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Abstract. In this article, we focus on the semi-parametric error-in-variables model with missing responses:
yi = &P + g(ti) + €, xi = & + pi, where y; are the response variables missing at random, (;, t;) are design
points, &; are the potential variables observed with measurement errors p;, the unknown slope parameter
B and nonparametric component g(-) need to be estimate. Here we choose three different approaches to
estimate f and g(-). Under appropriate conditions, we study the strong consistency rates for the proposed
estimators. In general, we concluded that the strong consistency rates for all estimators can achieve o(n~/4).

1. Introduction

Consider the following semi-parametric error-in-variables(EV) model

{yi =&p+g(t) + €,

Xi =&i + Wi, 4D

where y; are the response variables, (&;, t;) are design points, &; are the potential variables observed with
measurement errors y;, Eu; = 0, €; are random errors with Ee; = 0. € R is an unknown parameter that
needs to be estimated. g(-) is a unknown function defined on close interval [0, 1], /() is a known function
defined on [0, 1] satisfying

& =h(t) +v;, (1.2)

where v; are also design points.

Model (1.1) and its special forms have gained much attention in recent years. When y; = 0, &; are
observed exactly, the model (1.1) reduces to the general semi-parametric model, which was first introduced
by Engle et al.[6] to study the effect of weather on electricity demand. However, in many applications,
there are often covariates measurement errors. For example, it has been well documented in the literature
that covariates such as blood pressure, urinary sodium chloride level, and exposure to pollutants are often
subject to measurement errors, which may cause difficulties and complications in conducting statistical
analysis. So the EV models are somewhat more practical than the ordinary regression model. In addition,
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when y; are complete observed and g(-) = 0, the model (1.1) reduces to the usual linear EV model, which has
been studied by Liu and Chen[12], Miao et al.[14], Miao and Liu[13], Fan et al.[7] and so on. For complete
data, the model (1.1) itself also has been studied by many authors: Cui and Li[5] presented the asymptotic
distributions for estimators of §, g(-) and error variance; Liang et al.[11] derived a consistent estimator
of f and its asymptotic distribution; Zhou et al.[18] considered estimation and inference procedures for
fixed-effects model (1.1). The EV models are widely applied in economy, biology and forestry. In recent
years, the semi-parametric EV models have been widely concerned.

On the other hand, we often encounter incomplete data in the practical application of the models. In
particular, some response variables may be missing, by design or by happenstance. For example, the
responses y; may be very expensive to measure and only part of y; are available. Actually, missing of
responses is very common in opinion polls, social-economic investigations, market research surveys, mail
enquiries, medical studies and other scientific experiments. Therefore, we focus our attention on the case
that missing data occur only in the response variables. When &; can fully be observed, the model (1.1)
reduces to the usual reduces to the usual semi-parametric model which has been studied by many scholars
in the literature. For examples: Wang et al.[16] considered regression imputation of missing responses
in order to make inference on the mean of {y;}. Wang and Sun[17] studied estimators of the regression
coefficients and the nonparametric function using either imputation, semi-parametric regression surrogate
or an inverse marginal probability weighted approach. Since these estimators are based on weighted means
of the response variables, they are highly sensitive to outliers. The lack of robustness of weighted means
procedures pushed on the search of procedures resistant to outliers as those given in Bianco et al.[2], who
introduced robust estimators based on bounded score functions together with algorithms to compute them.

To deal with missing data, one method is to impute a plausible value for each missing datum and then
analyze the results as if they are complete. In regression problems, commonly used imputation approaches
include linear regression imputation by Healy and Westmacott[10], nonparametric kernel regression impu-
tation by Cheng[4], semi-parametric regression imputation by Wang et al.[16], Wang and Sun[17], among
others. We here extend the methods to the estimation of § and g(-) under the semi-parametric EV model
(1.1). We obtain three approaches to estimate  and g(-) with missing responses and study the strong
consistency rates for the estimators.

In this paper, suppose we obtain a random sample of incomplete data {(y;, 0;, x;, t;)} from the model (1.1),
where 0; = 0 if y; is missing, otherwise 6; = 1. Throughout this paper, we assume that y; is missing at
random. The assumption implies that 6; and y; are independent. That is, P(6; = 1|y;) = P(6; = 1). This
assumption is a common assumption for statistical analysis with missing data and is reasonable in many
practical situations.

The paper is organized as follows. In Section 2, we list some assumptions. The main results are given
in Section 3. A simulation study is presented in section 4. Some preliminary lemmas are stated in Section
5. Proofs of the main results and Lemmas are provided in Sections 6.

2. Assumptions

In this section, we list some assumptions which will be used in the main results. Here a, = O(b,) means
la,] < Clb,l, a, = o(b,)) means a, /b, — 0, while a.s. is stand for almost sure.

