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Abstract. The largest class of hyperstructures is the one which satisfies the weak properties and they are
called Hv-structures. In this paper, the concept of Hv-S-act is introduced and some of their properties are
investigated. The present paper establishes a possible connection between S-act, GHS-act and Hv-S-act. It
is shown that the quotient of GHS-act with any equivalence relation is Hv-S-act. The main tool to study all
hyperstructures is the fundamental relations. The study of fundamental relations in Hv-S-act reveals some
interesting results. Specifically, these relations connect weak hyperactions with the corresponding classical
actions.

1. Introduction

Algebraic hyperstructures are a natural extension of classical algebraic structures. Theory of hyper-
structure is initiated in 1934 by the French Mathematician Marty [11]. In a classical algebraic structure,
the composition of two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. This particular character of hyperstructure attracted mathematicians and researchers
towards this direction. During last decades hyperstructures seem to have a variety of applications not
only in other branches of mathematics but also in many other sciences including the social sciences. These
applications range from biomathematics and hardonic physics to automata theory. Hyperstructure can
now be widely applied in industry and production. A recent book contains a wealth of applications [2].
Via this book, Corsini and Leoreanu presented some of numerous applications of the algebraic hyperstruc-
tures. Different hyperstructures are extensively studied from the theoretical perspective such as in fuzzy
set theory, rough set theory, optimization theory, cryptography, codes, analysis of computer programs, au-
tomata, formal language theory, combinatorics, artificial intelligence, probability, graphs and hypergraphs,
geometry, lattices and binary relations, see [5], [6], [7], [8], [9] [10] and [21].

Hv-structures were introduced by Vougiouklis in Fourth AHA Congress. Vougiouklis defined the notion
of an Hv-group [18]. Hv-structures satisfy the weak axioms, where the non-empty intersection replaces the
equality. Since then many papers concerning various Hv-structures have appeared in literature, see [2].
Vougiouklis defined the concept of Hv-vector space which is a generalization of the concept of vector
space in classical theory [18]. Davvaz introduced Hv-module of fractions of a hypermodule which is a
generalization of the concept of module of fractions [3]. Davvaz surveyed the theory of Hv-structures [4].
The reader will find some principal notions and theorems about Hv-structures in book ”Hyperstructures
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and their representations” [20]. Applications of Hv-structures in other sciences can be seen in [6], [7] and
[20].

One of the very competent conception in many branches of mathematics as well as in computer science
is the action of a semigroup or a monoid on a non-empty set. A representation of a semigroup S by
transformation of a set defines an S-act. Sen et al. [13] and Shahbaz [14] have introduced the concept of
hyperaction. Their approach of defining hyperaction lacks perfection. Shabir et al., modified this conception
by introducing the notion of GHS-act [14].

In this paper we present the idea of weak hyperaction. This paper is arranged in the following manner.
Section 2 is a collection of definitions of basic terms and theorems concerning hyperstructure and semigroup
action. In Section 3, we introduce the action of Hv-monoid on a non-empty set and call it Hv-S-act.
Furthermore, some basic properties of Hv-S-acts are investigated. Section 3 is devoted to the study of
congruences and quotients of hyperactions. It is shown that the quotient of a GHS-act with an equivalence
relation is Hv-S-act. The main tools in the theory of hyperstructures are the fundamental relations. In
section 5, we study the fundamental relations in Hv-S-act which relates weak hyperactions with classical
actions. In the end, some concluding remarks are given.

2. Preliminaries

In this section some basic concepts pertaining to hyperstructure and semigroup acts are given, which
will be required in later sections.

Definition 1. [2] Let S be a non-empty set and P∗ (S) be the set of all non-empty subsets of S. A n-hyperoperation on
S is a map f : Sn

−→ P∗ (S). The number n is called the arity of f . A set S, endowed with a family Γ of hyperoperations
is called a hyperstructure or a multivalued algebra. If Γ is singleton that is Γ =

{
f
}
, where arity of f is 2, then the

hyperstructure is called a hypergroupoid.

Definition 2. [2] If ◦ : S×S −→ P∗ (S) is a hyperoperation or join operation, then the image of the pair (s, t) of S×S
is denoted by s ◦ t and is called the hyperproduct of s and t.

If S1 and S2 are non-empty subsets of (S, ◦), then S1 ◦ S2 = ∪
s∈S1
s′∈S2

s ◦ s′.

In the pursuit, we state some basic notions related to hypergroupoids.

Definition 3. [2] A hypergroupoid (S, ◦) is called a semihypergroup if for all s1, s2, s3 ∈ S, (s1 ◦ s2)◦ s3 = s1 ◦ (s2 ◦ s3).

Definition 4. [16] A hypergroupoid (S, ◦) is called an Hv-semigroup if

(s1 ◦ s2) ◦ s3 ∩ s1 ◦ (s2 ◦ s3) , ∅ for all s1, s2, s3 ∈ S.

An Hv-semigroup is called an Hv-group if

s ◦ S = S ◦ s = S for all s ∈ S.

Definition 5. [16] An element e in a semihypergroup (Hv-semigroup) (S, ◦) is called an identity element if s ∈
e ◦ s = s ◦ e (s ∈ e ◦ s ∩ s ◦ e) for all s ∈ S. A hypermonoid (Hv- monoid) is the semihypergroup (Hv-semigroup) with
an identity element.

