ¢;, (i=1,2,...,n), f(z0 + w) = oo, since otherwise

‘00’ will be an e.v.P of both f(z) and f(z + w) which would contradict the assumption of this subcase.

We omit the rest of the proof as the same can be done as in Subcases 2.1.1.1, to get a contradiction for
n>2m+3. 0O

Lemma 2.6. [3] Let f, g be two meromorphic functions sharing (1,q), where 1 < g < oo. Then
NG, 1)+ N, 19) =N, 1 fl = 1) + (q - %)N*(r, Lf9)
< %[N(r, 1; )+ N(,1;9)].

Next we define x, =0, forn =5and x, =1, forn # 5.
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Lemma 2.7. Let ¥, G be given by (2.1) and S1, S; be defined as in Theorem 1.8 with H # 0. If Ef)(S1,9) =
Ef(z+w)(S1,q), and Ef(z)(Sz, k) = Ef(z+w)(82, k), where 0 < g<oo,0< k < oo, then

N(r1L,F1=1)=N(r1,G6l=1)

N(r,H) + S(r, F) + 5(r, G)

IN

m

IN

N(r,0; (z)) + N(, 0; f(z + w)) + Z (r,e; f@) = k+ 1) + N(r, 00; f(2)| > k + 1)

i=1

+2n | Y N ei; f@)] < 1) + N(r, 00; f@)] < 0| + N.(1, 1, F, G) + No(r, 0; f(2))

i=1

+No(r,0; f'(z + @) + S(r, f(2)) + S(r, f(z + w)),
where No(r, 0; f'(z)) denotes the reduced counting function corresponding to the zeros of f’(z) which are not the zeros
m

of f(z) H(f(z) —e))and F -1, Ny(r,0; f'(z + w)) is defined similarly.

i=1

Proof. Since f(z), f(z + w) share (S1,9), hence ¥ and G share (1,4). Clearly any simple 1-point of ¥ and G
is a zero of H. From the construction of H, we know that m(r, H) = S(r, ) + S(r, G). Therefore by the First
Fundamental Theorem, we get

NP (1, F) =Ny (r,1;G) < N(r,0; H) < N(r, H) + S(r, F) + S(1, G).
From (2.1) and (2.2), we see that

. f() Z f'@ f“(z)—zi f'@)

f@-e f(2) — f(2) -
7o fe v e
-1 ;ﬂz)—ei ;‘f(Z)—az
Similarly we obtain
g" z+a)) Z+w) fz+e) & fz+w)
== )f( + W) Zf(z+a))—e f’(z+a))_22f(z+cu)—a,

fz+w) fz+w)
g 1 Z‘fz+a)) Z

Hence we get that

N ORI N ORI T e
s [‘” Vo 2L Fa-a e Zf(Z) ]

flevw) W fere)  flete) .y fEtw)
_((n_l)f(z+w) +2;¢f(z+a))—ei+ Fa+w) _Z;f(z+a))—6i]'

Observe that

(i) if any e;-point (for some i) of f(z) is a ¢;-point of f(z + w) of multiplicity p < k, then for the pole of H,
the contribution of this e;-point of f(z) and those of f(z + w) will nullify each other as the construction
of H is symmetrical in terms of f(z) and f(z + w).
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(ii) if any pole of f(z) is a pole of f(z + w) of multiplicity p < k, then also the above things happen again
due to the symmetrical structure of H.

(iii) if any e;-point of f(z)(or f(z + w)) is a pole of f(z + w)(or f(z)) of multiplicity p < k, then it contributes
to the poles of H with co-efficient of the pole as [5 — n]p. i.e., it contributes to the pole of H for all
values of n exceptn = 5.

Since H has only simple poles, so the result is obvious by some simple calculation. [J

Lemma 2.8. Let ¥ and G be given by (2.1) and Sy, S, be defined as in Theorem 1.8, withm = 1and H # 0. If
and G share (1,9) for 2 < q < co. Then

N.(r,,¥,G)

zq%l[ﬁ(r, 0; F(2)) + N(1, 0; f(z + a)))] £ 50, f(2) + S, fz + ).