(AO) Let{e;, 1 <i<mn}, {u, 1<i<n}and{d; 1 <i < n}beindependent random variables satisfying
(i) Eei=0,Eu; =0,Ee? =1, Ey? = Ei > 0 is known.
(ii) sup; EleilP < oo, sup, E|y;l < co for some p > 4.
(iii) {e;,1<i<n}, {u;,1<i<n}, {6;,1<1i<n}areindependent of each other.
(A1) Let {v;,1 <i < n}in (1.2) be a sequence satisfying
(i) limy, e n™t LIy 07 = Lo, limy e n™t L) 6,07 = Ey as. (0 < Lo, L1 < o0).

(i) limy—e sup,(Vilogn)™-maxi<u<y | Yitq v}l < 00, where{j1, fo, ..., ju} isa permutation of (1,2, ..., ).
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(iii) maxq<i<y [0l = O(1).

(A2) g(-) and h(-) are continuous functions satisfying the first-order Lipschitz condition on the close interval
[0,1].

(A3) Let Wfl],(t,-) (1 <1, j < n) be weight functions defined on [0, 1] and satisfy
(1) maxi<jen Yimg 6]-Wflj(ti) =0(1) as.
(i1) maxi<i<y 27:1 6]-Wf,].(ti)l((ti - t]»| >a-nV4) = o(n~1%) as. forany a > 0.
(i) maxi<;jen Wy (t) = o(n™'log™" n) as.
(A4) The probability weight functions W,(t;) (1 < i, j < n) are defined on [0, 1] and satisfy
(1) maxi<jcy Yimg Waj(t:) = O(1).
(i) maxi<icn Y1y Wn]-(t,-)l(|t,- - tj| >a-n"1%) = o(n~1*), for any a > 0.
(iii) maxi<;jen Waj(t) = o(n~"21log™ n).

Remark 2.1. Conditions (A0)-(A4) are standard regularity conditions and used commonly in the literature, see
Hiirdle et al.[9], Gao et al.[8] and Chen[3];

Remark 2.2. Under some mild conditions, the following two weight functions satisfy hypothesis (A4):
1 (™, t—s
Wy = =
Wi =5 f . M( - )ds,

W = m(= [ Y M=)
n ]=1 n

where s; = (t; + ti—1)/2, i =1,2,..,n—=1,50 = 0,5, = 1, M(-) is the Parzen-Rosenblatt kernel function, which we
can see in Parzen[15] or Hiirdle et al.[9], and b, are bandwidth parameters. Similarly, under some mild conditions,
the following weight functions satisfy hypothesis (A3):

W = (=Y k()]
n ]:1 n

where K() is the Parzen-Rosenblatt kernel function, and h,, are bandwidth parameters.

3. Main Results

For model (1.1), we want to seek the estimators of § and g(-). The most natural idea is to delete all the
missing data. Therefore, one can get model 6;y; = 6;&i + 0:9(t) + O;€;. If &; can be observed, we can apply
the least squares estimation method to estimate the parameter . If the parameter § is known, using the
complete data {(0;yi, 0;xi, 6iti), 1 < i < n}, we can define the estimator of g(-) to be

gt B) = ) We (D67, = 5,),
j=1

where Wflj(t) are weight functions satisfying (A3). On the other hand, under this condition of the semi-
parametric EV model, Liang et al.[11] improved the least squares estimator(LSE) on the basis of the usual
partially linear model, and employ the estimator of parameter § to minimize the following formula:
n P )
SSB) =Y o{[vi — xip - gt p)| — E2p2) = min!

i=1
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Therefore, we can achieve the modified LSE of § as follow:

fo= Y0 oz Y 0, oY
i=1 i=1

where ¥ = x; - Y1, O Wy (ti)x;, ve=yi—Yia 0jWy, (t)y;. We substitute (3.1) into g;,(t, B), then
n
50 =Y OWe By, - xife). (32)
=1

Apparently, the estimators 3. and () are formed without taking all sample information into consider-
ation. Hence, in order to make up for the missing data, we imply an imputation method from Wang and
Sun[17], and let

U = 8y + (1= 8)[xife + 4581 (33)

Therefore, Using complete data {(ul!”, xi, ti),1 < i < n}, similar to (3.1)-(3.2), one can get another estimators
for g and g(-), that is

n

b [Zn:(ﬁ?? —oz)|” Y mal, (3.4)
i=1

i=1

A =) WU - xp). (35)

j=1

where Cllm = Ulm - 27:1 W, j(ti)ug.”, X=x— Z?zl Whi(ti)xj, Wyj(t) are weight functions satisfying (A4).
Thirdly, Wang and Sun[17] developed a so-call semi-parametric regression surrogate approach. This

method uses estimated semi-parametric regression values instead of the corresponding response values to
define estimators, whenever the responses are observed or not. Let

UR = B + g5 (t). (3.6)

Therefore, Using complete data {(U}R], xi, t;),1 < i < n}, similar to (3.1)-(3.2), one can get the third estimators
for g and g(-), that is

n n

fe = () Y, 67
i=1 i=1

i = Y Wy - xpe), (3:8)
=1

where CII[R] = UER] - 27:1 W, j(t,')UE.R], W,j(t) are weight functions satisfying (A4).
Based on the three estimators for § and g(-), we have the following results.
Theorem 3.1. Suppose that (A0)-(A3) are satisfied. For every t € [0, 1], we have
(@) PB.—PB=o(ni)as.
(B) Fi(t) = g(t) = o(n"%) as.

