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Abstract. This paper is devoted to the study of a new kind of approximate proper efficiency in terms
of proximal normal cone and co-radiant set for multiobjective optimization problem. We derive some
properties of the new approximate proper efficiency and discuss the relations with the existing approximate
concepts, such as approximate efficiency and approximate Benson proper efficiency. At last, we study the
linear scalarizations for the new approximate proper efficiency under the generalized convexity assumption
and give some examples to illustrate the main results.

1. Introduction

In the past few decades, the (weak, proper) efficient solutions of the multiobjective optimization problem
were studied in many ways. When the existence conditions for these exact solutions were investigated, it is
found that the compact conditions of constraint sets can not be removed. On the other hand, optimization
models are solved frequently by using iterative algorithms or heuristic methods, and these procedures
give approximations to the theoretical solution. For these reasons, many research focused on approximate
concepts and study their characterizations and applications. The first concept of approximate solutions
was introduced by Kutateladze [1] mainly to study the convex optimization problem. In the middle
of the 1980s, Loridan [2] introduced the approximate efficient solutions for multiobjective optimization
problem. And later, White [3] and Helbig [4] also gave the several concepts of approximate solutions for
multiobjective optimization problem by using different tools. Notice that hereafter, the above approximate
solutions for multiobjecitve optimization problems can be characterized by the co-radiant set, Gutiérrez
et al [5] introduced a new kind of approximate solutions to unify several existing approximate solutions,
and they also established nonlinear scalarization results for the unified approximate solutions. On the
basis of these concepts, more characterizations, such as: the existence conditions, scalarizations, Lagrange
multiplies rules and saddle points theorems were studied for the solutions of multiobjecitve optimization
problems[6-15]. Especially, the optimality solutions can be characterized with the help of geometrical
concepts, such as tangent cones and normal cones[12-13]. Lalitha et al [14] introduced a new proper
efficiency by proximal normal cone, and relate it with Benson and Borwein proper efficiency. Moreover,
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they gave the linear scalarization results for the proximal proper efficiency under the generalized convexity
assumption. Recently, Shahbeyk et al [15] defined the limiting proper minimal point for a nonconvex set
with the limiting normal cone, and investigated its several properties.

Based on the proper efficiency in[14] and the approximate solution in [5,7], we want to give a new kind
of approximate proper efficiency, and study the relation with existing approximate solutions as well as
its scalarization results. This paper is organized as follows. In Section 2, some definitions and lemmas
are given. The new approximate proper efficiency are defined in Section 3, the properties of ε−Proximal
proper efficiency as well as the relationship with other approximate solutions are presented. Especially,
the ε−Proximal proper efficient point can reduce to Proximal proper efficiency. Furthermore, under the
certain conditions, we also illustrate the difference between ε−Proximal proper efficiency and some existing
approximate proper efficient point. In section 4, the linear scalarizations for ε−Proximal proper efficiency
are established under the locally starshapeness assumptions.

2. Preliminary

Let Rp be the p-dimensional Euclidean space and Rp
+be its non-negative orthant. The int(C), cl(C) and

conv(C) denote the interior, the closure and the convex hull of C ⊆ Rp . If for all c ∈ C and λ > 0, λc ∈ C,
then C is called cone. C is called pointed if C ∩ (−C) ⊆ {0}. The generated cone of C is defined as

cone(C) := {λv : λ > 0, v ∈ C}.

C is said to be a co-radiant set if αd ∈ C for all d ∈ C, α > 1. Let C(ε) = εC,∀ε > 0 and C(0) =
⋃
ε>0

C(ε) (see [5]).

The positive dual cone and strict positive dual cone of C are defined as

C+ = {d ∈ Rp
|〈d, c〉 > 0,∀c ∈ C};

Cs+ = {d ∈ Rp
|〈d, c〉 > 0,∀c ∈ C\{0}}.

The tangent cones play an important role in the field of optimization, we now introduce the definitions
of two types of tangent cones and the corresponding normal cones in [16].

Let Y be a set in Rp and ȳ ∈ Y. The tangent cone to Y at ȳ, denoted by T(Y, ȳ) is defined as

T(Y, ȳ) = {d ∈ Rp
|∃ t j ↓ 0, d j → d with d j ∈ Y such that ȳ + t jd j ∈ Y}.