IA

Proof. Using Lemma 2.5 with k = 0, we get

N.(r, 1, F,G)
< %[ﬁ(r, oo; f(z)) + N(r, el;f(z))] +5(r, f(2))
< zl—q[ﬁ(r, 0; f(2)) + N(1,0; f(z + w)) + N.(r, 1, F, g)] +S(r, f(2)) + S(r, f(z + w)).
ie.,
N.(r, 1, F,G)
= Zq%l[ﬁ(n 0; f(2)) + N(r,0; f(z + a)))] +5(r, f(2)) + S(1, f(z + w)).
[

Lemma 2.9. Let ¥, G be given by (2.1) and Sy, S, be defined as in Theorem 1.8 with H # 0. IfEf(z)(Sl,q) =
Ef(z+a,)(81,q) and Ef(z)(SZ, k) = Ef(z+a))(82/ k), where 1 < q < oo, 0<k< o, then

(g +m - 1) {T(r,f(z)) +T(r, f(z+ w))}

< N(1,0; f(2) + N(r,0; f(z + w)) +2 [N(r, 0o; f@) + Y N(re; f(z))]
i=1

+

Y N@ei f2) 2 k +1) + Nir, o0; f@)] > k+ 1)]
i=1

+Xn

Y NG, e; f@)] < k) + N(r,00; f(2)] < k)} - (q - ;)N*(r, LF,6)
i=1
+5(r, f(2)) + S(r, f(z + w)).

Proof. By the Second Fundamental Theorem for the finite order meromorphic functions f(z), f(z+ ) and using
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Lemma 2.4, we get
(1 +m — 1){T(r, F@) + TG, fz + cu))} (2.10)

< N LF) + Y Nie; f2) + N, o0; f2) + N, 1;6)
i=1

+ Z N(r,e;; f(z + @) + N(1, 0; f(z + w)) = No(r, 0; f(2)) = No(r, 0; f(2)

i=1
+5(1, f(2)) + S(7, f(z + w)).
Using Lemmas 2.6 and 2.7, we see that

N, 1;F)+N(r, 1,6 2.11)
NG L) NG LG NG LT = ) - (- 3N L7,6)

IA

IA

g{T(r, F@)+ TG, f(z + a)))} NG, 0; £(2)) + NG, 0; f(z + )

+

Z N(r,e; f@)] = k+1) + N(r, 00; f(z)] > k + 1)]
i=1

+Xn

N(r,e;; f(z)| < k) + N(r, 00; f(z)| < k)} +N.(r, 1, F,G)

Il
—_

1

~(9-3) R 1T, 6)+ Nolr, 01/ + Nolr, 01/ 2) + 500, £)
+5(r, f(z + w))

g{T(r, F@) + T(, fz + w))} NG, 0; f(2)) + N, 0; fz + )

_ Ms

IA

+Y N(ei f1 2 k+1) + N(r,o0; f@)| 2 k+1)
i=1

+Xn

Y Neeis S < 0+ No, o0 )] < k)} ~(9-3) N0 17.6)

=1
+No(r,0; ' (2)) + No(r, 0; f'(2)) + S(1, f(2)) + S(r, f(z + w)).

Since f(z), f(z + w) share (S, k), so we must have
N(r,00; f@) + Y N(r,e;: f) = N(r,00; flz + @) + Y N(r,e5; f(z + w)).
i=1 i=1

Using this fact and putting (2.11) in (2.10), we get the lemma. O

-2
Lemma 2.10. ([4], Lemma2.6)Let ®(z) = A(1-2""")?—u(1-z""2")(1-z"), where A, u € C—{0}, % = n((}:z_ m;’;)'
then ¢(z) has exactly one multiple zero of multiplicity 4, which is 1. i.e.,
2n—-2m—4
@) =c-1* [[ @-o0
k=1

where o; # 0j, fori # j, 0, € C—{0,1}, fori,j € {1,2,..., 2n —2m — 4.