Theorem 3.2. Suppose that (A0)-(A4) are satisfied. For every t € [0, 1], we have
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(@) Pi—pB=o(mi)as.
) 31 - g() = o) as.
Theorem 3.3. Suppose that (A0)-(A4) are satisfied. For every t € [0, 1], we have
(a) ﬁR -p= o(n‘i) a.s.
() g0 - g() = o(n™1) as.

4. Simulation Study

In this section, we carry out a simulation to study the finite sample performance of the proposed
estimators. In particular:

(i) we compare the performance of the estimators among f3., f; and iz by their mean squared errors
(MSE).

(ii) we give the boxplots for the estimators of § and g(-).
Observations are generated from
yi =&ip + g(t) + €,
xi=&+u, i=1,2,---,n,
where p =1, g(t) = sin2nt), t; = (i — 0.5)/n, & = £ + v; with v; = sin(@)/(n'/®) for 1 < i <n. {u;, 1 <i<n}and
{ei, 1 < i< n}areiid. N(0,0.2%) sequences. For the proposed estimators, the weight functions are taken as
K((t — £))/hn) M((t - t:)/bn)
T K(E— 1))’ Y M((t— £)/b,)

where K(-) and M(-) are Gaussian kernel function, &, and b, are two bandwidth sequences.

an(t) =

We(8) =

4.1. The MSE for three estimators of

In this subsection, we generate the observed data with sample sizes n = 100, 300 , 500 and the missing
probability of the response variables is 6 = 0.1, 0.25, 0.5 from the model above. The MSE of the estimators
for g based on M = 500 replications are defined as

NI T 2
MSE@) = 2 Y [B0 - o]
I=1

We compute the MSE for each estimators based on M = 500 replications and a grid of bandwidths
from 0.01 — 0.99. Choose the optimal bandwidths to minimize the MSE. The minimum MSE and the
corresponding optimal bandwidths for the estimators are reported in Tables 1.

From Tables 1, it can be seen that:

(i) The strong consistency of all three estimators for f8 is significant.

(ii) For every fixed n, the MSE of all estimators increase as the increasing of the missing probability.

(iii) For every fixed missing probability, the MSE of all estimators decrease as the increasing of sample
size n.

(iv) Compared to f., the estimated value §; and fig are closer to the true value. Therefore, the compensation
for missing data is meaningful.

(v) The simulation results are consistent with the theoretical results.
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Table 1: The MSE and corresponding optimal bandwidths for three estimators of

n o | Be h ] bi I | Br I Iy
100 0.1 146+107° 0.4400 1.65%107° 0.8200 0.3800 1.38107° 0.4700 0.2900
300 0.1 554107 0.3100 437+107° 0.8400 0.2000 42+107° 0.2100 0.1300
500 0.1 3.82+107° 0.3700 2.85+107° 0.4900 0.3200 2.86+107° 0.0100 0.3100

100 025 [ 267+10° 03500 | 1.84+10° 02900 0.0200 [ 1.82x10  0.0600  0.2200
300 025 | 590+10° 03300 | 533+10° 02100 03000 | 5.86+10°  0.0700  0.2700
500 025 | 3.68+107° 05100 | 2.98+10° 04600 04200 | 276+10°  0.5000  0.0700
100 05 [ 576+10" 03400 | 392+10° 03800  0.0400 | 3.69+10  0.3400  0.0200
300 05 | 816%10°  0.6000 | 7.62+10°  0.1500  0.8200 | 7.54%10°  0.6300  0.1700
500 05 | 345+107° 04200 | 3.07+10° 08400 03000 | 3.09%107° 02200  0.2100

4.2. Boxplots

In this subsection, we give the boxplots for the estimators of § and g(-). We consider all estimators of 8
and g(-) under the different missing probability. In Figures 1-3, we give the boxplots for f, f; and fr with
n = 100,300 and 500, respectively. In Figures 4-6, we provide the boxplots for §5(0.5), QE](O.S) and g?LR](O.S)
with n = 100, 300 and 500, respectively.