The Clarke tangent cone to Y at ȳ, denoted by Tc(Y, ȳ) is defined as

Tc(Y, ȳ) = {d ∈ Rp
|∀ t j ↓ 0, y j → ȳ with y j ∈ Y, ∃ d j → d such that y j + t jd j ∈ Y}.

Both tangent and Clarke tangent cones are closed and

Tc(Y, ȳ) ⊆ T(Y, ȳ) ⊆ clcone(Y − ȳ). (2.1)

The notion of tangential regularity has been considered in [12]. Y is said to be tangentially regular at ȳ
if Tc(Y, ȳ) = T(Y, ȳ). It is obvious that if Y is convex , it is tangentially regular at any ȳ ∈ Y.

The normal cone to Y at ȳ, denoted by N(Y, ȳ), is the negative dual of T(Y, ȳ), that is

N(Y, ȳ) = {d ∈ Rp
|〈d, h〉 6 0,∀h ∈ T(Y, ȳ)},

and the Clarke normal cone to Y at ȳ, denoted by Nc(Y, ȳ), is the negative dual of Tc(Y, ȳ), that is

Nc(Y, ȳ) = {d ∈ Rp
|〈d, h〉 6 0,∀h ∈ Tc(Y, ȳ)}.

In [17], the proximal normal cone was introduced for a nonempty subset Y at a point ȳ ∈ Y. Let x be a
point not lying in Y, and ȳ be the projection of x onto Y, that is,

‖x − ȳ‖ = min
y∈Y
‖x − y‖,
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then the vector x− ȳ is called proximal normal direction to Y at ȳ, any nonnegative multiples of such vectors
are called proximal normal to Y at ȳ and the set of all such vectors form the proximal normal cone to Y at
ȳ, which is denoted by Np(Y, ȳ). The proximal normal cone has the following properties.

Lemma 2.1[17] Vector ξ belongs to Np(Y, ȳ) if and only if there exists δ = δ(ξ, ȳ) > 0 such that

〈ξ, y − ȳ〉 6 δ||y − ȳ||2 , ∀y ∈ Y.

In particular, if Y be a closed convex set, then

〈ξ, y − ȳ〉 6 0 , ∀y ∈ Y.

The following existing results will be needed to establish our main results.
Lemma 2.2[18]
(i) Let C be a pointed convex cone in Rp, then

(−C)+ = −C+, Cs+ + C+
⊆ Cs+;

(ii) If A and B are subsets of Rp such that A ⊆ B, then B+
⊆ A+;

(iii) Let C1,C2, ...,Cm be a nonempty convex cones in Rp, then

(clC1 ∩ clC2 ∩ ... ∩ Cm)+ = cl(C+
1 + C+

2 + ... + C+
m).

Lemma 2.3[5] Let C be a pointed co-radiant set, then
(i) C(ε) is a pointed co-radiant set for all ε > 0.
(ii) If 0 < ε1 < ε2, then C(ε2) ⊆ C(ε1).
(iii) C(0) is a pointed cone.

3. Cone characterizations of approximate solutions

In this section, we introduce a new kind of approximate proper efficient concepts and consider their
properties. Let Y be a closed set in Rp, C be a closed pointed co-radiant set in Rp and D be a closed convex
pointed cone in Rp.

We now introduce the following existing efficient and proper efficient points with respect to convex
cone D(see [14, 18]).

Definition 3.1 Let ȳ ∈ Y.
(i) ȳ is called an efficient point of Y with respect to D, written ȳ ∈ E[Y,D], if

(Y − ȳ) ∩ −D = {0}.

(ii) ȳ is called a weakly efficient point of Y with respect to D, written ȳ ∈WE[Y,D], if

(Y − ȳ) ∩ −intD = ∅.

(iii) ȳ is called Benson properly efficient point of Y with respect to D, written ȳ ∈ Ben[Y,D], if

clcone(Y + D − ȳ) ∩ −D = {0}.

(iv) ȳ is called Borwein properly efficient point of Y with respect to D, written ȳ ∈ Bor[Y,D], if

T(Y + D, ȳ) ∩ −D = {0}.
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(v) ȳ is called a proximal properly efficient point of Y with respect to D, written ȳ ∈ Pr[Y,D], if ȳ is an efficient
point of Y, and

Np(Y + D, ȳ) ∩ (−Ds+) , ∅.