A. Banerjee, M. B. Ahamed / Filomat 33:18 (2019), 6055-6072 6065

3. Proof of the theorem

Proof. [Proof of Theorem 1.8] Suppose ¥ and G be given by (2.1). Since Ef(;)(S1,4q) = Ef(z+4)(S1,9) from (2.1)
it follows that # and G share (1, ).

Case 1. Suppose H % 0.

Case 1.1. Let us first suppose that n = 2m + 3.

Case 1.1.1. Let m = 1. Then from the definition we see that x, = 0. So using Lemma 2.5 in Lemma 2.9 for
n=>5we get

o{70, ) + 0 fle+ )} 6
< N, 0; f(2) + N, 0; f(z + @) + 2[N(r, o0; £(2) + N, e; £(2))]

N, 00; @) = k+1) + N(re1; f&) = k+1) - (q - E)N*(r, LF, Q)

+5(r, f(2)) + S(r, f(z + w))
< N(@r,0; f(2)) + N(r,0; f(z + )) + N(r,00; f(z)] = k + 1) — (q - g)ﬁ*(r, LF,G)

+2 [1{N(r, 0; F2)) + N(1, 0; f(z + @) + N.(r, 1, F, g)}]

Z (r,e; f@)| = k+1) + 5(r, f(2)) + S(r, f(z + )
=1

< 3k+2][N(r0f(z))+N(r0fz+a))) [1+3k S+ 2]

N.(r, L, F,G) + S(r, f(2)) + S(r, f(z + w)).
Next for g = 3, k = 1; (3.1) implies that
g{T(r, F@) + T fz+ a))}
< [2 + 1] {T(r F@) + TG, fz + @) } L S0, £2) + SG, fz + ),

which is not possible.
For q =2,k =2, using Lemma 2.8 in (3.1), we get

g{T(r, F@) + T, fz + a)))}

IA

(2+ 505 ) {70 @) + TG fa + )}

+(1+ 5055 9% 3) Gy {0 ) + T £ + @) + 561, £2)
+S0, 2 + @)

< (24 3){T0 @) + T fe+ an + 50, £ + 50 fe + @),

which is again a contradiction.
Case 1.1.2. Let m > 2.
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Then we see that n > 7. So it is clear that x,, = 1. Hence proceeding in the same way as above and using
Lemma 2.5, Lemma 2.8 in Lemma 2.9, we get

(5 +m=1) {10, f@) + 0, fz + o)}
< N(r,0; f(2)) + N(r,0; f(z + @) + 3 [N(r, oo; f(2)) + i N(r,e;; f(2)
i=1

_ (q - g)N*(r, 1L,F,G) + S, f(z) + S(r, f(z + w))
< 3{N6.0: ) + N0, + )} + G- N0, LT, )

which is a contradiction for (g, k) = (3,1).
When (g, k) = (2,2), noting that

N.(r, 1;F,6) <

Q=

{Z N(re; f2) + ) Nirei fz+ w»},
i=1 i=1

we again get a contradiction.
Case 2 Let H = 0. So we get

1 A
Foi-g-1'? (32)

where A(# 0), B are complex constants. In view of Lemma 2.4, obviously (3.2) implies

T(r, f(z)) = T(r, f(z + w)) + S(r, f(z + w)). (3.3)
Now we can write (3.2) as

_ B+N)G+A-B-1

4
d BG+A-8B (34)
Hence let us consider the following subcases.
Subcase-2.1. Let 8 # 0.
Subcase 2.1.1. Let 8 # —1. A-B-1 A-8 A-B-1 A-8
Subcase 2.1.1.1. Let A— B -1 # 0. Obviously ] * B For if ] = B then1 =0,
which is absurd. Therefore
—( B+1-A —=
N(T’, W,Q) = N(r,0;F). (3.5)
Now we consider the following subcases.
Subcase 2.1.1.1.1. Suppose fri-A # i. Then G - Br1-A has n distinct simple zeros A; (say) and

B+1 Vi B+1
from (3.4) we get each of these zeros is of multiplicity at least n. Therefore using (3.3) and the Second
Fundamental Theorem for the finite order meromorphic function f(z + @) and using Lemma 2.4, we get

(n=2)T(r, f(z + w))

IA

Y NG, A fz + @) + S0, f(z + @)
i=1

T(@r, f(z+ w)) + S(r, f(z + w)),

IN
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which is a contradiction for n > 2m + 3.