Figure 1: The boxplots for . with M=500, n=100, 300 and 500, respectively.

d=0.1 d=0.25 d=05 d=0.1 d=0.25 d=0.5 d=0.1 d=0.25 d=0.5

n=100 n=100 n=100 n=300 n=300 n=300 n=500 n=500 n=500

Figure 2: The boxplots for ; with M=500, n=100, 300 and 500, respectively.



J. Zhang, L. Zhang / Filomat 33:18 (2019), 6073-6089

d=0.1 d=0.25 d=05 d=0.1 d=0.25 d=05 d=0.1 d=0.25 d=05
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08| T — i _
0.75 [— 1 + -
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Figure 3: The boxplots for g with M=500, n=100, 300 and 500, respectively.
o1 o025 aos s aozs o os ozs o
= = BEH = = = = = =-
Il Il Il Il Il Il Il Il Il
Figure 4: The boxplots for 45,(0.5) with M=500, n=100, 300 and 500, respectively.
wos oz wos o1 oz wos wos oz wos
e — T T = = T =
= = = T = = -
o1 I I 0 I I I I I I
Figure 5: The boxplots for gALI] (0.5) with M=500, n=100, 300 and 500, respectively.
o1 wozs wos aos aozs aos o1 wozs wos
e BB 2 = = £ = =
0.08 [— 1 1 1 1 1 1 1 1 1

n=100 n=100 n=100 n=300 n=300 n=300 n=500 n=500 n=500

Figure 6: The boxplots for gALR](O.5) with M=500, n=100, 300 and 500, respectively.

From Figures 1-6, one can see that:
(i) the estimators f}; and fig have better performance than f..
(ii) The estimators gALI](-) and gA,[qR](-) have better performance than g (-).

(iii) For every estimator, the variances of the estimators decrease as the increasing of sample size n.

6079
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(iv) The simulation results are consistent with the theoretical results.

5. Preliminary Lemmas

In the sequel, let C,Cy,--- be some finite positive constants, whose values are unimportant and may
change. Now, we introduce several lemmas, which will be used in the proof of the main results.

Lemma 5.1 (Baek ang Llang[l] Lemma 3.1). Leta > 2, ey, , e, beindependent random variables with Ee; = 0.
Assume that {a,;,1 < i < n} is a triangular array of numbers with maxi<i<y [t = Om™?) and Y a?, =

o(n~%1log™" n). If sup, Ele;l’ < oo for some p > 2a/(a — 1). Then

n

Z agie; = o(n V%) as.

i=1
Lemma 5.2 (Hédrdle et al[9], Lemma A.3). Let Vy,---, V), be independent random variables with EV; = 0, finite
variances and Sup; e, E|V)|" < C < oo (r > 2). Assume that {ay;, k,i =1, ,n} is a sequence of numbers such that
SUP1; <, 1Kl = O(m™P1) for some 0 < py <1 and Z7=1 aji = O(n*?) for p» 2 max(0,2/r — p1). Then

n

Zakivk| =O(n*logn)as. fors=(p1—pa)/2.

maxXx
1<i<n

Lemma5.3. (a) Let A; = A(t)— Y7 Waj(t)A(t)), where A() = g() or h(-). Let AS = A(t;) =Y., Oj Wy (t)A()),
where A(-) = g(-) or h(-). Then, (A0)-(A4) imply that maxi<i<, |Ai| = o(n™/*) and maxy<i<, |A¢| = o(n™'/*) as.

(b) (A0)-(A4) imply that ' YL, &2 — Lo, L1 1&] < Cim, n7' Ty 64(E9)? —> Ig as. and Y [6:E <
Con a.s.

(¢) (A0)-(A4) imply that maxi<i<y || = O(1) and max<i<, |C§f~| =0(1)as.
Lemma 5.4. Suppose that (A0)-(A4) are satisfied. Then one can deduce that
max |7 (1) — g(t)| = o(n™H) as.

The proof Lemma 5.3 will be list in section 6. The proof Lemma 5.4 is analogous to the proof of Theorem
3.1(b).

6. Proof of Main Results and Lemmas

Firstly, we introduce some notations, which will be used in the proofs below.

=8~ Z O W ()E, 15 = i - Zé Wt g = g(t) = Z;@Wiij(ti)g(tj),
p
=€ — 25 Wi, (tej, =& - Z Wai(t)&j, i = pi — Z Wij(ti) ),

j=1 j=1

gi = g(t;) - Z Wai(t)g(t)), & =ei— Z Wai(tej, ni =€~ wip, B}, = Z i3,
i=1

j=1 j=1

n n n n
_ 2 o2 _ 2 s= 2 _ 2 = 2 _ 2
=Y 8 8,=) oF-08), $B,=) F-8) &,=) 2
i=1 i=1 i=1 i=1
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Proof of Theorem 3.1(a). From (3.1), one can write that