In recent years, Gutiérrez and Gao et al studied the following approximate efficiency and proper
efficiency by using the co-radiant set, which extended and unified the existing approximate solutions(see
[5,7]).

Definition 3.2 Let ε > 0, ȳ ∈ Y .
(i) ȳ is called an ε−efficient point of Y with respect to C, written ȳ ∈ AE[Y,C(ε)], if

(Y − ȳ) ∩ (−C(ε)) ⊆ {0}.

(ii) ȳ is called an ε−Benson proper efficient point of Y with respect to C, written ȳ ∈ Ben[Y,C(ε)], if

clcone(Y + C(ε) − ȳ) ∩ (−C(0)) ⊆ {0}.

Based on the proximal proper efficiency, Borwein proper efficiency and the above approximate solutions,
we introduce the following approximate proper efficient points.

Definition 3.3. Let ε > 0 and ȳ ∈ Y ∩ Y + C(ε).
(i) ȳ is called an ε−Proximal properly efficient point of Y with respect to C, if

Np(Y + C(ε), ȳ) ∩ (−C(0)s+) , ∅.

(ii) ȳ is called an ε−Borwein properly efficient point of Y with respect to C, if

T(Y + C(ε), ȳ) ∩ (−C(0)) ⊆ {0}.

The set of all ε−Proximal properly efficient points and ε−Borwein proper efficient points of Y are denoted
by Pr[Y,C(ε)] and Bor[Y,C(ε)], respectively.

Remark 3.1. (i) When ε = 0, Definition 3.3 reduces to Pr[Y,D] and Bor[Y,D].
(ii) In fact, for some problems, we can see that the approximate proximal proper efficient point may be

exist, while the proximal efficient point does not exist.
Example 3.1. Let p = 2,Y = R2

+ ∪ {(y1, y2)T
|y1 < 0, y2 > 0}, D = R2

+, it is easy to check that the exact
proximal properly efficient point does not exist. But, if we take ε = 1

2 ,C = {(y1, y2)T
|y1 > 0, y2 > 0, y1+y2 > 1},

then ȳ = ( 1
2 , 0)T is an ε−Proximal efficient point of Y with respect to C.

Some properties of Pr[Y,C(ε)] and Bor[Y,C(ε)] can be established in the following Theorem.
Theorem 3.1.
(i) Pr[Y,C(0)] ⊆ Pr[Y,C(ε)], for any ε > 0.
(ii) If 0 < ε1 < ε2, then Pr[Y,C(ε1)] ⊆ Pr[Y,C(ε2)].
(iii) Bor[Y,C(0)] ⊆ Bor[Y,C(ε)], for any ε > 0.
(iv) If 0 < ε1 < ε2, then Bor[Y,C(ε1)] ⊆ Bor[Y,C(ε2)].

Proof. (i) Since C(ε) ⊆ C(0),∀ε > 0,
Y + C(ε) ⊆ Y + C(0).

If ȳ ∈ Pr[Y,C(0)], then there exists h ∈ −C(0)s+ such that h ∈ Np(Y + C(0), ȳ). According to Lemma 2.1, there
exists δ > 0 such that

〈h, y − ȳ〉 6 δ||y − ȳ||2, ∀y ∈ Y + C(0).
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Hence, for any y ∈ Y + C(ε), we also have 〈h, y − ȳ〉 6 δ||y − ȳ||2. This implies ȳ ∈ Pr[Y,C(ε)]. Therefore
Pr[Y,C(0)] ⊂ Pr[Y,C(ε)],∀ε > 0.

(ii) Take any ε1, ε2 with 0 < ε1 < ε2, if ȳ ∈ Pr[Y,C(ε1)], then by Lemma 2.3 we know that C(ε2) ⊆ C(ε1).
Therefore

Y + C(ε2) ⊆ Y + C(ε1).

Hence, we have that Pr[Y,C(ε1)] ⊆ Pr[Y,C(ε2)].
(iii) Since C(ε) ⊆ C(0),∀ε > 0,

T(Y + C(ε), ȳ) ∩ (−C(0)) ⊆ T(Y + C(0), ȳ) ∩ (−C(0)).

It follows that Bor[Y,C(0)] ⊆ Bor[Y,C(ε)],∀ε > 0.
(iv) The proof is similar to (ii), and can be omitted.