Subcase 2.1.1.1.2. Suppose gri-A = 2 Then
B+1 Vi
m n—3m
a[[e+w) -er [](fe+w)-p

g_B-i'l—ﬂ_ i=1 k=1 (36)

B+1 2m :

b[[¢fz+ @) -ap
j=1

- B+1-A _. .

where B, and ¢; are the distinct zeros of G — —Br1 Since f(z) and f(z + w) share (S, k), therefore with

the help of (3.5) and (3.6), we get from (3.4) that N(re;; fz+w)) =50, f(z+w)) fori=1,2,...,2m and each
Br point of f(z + w) is of multiplicity at least n.

Hence using (3.3) and the Second Fundamental Theorem for the finite order meromorphic function f(z + w)
and using Lemma 2.4, we get that

(n—=2m=2)T(r, f(z + w))
n-3m

Y Neei fz+w)+ Y N Bi fz + @) + 801, f(z + w))
i=1 i=1

(n —3m)
n

IA

T, f(z+ w)) + S(r, f(z + w)),

which is a contradiction for n > 2m + 3.
Subcase 2.1.1.2. Let A— B -1 = 0. Then (3.4) reduces to

_(B+1H)g

F = BG11 (3.7)

Subcase 2.1.1.2.1. Let 3 = —i, for somei € {1,2,...,m}. Now we can rewrite (3.7) as
T

G=gi-B7 8)
Obviously % * ii. For if B; L = )% ie., B; ! = —% ie, B=-2ie, % = % ie,a= %, which is a
contradiction. Therefore

n
al |(f@ - p)

BF —(B+1) =8 (3.9)

i=1

2m :
p[J@-a

i=1

where p;’s are distinct zeros of BF —(B+1) fori = 1,2,...,n. From (3.8) clearly N(r, 00; G) = N(r, 0; B+1-BF).
ie.,

2m

N(r,00; fz+ @) + Y N f(z + @) = ) N, pis f). (3.10)
i=1

i=1
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Since f(z) and f(z + w) share (53, k), therefore from (3.9) and (3.10), we get ‘o’ is an e.v.P. of f(z + w) and
hence (3.10) reduces to

2m n
Y N ai; fz+w) = Y NG, pi ). (3.11)
i=1 i=1

Hence by the Second Fundamental Theorem for the finite order meromorphic function f(z) and Lemma 2.4,
(3.3), we get

(n=2)T(r, f(2))

IA

Y NG, pi; f2) + St )
i=1

IA

2m
Z N(r,a;; f(z + w)) + S(r, f(2)),

i=1

which is a contradiction for n > 2m + 3.
2m

Subcase 2.1.1.2.2. Let % * —Vi. Then from (3.7), we get poles of f(z) are e.v.P. Therefore Zﬁ(r, ai; f) =
i i=1
N(r, 00, F) = Nf(r, _E},Q) = Z N(r,ni; f(z + w)) where (f(z + w) — 1;) are distinct factors of G + 113
i=1

Hence using the Second Fundamental Theorem for the finite order meromorphic function f(z+w) and (3.3)
we get

(n=2T(, fe+w) < Y N fz+w)+ S0, fz+w))

i=1

2m
Y N i £2) + 5, flz + @),
i=1

IA

which is a contradiction n > 2m + 3.
Subcase 2.1.2. Let 8 = —1. So from (3.4), we get