Sial Z O} + u)(y; = Eip = 1ip) + Z A

i=1 i
= sl i[éf@ﬁﬂf)(i p) + iELB + Zéévl +Z<5M,
- Zéé@z i) +Zéu,el Zé(y - f,)ﬁ+26i£§g~§

=
o
|
=
I

+ ZZéaw;](t)gf ZZ(S(SW el
i=1 i=1 j=1 i=1 j=1
- (t)yze,+zzééwc(t)é”u]ﬁ+2225c5w (E)pigs B
i=1 j=1 i=1 j=1 i=1 j=1
+ 816 ;0% WS (1) WS (£ e — Z Z Z 8:00 WS () WS (t) a1}
i=1 j=1 k=1 i=1 j=1 k=1
12
= $2Y A (6.1)
k=1

Thus, to prove . — = o(n™1/*) a.s., we only need to verify that 5;? < Cn™' a.s. and n™' Ay, = o(n™'/*) as. for
k=1,2,---,12.
Step 1. We prove 5,2 < Cn™! a.s. Note that

n

o= ) [+ - o]

i=1

n n n n
= Y o0&+ Y ot -g)+ ) 5[ )] 5]‘W:,j(ti)ruj]2
i=1 i=1 i=1 j=1
+2 i 6,55/.11 -2 i 6,55 i (SjW;j(f,‘)[J]‘ -2 i Oilhi i 6]-Wflj(t,-)yj
pa i-1 =1 i-1 =1

= Bln + Bgn + B3n + B4n + B5n + Bén.

By Lemma 5.3(a), we have n 1By, — X; a.s. Hence, it suffices to verify that By, = o(B1,) = o(n) a.s. for
k=2,3,---,6. Applying (A0), taking r = p/2 > 2, p1 = 1/2, p» = 1/2 in Lemma 5.2, we can verity that

Z (¢ -EC)=nt- Z n3(; - EG) = O(n log n) as. 6.2)

i=1 i=1
where (; are independent random variables satisfying EC; = 0 and sup,_,_,, E|GP? < oo. Therefore, we
obtain By, = O(n'/?logn) = o(n) a.s. from (A0) and (6.2). On the other hand, taking & = 4, p > 4 in Lemma
5.1, we have

maxXx
1<i<n

Zé WE (1) c]‘ = o) as, max | i wnj(ti)cj| = o(n 1) as. 6.3)
S 4

where (; are independent random variables satisfying EC; = 0 and sup, <icn EIGiIP < 00. By (A0) and Lemma
5.3, taking r = 4, p1 = 1/4, p = 3/4 in Lemma 5.2, one can also deduce that

|B4,,( =2ni - ‘Z n_‘liél-gfy,-| = O(n% logn) = o(n) a.s. (6.4)
i=1
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Note that, from Lemma 5.3(a), (6.2) and (6.3), we have

n n
IBs| < ;wd-%ﬂ;éngj(ti)yjr=o(n%)a.s. (6.5)
IBs,| < 221: 6,551 max| ]Z; oW, (t)y] = o(n) as. (6.6)
Boo| < 2 Y (0ul = Elougu + Y, Eloue] - max | Y o,We (k| = () as. 6.7)
i=1 i=1 ===

Therefore, for (6.2)-(6.7), one can deduce that S%n = By, + 0(n) = By, + 0(B1,) a.s. , which yields that

lim == Bu m-———— =
n—oo S%n n—oo Bln + O(Bln)
Therefore, by the Lemma 5.3(b), we can get that $;? < Cn™! as.
Step 2. We verify thatn~'Ay, = o(n""*)a.s.fork = 1,2,--- ,12. From (A0), we find out {n; = €;—p;,1 <i <

n} are sequences of independent random variables with En; = 0, sup; E (ni|p < Csup,E |e,-|p +Csup, E |yi|p < oo,
for some p > 4. Similar to (6.4), we deduce that

n 1Ay, =nt Z 61-51?17,- = O(n_% logn) a.s.

i=1
Meanwhile, from (A0)-(A3), Lemma 5.3, (6.2) and (6.3), one can achieve that

S2Ay < %;5y1e1| O(n~* log n) a.s.
S2As < %Z‘é( E)ﬁ‘ O(n~* log n) a.s.
SiPAm < %géicffgff s%[mﬁZbé@gﬂg | =on%) as.
R e B AR I W] 'ZéWn](t)u;'
< < mﬁ(z(w Elu]) + Y Els]) - max[oi] + o074 = o6}y s

i=1

The proof of n~ Ay, = o(n~'/*) ass. for k = 6,---,12 is analogous. Thus, the proof of Theorem 3.1(a) is
completed. ]

Proof of Theorem 3.1(b). From (3.2), for every ¢ € [0, 1], one can write that

gb-gt) = Zw:,ja)éj(yj—xjﬁc)—g(t)

Z WE D018 + 9(t) + € — (& + uBe] - 9(0)

3 W03 o + Y W a0 lat) - o)
1 =
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Y WS+ ) WEE)O B + ) Wi (t)Sii(Be — B)
=1 =1 =1
= Fru(t) + Fou(t) + F3,(t) + Fau(t) + Fsu(t).