Generally speaking, the approximate proper efficient point is included in the approximate efficient
point, but the ε−Proximal efficiency is not satisfied, which is illustrated by an example below.

Example 3.2. Let p = 2, C = {(y1, y2)T
|y1 > 1, y2 > 1}, Y = {(y1, y2)T

|y1 + y2 = 1, y1 > 0, y2 > 0} ∪
{(y1, y2)T

|0 6 y1 6 1, y2 = 0} ∪ {(y1, y2)T
|0 6 y2 6 1, y1 = 0} . Take ε = 1

2 , ȳ = ( 1
2 ,

1
2 )T, then Np(Y + C(ε), ȳ) ∩

(−C(0)s+) , ∅, that is ȳ ∈ Pr[Y,C(ε)]. Since (Y − ȳ) ∩ (−C(ε)) * {0}, we have ȳ = ( 1
2 ,

1
2 )T < AE[Y,C(ε)](see

Figure 1).

Figure 1: The image spaces of Example 3.2

The following theorems give the relationship between the new two kinds of approximate proper efficient
points and the other approximate efficient points.

Theorem 3.2. Let ε > 0, δ ∈ [0, 1), then⋂
δ6α<1

Pr[Y,C(αε)] ⊆ AE[Y,C(ε)].

Proof. Let ȳ ∈
⋂

δ6α<1
Pr[Y,C(αε)], then there exists h ∈ −C(0)s+ such that h ∈ Np(Y + C(αε), ȳ). It follows from

Lemma 2.1, for all α ∈ [δ, 1), there exists δ1 > 0 such that

〈h, y − ȳ〉 6 δ1||y − ȳ||2, ∀y ∈ Y + C(αε). (3.1)

Now we proof that ȳ ∈ AE[Y,C(ε)]. Suppose to the contrary that ȳ < AE[Y,C(ε)], that is, there exists
q , 0 such that q ∈ (Y − ȳ) ∩ (−C(ε)). This implies that there exists p ∈ C such that q = −εp. We have
αq = −εαp ∈ −C(αε). Therefore,

q + ȳ − αq = ȳ + (1 − α)q ∈ Y + C(αε).
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Combining with (3.1), we have
〈h, (1 − α)q〉 6 δ1(1 − α)2

||q||2.
Since α ∈ [δ, 1),

〈h, q〉 6 δ1(1 − α)||q||2.
Taking α→ 1 in the above inequality, we have that 〈h, q〉 6 0.

On the other hand, since q ∈ −C(0)\{0} and h ∈ −C(0)s+, 〈h, q〉 > 0, which leads to a contradiction. Hence,
ȳ ∈ AE[Y,C(ε)].

Theorem 3.3. Let ε > 0, then Pr[Y,C(ε)] ⊆ Bor[Y,C(ε)].

Proof. Let ȳ ∈ Pr[Y,C(ε)], then there exists h ∈ −C(0)s+ such that h ∈ Np(Y + C(ε), ȳ). It follows from Lemma
2.1, there exists δ > 0 such that

〈h, y − ȳ〉 6 δ||y − ȳ||2, ∀y ∈ Y + C(ε). (3.2)

Next we proof ȳ ∈ Bor[Y,C(ε)]. Suppose that ȳ < Bor[Y,C(ε)], then there exists d , 0 such that d ∈
T(Y + C(ε), ȳ) ∩ (−C(0)). Since d ∈ T(Y + C(ε), ȳ), there exists t j ↓ 0, d j → d with d j ∈ Y + C(ε) such that

ȳ + t jd j ∈ Y + C(ε).

Which together with (3.2) yields
〈h, t jd j〉 6 δ||t jd j||

2.

That is,
〈h, d j〉 6 δt j||d j||

2.

Taking j→ +∞ in the above inequality, we have 〈h, d〉 6 0. Since d ∈ −C(0) \ {0} and h ∈ −C(0)s+, 〈h, d〉 > 0,
which leads to a contradiction. Hence, ȳ ∈ Bor[Y,C(ε)].

Remark 3.2. (i) If ε = 0, Theorem 3.3 can reduce to Theorem 3.1 in [14].
(ii) If Y + C(ε) is a convex set, it is easy to prove that

Pr[Y,C(ε)] = Bor[Y,C(ε)] = Ben[Y,C(ε)].