A
F=gvaT (3.12)
Obviously poles of G are zeros of . Since poles of f(z+w) are poles of G and we have f(z) and f(z+w) share
(S2, k) therefore from (3.12) it is clear that oo is an e.v.P. of f(z + w). Other polesof Gare a; (i =1,2,...,2m)
points of f(z + w). From (3.12) each a; point of f(z + w) is of multiplicity at least 7.
Therefore using the Second Fundamental Theorem for the finite order meromorphic function f(z + w) and
Lemma 2.4, (3.3), we get

2m

N(r,00; f(z + @) + Y N(r,a1; f(z + w)) + S(r, f(z + @)

i=1

< 20T, fle + @) + 50 flz + @),

2m - 1)T(r, f(z + w))

IN

which is a contradiction for n > 2m + 3.
Subcase 2.2. Let 8 = 0. Then (3.2) implies

1 A
it a1 (3.13)
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ie.,
AF =G+ A-1 (3.14)

Subcase 2.2.1. Suppose that A — 1 # 0. Then this case can be dealt in a similar fashion as of Subcase 2.1.1.1.
Subcase 2.2.2. Suppose that A —-1=0. Thenwe get ¥ =G. i.e,

e fie+w) 15
bfam(z) +cfm(z)+d  bf(z+w)+cf™Mz+w)+d '
Leth(z) = L&+
Subcase 2.2.2.1. Let h(z) be non-constant. Then we see that (3.15) reduces to
bF™ (2" (2) (1 - 2" (2)) + cf"(@)H"(2) (1 - W' (2)) (3.16)
+d(1-H"2))=0
and which in turn takes the following form by applying Lemma 2.10 with A = ¢2, u = 4bd
2
{b W) (1-H2 @)+ £ (1 h"’m(z))} (3.17)
¢ (1 = W="(2))* - 4bd (1 - h"=2"(2)) (1 - I"(2))
- 4
Dk
T4
2n—-2m—4
r@-1* [ 0@ -00
k=1
- 4

From (3.15), we see that hi(z) has no pole i.e., we have N(r, 0; h(z)) = 0.
Now by the Second Fundamental Theorem for the finite order meromorphic function and Lemima 2.4, from
(3.17), we get

2n-2m—4
N(r,0;h) + N(r,00;1) + Y N(r,0151) + S(r, )
k=1

2n —2m —4)T(r, h)

IN

2n—2m-4
N, 01+ 5 ;‘ N(r, 01; ) + S(r, h)
(n—m—1)T(r,h) + S(r, h),

IN

IA

which contradicts n > 2m + 3.

Subcase 2.2.2.2. Let h(z) be constant, then since f(z) is non-constant, so we get form (3.16) that /" —1 =0,
=" —1=0and h"?" -1=0.1ie,h?—1=0 whered = ged(n,n —m,n —2m) = 1 as gcd(n, m) = 1. In other
words h(z) = 1. ie., f(z) = fz+w). O

4. Some relevant discussions and examples

5°
With n = 5, we are now going to prove the following proposition to show that the condition a # % =
5

937544

in Corollary 1.9 is essential.
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Proposition 4.1. Under the supposition of Corollary 1.9, forn =5, let

—5d
-/ —5d
2c f(2)
feta) = =
f(Z)Jrz_C 2cf(z) + 5d
65 F
and a = ——, then we have 2G = —1 where G = R(g) and F = R(f).
F_=
Proof. We have
~ af>(z + w)
g‘_bﬁ(z+w)+cf(z+w)+d‘ 1)
Since 4Cbz ¥ (:1— 132) = 12, we getb = f; Let f1,p2 = (=15 iSC\/Ei)d. From (4.1) we see that
6 = - 2af5(z + w)
15df Z+w) +cfz+w)+d

3 30ad f2(z + w)

T 4Pz + w) + 15cd f(z + w) + 1542

o 30ad f3(z + w)

T AC(fz+ w) - B)(fz + W)~ B2)

B 30ad®(—5)° f°(z)

T —5df(z) —5df(z)