Therefore, we only need to prove that Fy,(t) = o(n™'/*) a.s. for k = 1,2,---,5. From (A0)-(A3), Theorem
3.1(a), Lemma 5.3, (6.2) and (6.3), for every ¢ € [0,1] and any a > 0, one can get

Fua(®) AR max (1) + o)l Za WS () = o(n ) as.

IA

FZn (t)

IA

Z@ W) - [9(t) — 9] 10t — > a-n7H)

+Zajw;j(t) o) = 9] 10t -t <a-n7h)
j=1
<C-a-ni= o(n‘%) a.s.

Fan(b) ‘ Z We ].(t)(sjej| = o(n1) as.
=1

IA

F4n(t)

IA

| i We (D3j1i6| = o(nH) as.
=1

Foul) < [p=fel-| Y We 05| = o) as.
=1

Thus, the proof of Theorem 3.1(b) is completed. ]
Proof of Theorem 3.2(a). From (3.3)-(3.4), write that

Pr-p = S Y G+ m[oiyi— & — )+ (1= 6)(E + ) (Be - )

i=1

+(1 = 85 (t) — Z; Wai(t)(61(yj = & = i) + (1 = 8,)(&; + 1)(Be = )
=
+(1 - 6)g5 )] + Z;‘ 523 p)
= S Zn‘,@f + )| oi(es — i) + 0(g(t:) — G5(t) + (1 = )& + 1) (Be — )
+5(t) Z Wai(t:)(5(ej = 1) + 6,(9(t) - 35¢)

j=1

H(1 = ))& + 1)Be — ) + Gt Z 5iE2p)

= s;,f{Z&ém—uiﬁ>+26£i<g<ti> (t>>+ Ei&i+ p) (A = 5)(Be = B)

n

3 oW+ Y Y 6 W) - Z Z oW (t)E9(t)) — G5 (t)
1 j=1

i= i=1 j=1
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- Wi (B)E(1 = )& + ) (B = B) + ) &g + ) digues
=1 j=1 i=1 i=1

: O Wa(t)eins; - }: S =B+ Y Y SiWi (ki
i=1 j=1 i=1 j=1

+ ) Sifiulgt) - Gi(t) + Z, (1 = 5)(Ei + i) (Be = B) - Z Y 6iWai(ti) e
i=1 i=1 j=1

+ ¥ W (E) W ( t)yk€]+226 Wt it B
i=1 j=1 k=1 i=1 j=1

- g Wt — Y Y 0,1 R0t — 5)
i=1 j=1 k=1 i=1 j=1

: Wa(t) (1L = 8,)(E; + 1)) Be — ) + Z g
i=1 j=1

21
-2
$32 ) Dy
k=1

Using a similar approach as step 1 in the proof of Theorem 3.1(a), one can get 5,2 < Cn! a.s.
Therefore, we only need to verify that n'Dy, = o(n™/*) a.s. for k = 1,2,---,21. From (A0)-(A4), Lemmas
5.2-5.4, Theorem 3.1(a), (6.2)-(6.4), we have

I’l_lDln

n_1D2n

Tl_l D3n

n_1D4n

Tl_lD7n

-1
1" D1z,

IN

IN

IA

IA

nt Z oiilei—wp)=n""" O(n% logn) = o(n_%) a.s.

i=1

| ):1] [0:&i] - max |g(t) — g5.69]| = o) as.

n Y EA-6)B P+t Y E(1-06) Y Wai(t)E(Be — )
i=1 i=1 =1

! Z Ei(1 = 0)(Bc — p) = o(n™ ) as.

nt Z ‘cf, - max
1<i<n

n‘1 |€il - max
p 1<i<n

Z@ Wo(t)e| = ot~ as.

ZW"J(”| max ¢l |f: —

an]a)(l o[- 1B — | = ot H) as.

i=1

”_1| Zn: siti(g(t) - !?Z(ti))‘
i=1

[ 1u| lat) - g5 ( t)(+Z(g(t <ti)|-]iwnj<ti>uf\]
j=1
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n

< 10 (el = bl + X, il el - )
- max|g(t) - 7,(t max‘ZWn](t)mH—O(n Has.
i Duyy = n—lzuz(l—éxélw) B <n |Zauz| [
- |2y1| B — |+ 07! Da maX|ZWn](t)/J]' B - 8l
+nt- Z [l - max ’ ]Z:; an(ti)Hj| |Be = B| = o(r7%) as.
n' Doy ‘1Zl < i;lufl’léfhi;li max ZWnJG)#f'
< mlmax(2 (|#i|—E)ui|)+iE|uz|) max 7|

i=1

+n - maX| ‘ max
1<i<n 1<i<n

Z an(fi)[.l]‘H = O(Tl_%) a.s.