The following two examples illustrate that there is no reciprocal inclusion relations between ε−Proximal
efficient points and ε−Benson proper efficient points without convexity assumptions.

Example 3.3. Let p = 2, C = {(y1, y2)T
|y1 > 1, y2 > 1}, Y = {(y1, y2)T

|2y2 > −y1 ∪ {(y1, y2)T
|y2 > −2y1}.

Take ε = 1
2 , ȳ = ( 1

2 ,
1
2 )T, then clcone(Y + C(ε) − ȳ) = Y and Y ∩ −C(0) ⊆ {0}. that is ȳ ∈ Ben[Y,C(ε)], and

ȳ ∈ Bor[Y,C(ε)]. But Np(Y + C(ε), ȳ) ∩ (−C(0)s+) = ∅, that is ȳ < Pr[Y,C(ε)](see Figure 2).

Figure 2: The image spaces of Example 3.3

Example 3.4. Let p = 2, C = {(y1, y2)T
|y1 + y2 > 1, y1 > 0, y2 > 0}, Y = {(y1, y2)T

|y1 < 0, y2 = 1} ∪R2
+. Take

ε = 1
2 , ȳ = (0, 1

2 )T, then clcone(Y + C(ε)− ȳ)∩−C(0) = {(y1, y2)T
|y1 6 −

1
2 , y2 = 0}, that is ȳ < Ben[Y,C(ε)]. Since

Np(Y + C(ε), ȳ) ∩ (−C(0)s+) , ∅, ȳ ∈ Pr[Y,C(ε)] (see Figure 3).
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Figure 3: The image spaces of Example 3.4

Consider the following multiobjective optimization problem

(MOP)

min f (x)
s.t. x ∈ S

Where f : X→ Z,S be a nonempty subset of X .
Based on the Definition 3.2 and Definition 3.3, we can get the following approximate proper efficient

solutions for (MOP).
Definition 3.4. Let ε ≥ 0, x̄ ∈ S.
(i) x̄ ∈ S is said to be an ε−Benson proper efficient solutions of (MOP), if

clcone( f (S) + C(ε) − f (x̄)) ∩ (−C(0)) ⊆ {0}.

(ii) x̄ ∈ S is said to be an ε−Borwein proper efficient solutions of (MOP), if

T( f (S) + C(ε), f (x̄)) ∩ (−C(0)) ⊆ {0}.

(iii) x̄ ∈ S is said to be an ε−Proximal efficient solutions of (MOP), if

Np( f (S) + C(ε), f (x̄)) ∩ (−C(0)s+) , ∅.

(iv) Let ε ∈ K. x̄ ∈ S is said to be an ε−Benson efficient solutions of (MOP), if

clcone( f (S) + ε + K − f (x̄)) ∩ (−K) = {0}.

We denote the above approximate proper efficient solutions by Ben( f ,S,C, ε), Bor( f ,S,C, ε), Pr( f ,S,C, ε),
Be( f ,S,K, ε), respectively.

If X = Rn,Z = Rp, f : S→ Rp. The approximate proper efficient solutions based on the Geoffrion proper
efficient solutions are as follows.

Definition 3.5[19]. Let ε ∈ Rp
+. A feasible point x̄ ∈ S is called an ε−Geoffrion proper efficient solution if there

is no x ∈ S such that fi(x) ≤ fi(x̄) − εi, 1 ≤ i ≤ p and there exists a real positive number M > 0 such that for each i
we have

fi(x̄) − fi(x) − εi

f j(x) − f j(x) + ε j
5M,
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for some j ∈ {1, 2, ..., p} such that f j(x̄) − ε j < f j(x) whenever x ∈ S and fi(x) < fi(x̄) − εi. We denoted this by
Ge( f ,S,Rp

+, ε).
Definition 3.6[20]. Let Z be a normed linear space and ε ∈ K. A feasible point x̄ ∈ S is called an ε−Super proper

efficient solution of (MOP) if there exist λ ∈ (0, 1) and M > 0 such that

clcone( f (S) + λε − f (x̄)) ∩ (B − K) ⊂M · B,

where B is the closed unit ball in Z. We denote this by x̄ ∈ Se( f ,S,K, ε).
Definition 3.7[20]. Let Z be a normed linear space, K ⊂ Y be a proper pointed convex cone and ε ∈ K. A feasible

point x̄ ∈ S is called an ε−Henig global efficient proper efficient solution of (MOP) if there exists a proper convex cone
K′ with K\{0} ⊂ corK′ such that

( f (S) − f (x̄) + ε) ∩ (−K′\{0}) = ∅,

where
core(A) := {y ∈ Y : ∀v ∈ Y,∃λ > 0 s.t. y + [0, λ]v ⊂ A}.