4e(2ef(2) + 5d)5(2 f(z) +5d ﬁl)(Zcf(z) 54 ﬂz)
B 30ad°5° f3(z)
) 4c2(2cf(z) + 5d)3 [ f(z) + i f2)+ dﬁ (5d +2¢p1)(5d + 2cp )
2cp1 + 5d 2, + ! 2

Now as 5d + 2cf1 = S+ ViSid \/_l)d and 5d + 2¢f; = (S Vi5id \/_l)d , we deduce that

(5d + 2cf1)(5d + 2cBp) = 57112,

5dpr  5d (—3+ «/Ei) 5dp,  5d (—3— \/Ei)

54 +2cf;  2c 2 54 +2cB;  2c 2
5dp1 5dp,  15d 561 56, 754
O Sivach d+racg . 2c " 5vacg sras | 2o herefore
d6 5 £5
%6 = o flE(;l) 7542\ 542
2 3 2 _ - |
4c20cf(@) + 507 (76) - s + o |
B 30ad*5* f3(z)
© (8c3f3(2) + 60c2d f2(z) + 150cd? f(z) + 125d3) (2¢2 f2(z) — 15cd f(2) + 75d2)
30ad*5* f3(z)

16¢5 £5(2) + 2500c2d° f2(z) + 9375cd* f(z) + 9375d5"
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Forn =5and m =1, we seta = 17/1 = —M, where ¢; = —S—d. So a simple calculation yields
2 1Oe‘1l 2c
5
a= 3;(67;)4. i.e., we have 30a(5d)* = 16¢° and with the help of this, we get
26 - 16¢°f°(2)
© 1605 3(2) + 2500c2d3 f2(z) + 9375¢d4 f(z) + 937545
_ af’(z)
a 1 {2500ad® 9375ad* 9375ad®
5 - 2
o+ 3 (B e + 2 ey 20
_ af’(z)
af3@) + 3 (bf @) + cf(2) +)
af>(2)
3 bf2(z) +cf(z) +d
- af’@) 1
bfX(z)+cf(z)+d 2
_ F
= —
73
F—

1
. In other words, we observe that E(,)(S;, ) = Ef(z14)(Si, o), fori = 1,2;

Thus we see that G — 1 = ~>F 1

but f(z) # fz+w). O

In view of the Proposition 4.1, for ¥ = —1, we see, from the following series of examples, rather to say
from the following counter examples that

-5d
ETRAL
f@# fe+w) = —F=
f+ 2
2c
implies E(;)(Si, ) = Ef(z14)(Si, ), i = 1,2 and satisfy all the conditions of Proposition 4.1.
qz
Example 4.2. Let f(z) = nie B where q be an odd positive integer and € C*.
COR il I N/ -4
s ( w ) 5d°
—5da oF
Example 4.3. Let f(z) = (aec‘iz——ﬁ)’ where q be an odd positive integer and o, f € C".
——deqz cos? (n_z)
2c Q)

Example 4.4. Let f(z) =

, where q be an odd positive integer.

. ofmz\ 1 ..  ,(mz

sin®| — | + ¢ cos™ [ —
w 2 )

(2]

g(e?) (ePZ +sin? (%Z)) + e7*logc

Example 4.5. Let f(z) = , where g(z) is an even function and p be an even positive

integer.
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From the above discussion, we finally pose the following open question for future investigations.

Question 4.6. Under the supposition of Corollary 1.9, can one find a counter example for a infinite ordered
meromorphic function for which the conclusion of Corollary 1.9 ceases to hold ?

However we have been able to find a counter example for infinite ordered meromorphic function to
5°
show that whena = %d the conclusion of Corollary 1.9 does hold.

M peyee’”

Example 4.7. Let f(z) = ZC e where p and q are respectively even and odd positive integers
P(ez)eep + e%% cos? (—)
w
S
and P(C) = Z ajCZj, where s be a positive integer,a; € C* (j=1,2,...,s),a; # 0.
j=1
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