=1
In the same way, from (A0)-(A4), Lemmas 5.2-5.4, (6.2) and (6.3), one can similarly deduce that n™!Dy, =
o(n Y% a.s. fork =5,6,8,9,10,11,12,15,---,20. Thus, the proof of Theorem 3.2(a) is completed. [ ]
Proof of Theorem 3.2(b). From (3.4), write that

Z an(t){éj]/j + (1= 0)I(E) + pp)Be + d5(t)] — (& + ,uj)ﬁl} —g(t)

=1

= ) Wi {oi[ciB + 9t + €] + (1= 6)[(E + e + Fity)]

=1

gl - ()

(& + uhi) - 9()
= Z an(t){éjéjﬁ + 6jg(tj) +0j€j + Ejﬁg + Mjﬁc - 5j5j3c - 5]'}1]’36
=1

+0(t) — 0 (t)) — ]ﬁl “]’.BAI} —9()
- Z Wi (10818 — o) + Z Wi (00i[a(t) = g5t)] + Y Waih)oje;
j=1 =1
+ Z Wi (HEj(Be — ) + Z Wai(Oui(Be = B = Y Wai(D5uPe
j=1 j=1 j=1
+ Y W[5 - )] + Y. Wai]gte) - )]
j=1 j=1

+ Z Wii(DE(B = Br) + Z Wari (DB = Br)
= =
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Y G
k=1

Therefore, we only need to prove that Gg,(t) = o(n~*) a.s. for k = 1,2,---,10. From (A0)-(A4), Lemma
5.3-5.4, (6.2), (6.3), one can get

IA

Gu(t) < |B=fe| max|o;&]- an,(t)

1<<

<|p-4d- max HE Z W,.i() = o(n™%) as.
<j< -

A

Gaut) < maxgtt) - 3,09 | 1, W3] = o1 as
n L

Meanwhile, the proof of Gy,(t) = o(n~'/*) a.s. for k = 3,--+,10 is analogous. Thus, the proof of Theorem
3.2(b) is completed. ™

Proof of Theorem 3.3(a). From (3.6)-(3.7), write that

Boop = s2Y (wi - 2p)
i=1

= 532 {xl[x,ﬁc + g,(t) — Z Whi(ti)g (fj)] - fyzﬁ}
1

i= j=1

=

= 532 x?(ﬁc ﬁ)+Z(€z+ )45 () — g(t:)]

i=

Z(é, + i) Z WartIG5(E) — gDl + Y (& + 1) Y Waitlg(t) — (¢}
i=1 j=1

= 53 Z (B -p)+ Z ELg5(t) - g(t)] + Z Al (1) - g(t)]
i i=1 i

&Y Wai(Ias(t) - a(t)) 1—2%2% )75 () - 9(t))]

i=1 j=1

=

=
I
[y
=

+ ) &Y Watlg(t) — 9] + Z yzz Wi (t)lg(t:) - g(t)]
i=1 j=1 i=1 j=1
7

= 572 Z Hi.
k=1
Using a similar approach as step 1 in the proof of Theorem 3.1(a), one can get 5;2 < Cn™! a.s. Therefore,

we only need to verify that n='Hy, = o(n™'/*) a.s. fork = 1,2,--- ,7. From (A0)-(A4), Theorem 3.1, Lemmas
5.2-5.4, (6.2) and (6.3), we have

Tl_lHln

IN

C- |‘[§C - [3' =o(n"%) as.

- max Z )57
1<i<n

n_len

Z(tz‘) - g(fz‘)) =o(n"%) as.
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nH, < -1|Zpl () g<t>11<n
n,(t)mﬂ
= 1[{3,@;(220#4—Eluil)+;Elyz1) max|g; (t) — ()
1 - max |g5(t) = g(t)| - max ' ]an‘ an(ti)ujﬂ =o(n"%) as.
n'Hy < 7' max]|gi () - g0t ggx{“ﬂ&)-{ggi}wma»]=o<n-i>a.s.
=
nHs, < ‘1|Z;u12wn]<t>wn<t) o
< Z i - max | 2 W (EIg587) = 9t
- =
v ,nl | ‘nl Waj(t)Ig5(t) - 9(¢))] - max | Z Wt
Se
< 0 e () el £l + ) -oss - o)
- max |75(t) — )| |2wn,<t E max|2wnk<t)uk|]—o<n Has.