We denote this by GHe( f ,S,K, ε).
Let Y = f (S), C = ε + R

p
+, ε ∈ K = R

p
+, ε > 0 and f (S) + C(ε) is a convex set. From Theorem 4.1 in

[20], we know that Ge( f ,S,Rp
+, ε) = Be( f ,S,Rp

+, ε), combine with the definition of Ben( f ,S,C, ε), it is obvious
that Be( f ,S,Rp

+, εε) ⊂ Ben( f ,S, ε + R
p
+, ε). According to the Remark 3.2 and the implication relation among

approximate proper efficiency in [20], we can get the relationship between ε−Proximal efficiency with more
approximate proper efficiency in this special case.

Se( f ,S,Rp
+,
ε
λ
ε) ⊂ GHe( f ,S,Rp

+, εε) ⊂ Ge( f ,S,Rp
+, εε)

= Be( f ,S,Rp
+, εε) ⊂ Ben( f ,S, ε +R

p
+, ε) = Pr( f ,S, ε +R

p
+, ε).

Example 3.4 also show that ε−Borwein efficiency may not be ε−Proximal efficiency without the convexity
assumption of Y + C(ε). But we can establish the following cone characterization for ε−Borwein efficiency
under the convexity assumption of C.

Theorem 3.4. Let C be a convex set in Rp. If ȳ ∈ Bor[Y,C(ε)], then Nc(Y + C(ε), ȳ) ∩ −C(0)s+ , ∅ .

Proof. If ȳ ∈ Bor[Y,C(ε)], then T(Y+C(ε), ȳ)∩−C(0) ⊆ {0}. Using the relation of (2.1), we have Tc(Y+C(ε), ȳ)∩
−C(0) ⊆ {0}. Lemma 2.2 (ii) implies Tc(Y + C(ε), ȳ) ∩ −C(0)+

⊇ ({0})+. And from the definition of Clarke
normal cone, we have −Nc(Y + C(ε), ȳ) + (−C(0))+

⊇ Rp, that is

−Nc(Y + C(ε), ȳ) − C(0)+ = Rp. (3.3)

Let x ∈ C(0)s+
⊆ Rp, then (3.3) implies that there exist h ∈ Nc(Y + C(ε), ȳ) and c ∈ C(0)+ such that −h − c = x.

From Lemma 2.2, we have that −h = x + c ∈ C(0)s+ + (C(0))+
⊆ C(0)s+. Hence, h ∈ Nc(Y + C(ε), ȳ) ∩ −C(0)s+.

Which implies Nc(Y + C(ε), ȳ) ∩ −C(0)s+ , ∅.

The following example show that the reverse of Theorem 3.4 may not be hold.
Example 3.5. Consider the set C and Y in Example 3.4. Taking ȳ = (0, 1), ε = 1

2 , then Tc(Y + C(ε), ȳ) = R2
+.

And we have that Nc(Y + C(ε), ȳ) ∩ −C(0)s+ , ∅. Since T(Y + C(ε), ȳ) ∩ −C(0) * {0}, ȳ < Bor[Y,C(ε)].
If we assume Y + C(ε) is tangentially regular, then the reverse of Theorem 3.4 can be established.
Theorem 3.5. Let C be a convex set inRp, if Y+C(ε) is tangentially regular at ȳ and Nc(Y+C(ε), ȳ)∩−C(0)s+ , ∅,

then ȳ ∈ Bor[Y,C(ε)].

Proof. If Y + C(ε) is tangentially regular at ȳ, then (T(Y + C(ε), ȳ))+ = (Tc(Y + C(ε), ȳ))+, that is

N(Y + C(ε), ȳ) = Nc(Y + C(ε), ȳ).

By the given assumption, we have N(Y+C(ε), ȳ)∩−C(0)s+ , ∅. Let h ∈ N(Y+C(ε), ȳ)∩−C(0)s+, and suppose
that ȳ < Bor[Y,C(ε)], then there exists d , 0, such that d ∈ T(Y + C(ε), ȳ)∩−C(0). Since h ∈ N(Y + C(ε), ȳ) and
d ∈ T(Y + C(ε), ȳ), we have that 〈h, d〉 6 0.