The proof of n™'Hy,, = o(n~'/*) a.s. for k = 6,7 is analogous. Thus, the proof of Theorem 3.3(a) is completed.m

Proof of Theorem 3.3(b). From (3.7), write that

G - g(t)

Z an(t)[U;R] - xjﬁR] —g(t)
=1

= Z an(f)[xjﬁc — xR + 9Z(tj)] —g()

j=1

IN

| Zn: Wii(DE(Be — ﬁ)' + | Z Wai(B)E(Br — /3)|
jz Wi, ~ )] + | Z W01~ )

oY W) - 9] + | Y Watotate) - o]
[ =1
= Zln(t) + Zzn(f) + Z3n(t) + Z4n(t) + Z5n(i’) + Zén(t).

Therefore, we only need to prove that Zy,(t) = o(n™'/4) a:s. for k = 1,2,--- ,5. From (A0)-(A4), Lemma 5.3,
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(6.2)-(6.3), one can get

Zun®) < | fel - max|g]- ) Wayt) = ot as.
P £

Zu® < |B-f- ]Z Wn]'(t)y]-| — oY) as.

Zon(t) < max|gih) - g(t)| - an, t) = o(n"%) as.

j=1
The proof of Zy,, = o(n~*)as. fork =2,4,6is analogous. Thus, the proof of Theorem 3.3(b) is completed.m

Proof of Lemma 5.3(a). We prove only maxi<i<u |Af| = o(n"Y%) a.s. The proof of maxi<i<y |A;| = o(n %) is
similar. For any a > 0, by (A0)-(A3), one can deduce that:

Zé t)[At) — A1t — 1 > a - nH)

max |A| < max
1<i<n 1<i<n

+ max
1<i<n

Z o Zj(ti)[A(ti) - A(tj)]I(|t7» ~tl<a- n‘1/4)"

Therefore, it is easy to see that maxi<j<, |AS| = o(n™'/*) as.

(b). In the sequel, we use the Abel Inequality (Hardle et al.[9], page 183). Let A1, Ay, --- , Ay;
Bi,By,-++ ,B, (B1 = By = -+ 2 B, > 0) be two sequences of numbers, and Sy = Z;‘:l A;, M1 = miny<<, Sk,
M, = maxj<<y Sx. Then, BiM; < Y, _; ABx < BiMy. Let E;, F; (1 < i £ n) be arbitrary numbers and
(j1, j2,*++ , jn) be a permutation of (1,---,n) such that Fj, > F;, > --- > F; . Then from the above equation,

we have

|Zn‘4EiFi| 'ZE],F], 'ZE], Ji T ]n 'ZE],F],.
i=1
Z Ejl

We prove only n ' Y1, EC)Z — X a.s. The proof of the other three formulas is similar. From EC =
hf +0; — Z]=1 6]Wn].( i)oj and hf = h(t;) — Z -1 W (t )h(t;), we can write

%;51»(5;)2 = %;6ivf+%; (h) Z Z(SWn](t)v] Z(Svhc

i=1

n n
—% 2 (Si‘()i[ Z 6]'W,C1j(ti)vj] 5 Z 6117110[ 2 (SjWZj(ti)T)]']
i=1 j=1 i=1 j=1

= an + an + an + 2Q4n - 2Q5n - 2Q6n

IN

Cmax |F;| max
1<i<n 1<m<n

Lemma 5.3(a) shows that max<i<, [#°(t;)| = o(n~/*) a.s., which implies that Q,, = o(n"/?) a.s.
Hence, it follows from (A1)-(A4) that

| ZZZ(S(SW OWE, t)v,vk| | ZZ Zéé w;](t)ékwck(t)]v]vk‘

i=1 j=1 k=1 =1 k=1 i=1

Zm: 1r£1ma<xn zm: vk‘| . max 6 oWy, (t) max Z 6kWnk(t)

i=1 i=1

|Q3n|

C
— - max
n  1<m<n

IA
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= o(n? logn) a.s.

2 ¢ - 1
Qul < —Z|6i|'max|vi|-max|h§|=o<n-4)a.s.
n p 1<i<n 1<i<n
m
Q5| < - max 266 Wn](t)vl| max Zv]-,.|
1<]<n 1<sm<n | A
i=1
C m m
< — - max Zvik - max 6;0;Wy, (t max Z‘v]l|—o(n 2 logn) a.s.
n 1<m<n 1<i,j<n 1<m<n
k=1 j=
2 n
Qgn| < — |64] - maxlhl max ZéW ' maxlvjl—o(n 4)as
n = 1<i<n 1<i<n <j<n

Then, we obtain that n™! YL, 6;(£)* — X a.s. from (A1)(i).

(c). Using the assumptions (A1), (A2) and (A4), it is easy to obtain that:

maxléfl < max |hC| + max |U,| + maxZ oWy (t) max |U]| =0(1) a.s.

1<i<n

The proof of maxi<i<y |&il = O(1) is similar. Then, the proof of Lemma 5.3 is completed. [ |
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