On the other hand, since d ∈ −C(0)\{0} and h ∈ −C(0)s+, we have that 〈h, d〉 > 0. Which leads to a
contradiction. Hence, ȳ ∈ Bor[Y,C(ε)].
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It is worthy to emphasize that the above theorem may not necessarily hold for ε−Benson properly
efficient point, even if Y + C(ε) is tangentially regular. See the following example.

Example 3.6. Consider the set C and Y in Example 3.4. It was observed that ȳ = (0, 1
2 )T < Ben[Y,C(ε)].

Also Y is tangentially regular at ȳ as T(Y + C(ε), ȳ) = Tc(Y + C(ε), ȳ) = {(y1, y2)T
|y2 > −y1, y1 > 0}. Since

N(Y + C(ε), ȳ) = {(y1, y2)T
|y1 6 y2 6 0, y1 6 0}, we have that Nc(Y + C(ε), ȳ) ∩ −C(0)s+ , ∅.

4. Linear Scalarization of Approximate Proper Efficiency

In this section, we study the linear scalar characterization for ε−Proximal properly efficient points. Let
C be a closed pointed co-radiant set in Rp, Y be a closed set in Rp and

Sµ[Y, ε] = {ȳ ∈ Y|〈µ, y〉 + ε > 〈µ, ȳ〉,∀y ∈ Y}.

Definition 4.1[21] A set C inRp is said to be locally starshaped at c̄ ∈ C if for all c ∈ C, there exists α(c, c̄) where
0 < α(c, c̄) 6 1 such that

λc̄ + (1 − λ)c ∈ C, ∀ 0 < λ < α(c, c̄).

Theorem 4.1. Let ε ≥ 0, ȳ ∈ Y∩Y+C(ε). For anyµ ∈ C(0)s+
∩{µ ∈ Rp

|〈µ, d〉 > 1,∀d ∈ C}, if ȳ ∈ Sµ[Y+C(ε), ε],
then ȳ ∈ Pr[Y,C(ε)].

Proof. If ȳ ∈ Sµ[Y + C(ε), ε], it follows from the definition, we have that

〈µ, y〉 + ε > 〈µ, ȳ〉,∀y ∈ Y ∩ Y + C(ε). (4.1)

And for all q ∈ C(ε), we have that q = εd, d ∈ C. Therefore,

〈−µ, q〉 = 〈−µ, εd〉 = ε〈−µ, d〉 < −ε. (4.2)

Combining with (4.1) and (4.2), we have

〈−µ, y + q − ȳ〉 6 0.

Hence, there exists δ > 0, such that

〈−µ, y + q − ȳ〉 6 0 6 δ ‖ y + q − ȳ ‖2 .

This implies −µ ∈ Np(Y + C(ε), ȳ). Since µ ∈ C(0)s+, ȳ ∈ Pr[Y,C(ε)].

Remark 4.1. If ε = 0, Theorem 4.1 cannot be reduced to Theorem 4.1 in [11], since the condition is
different. And the following example which extracted in [14] can illustrate the result of Theorem 4.1.

Example 4.1. Let C = {(y1, y2)T
|y1 + y2 > 1, y1 > 0, y2 > 0} and Y = {(y1, y2)T

|y2 > −y1, 0 6 y1 6
2} ∪ {(y1, y2)T

|y2 > 2,−3 6 y1 6 0}. Taking ε = 1
2 , µ = (2, 1)T, then for any d = (d1, d2)T

∈ C, we have
that 〈µ, d〉 = 2d1 + d2 > 1. Which satisfies the condition in Theorem 4.1. According to the definition of
Sµ[Y + C(ε), ε], we know that Sµ[Y + C(ε), ε] = {(ȳ1, ȳ2)T

|ȳ1 ∈ [−3, 2.5], ȳ2 = −ȳ1 − 0.5}. It is clear that
Sµ[Y + C(ε), ε] ⊆ Pr[Y,C(ε)]. (see Figure 4).

In Remark 4.1, we sate that the condition of Theorem 4.1 is different from the exact case. We use Example
4.1 to state the necessity of the assumption in Theorem 4.1. In fact, if we take ε = 1

2 , µ = ( 1
2 ,

1
2 )T, then there

exists d = ( 1
2 , 1)T

∈ C such that 〈µ, d〉 ≤ 1. Which implies it does not satisfy the condition in Theorem 4.1.
Furthermore, we have that Sµ[Y + C(ε), ε] = {(ȳ1, ȳ2)T

|ȳ1 ∈ [−3, 2.5], ȳ2 = −ȳ1 − 0.5} ∪ {(ȳ1, ȳ2)T
| − 2.5 ≤ ȳ1 ≤

−
7
4 , ȳ2 = 2}. It is obvious that ȳ = (−2, 2)T < Pr[Y,C(ε)].
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Figure 4: The image spaces of Example 4.1

Theorem 4.2. Let d(0,C) 6 δ. If ȳ ∈ Pr[Y,C(ε)], and Y+C(ε) is locally starshaped at ȳ, then ȳ ∈ Sµ[Y+C(ε), εδ].

Proof. Let ȳ ∈ Pr[Y,C(ε)], then there exists h ∈ −C(0)s+ such that h ∈ Np(Y + C(ε), ȳ). By Lemma 2.1, there
exists δ1 > 0 such that

〈h, ŷ − ȳ〉 6 δ1||ŷ − ȳ||2,∀ ŷ ∈ Y + C(ε). (4.3)

Since Y + C(ε) is locally starshaped at ȳ, for any ŷ ∈ Y + C(ε) there exists α(ŷ, ȳ), 0 < α 6 1 such that

ȳ + λ(ŷ − ȳ) ∈ Y + C(ε),∀ 0 < λ < α(ŷ, ȳ).

Which combining with (4.3), we have

〈h, λ(ŷ − ȳ)〉 6 δ1λ
2
||ŷ − ȳ||2,

that is

〈h, ŷ − ȳ〉 6 δ1λ||ŷ − ȳ||2.

Taking λ→ 0 in the above inequality, we have

〈h, ŷ − ȳ〉 6 0,∀ŷ ∈ Y + C(ε).

Especially, taking µ = h
‖h‖ , for any given ŷ = y + q, y ∈ Y, q ∈ C(ε),

〈µ, y + q − ȳ〉 6 0.

Since q ∈ C(ε), there exists d ∈ C such that q = εd. And the above inequality implies

〈µ, y − ȳ〉 6 〈−µ, q〉 = ε〈−µ, d〉 6 ε‖ − µ‖‖d‖.

Since C is a closed set, there exists d1 ∈ C such that ‖d1‖ = d(0,C). If we take q = εd1, then from the
assumption d(0,C) 6 δ, the above inequality implies that

〈−µ, ȳ〉 6 〈−µ, y〉 + εδ.

Since −µ ∈ C(0)s+, ȳ ∈ Sµ[Y + C(ε), εδ].

The following example illustrate that the above theorem does not hold in the absence of local star-
shapedness.

Example 4.2. Considering the set C and Y in Example 4.1. It is easy to check that d(0,C) 6 1 and
Y + C(ε) is not locally starshaped at ȳ = (−3, 2.5)T, since (1 − λ)ȳ + λy < Y + C(ε) for any 0 < λ < 1 and
y = (0, 1

2 )T. Np(Y + C(ε), ȳ)∩−C(0)s+ , ∅ implies that ȳ ∈ Pr[Y,C(ε)]. But ȳ < Sµ[Y + C(ε), εδ]. In fact, taking
δ = 1, ε = 1

2 , there exists y = (−3, 2)T, µ2 = 2, such that −3µ1 + 2µ2 + 1
2 < −3µ1 + 2.5µ2, which means that

ȳ < Sµ[Y + C(ε), εδ].
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5. Conclusion

The co-radiant set is a useful tool to characterize the approximate efficiency in multiobjective optimiza-
tion problems. In this paper, we consider a new kind of approximate proper efficiency by using the proximal
normal cone and co-radiant set. And the relation of the approximate efficiency and the approximate proper
efficiency are discussed. At last, we also give the properties and linear scalarization results for this approx-
imate proper efficiency. For the existing research in this paper, we consider that cone as a powerful tool for
characterizing optimal conditions, we can further study the optimality conditions of ε−Proximal proper
efficient solutions by using the proximal subdifferential and proximal normal cone.
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