Definition 6. [16] An element 0 in a semihypergroup (Hv-semigroup) (S, ◦) is called a zero element if 0 ∈ 0 ◦ s =
s ◦ 0 (0 ∈ s ◦ 0 ∩ 0 ◦ s) for all s ∈ S.

Definition 7. [2] A semihypergroup (Hv-semigroup) (S, ◦) is commutative if s ◦ t = t ◦ s (s ◦ t ∩ t ◦ s , ∅) for all
s, t ∈ S.
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Definition 8. [9] A non-empty subset T of a semihypergroup (S, ◦) is called a subsemihypergroup of (S, ◦) if T◦T ⊆ T.

The idea of representing an object by some other object which is better known at least in some respects
is quite familiar in mathematics. Representation of semigroups (monoids) by transformations of sets give
rise to the notion of action of semigroups (monoids).

Definition 9. [11] Let (S, ·) be a monoid and A be a non-empty set. A right action of S on A is a function
ξ : A × S −→ A

(
usually denoted by ξ (a, s) 7−→ as

)
such that

(i) a (st) = (as) t,

(ii) ae = a, for all a ∈ A and s, t ∈ S.

Definition 10. [15] Let (S, ◦) be a hypermonoid with identity element e and A be a non-empty set. A generalized
hyperaction of S on A is a function ∗ defined as

∗ : A × S −→ P∗(A)
(a, s) 7−→ a ∗ s ∈ P∗(A)

where P∗(A) is the family of all non-empty subsets of A. A non-empty set A endowed with hyperaction ∗ is called
right GHS-act if for all a ∈ A and s, t ∈ S

(i) a ∗ (s ◦ t) = (a ∗ s) ∗ t,

(ii) a ∈ a ∗ e.

Example 1. [15] Let A be a non-empty set and T (A) be the set of all transformations from A to A. Define
◦ : T (A) × T (A) −→ P∗(T (A)) by f ◦ 1 =

{
f , 1, f1

}
for all f , 1 ∈ T (A), where f1 represents the composition of two

maps. Then (T (A), ◦) is a hypermonoid. Now define ∗ : T (A) × A −→ P∗(A) by f ∗ a =
{
a, f (a)

}
. Then T (A)A is a

left GHT (A)-act. Indeed, for f , 1 ∈ T (A) and a ∈ A, 1 ∗
(

f ∗ a
)

=
{
a, f (a) , 1 (a) , 1

(
f (a)

)}
=

(
1 ◦ f

)
∗ a.

3. On Weak Hyperaction

In this section, we define the hyperaction of an Hv-monoid on a non-empty set and call it Hv-S-act. The
notion of an Hv-S-act is a generalization of GHS-act in hyperstructure as well as S-act notion in classical
theory.

Definition 11. Let (S, ◦) be an Hv-monoid and A be a non-empty set. A weak hyperaction of S on A is a function

∗H : A × S −→ P∗(A)
(a, s) 7−→ a ∗H s ∈ P∗(A)

where P∗(A) is the family of all non-empty subsets of A. A non-empty set A endowed with weak hyperaction ∗H is
called right Hv-S-act or right Hv-act over S if for all a ∈ A and s, t ∈ S

(i) a ∗H (s ◦ t) ∩ (a ∗H s) ∗H t , ∅,

(ii) a ∈ a ∗H e.

We write (AS, ∗H ) to indicate that A is a right Hv-S-act. Analogously, one can define a left Hv-S-act,
written as (SA, ∗H ).

In order to understand the concept, consider the following examples.
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Example 2. Consider the Hv-monoid (S, ◦), where S =
{
e, s, t, q

}
and ◦ is defined in Table 1.

◦ e s t q
e e s t q
s s s {s, t} {s, t}
t t q q q
q q {s, t} {s, t} {s, t}

Table 1

Let A = {a, b, c, d} and weak hyperaction ∗H of S on A is presented in Table 2.

∗H e s t q
a a {a, b} {a, b} {a, b}
b b b b b
c c d d d
d d {c, d} {c, d} {c, d}

Table 2

Then (AS, ∗H ) is a right Hv-S-act over Hv-monoid (S, ◦).

Example 3. Consider the classical differential ring of real valued functions C1(R) with the usual differentiation. For
any f , 1 ∈ C1(R), define a hyperoperation on the ring C1(R) by

f ◦ 1 = { f , 1, f1}

where f1 is defined as
(

f1
)

(x) = f (x) 1 (x) for all x ∈ R. Then for f , 1, h ∈ C1(R)(
f ◦ 1

)
◦ h = { f , 1, h, f1, f h, 1h,

(
f1

)
h} = f ◦

(
1 ◦ h

)
and also I( identity function)∈ C1(R) and I ∈ I ◦ f = f ◦ I. Therefore,

(
C1(R), ◦

)
is a hypermonoid. Define

∗H : R × C1(R) −→ P∗(R) (described as (a, f ) 7−→ a ∗H f ) by

a ∗H f = {a, f (a), f ′(a)}.

Here a ∗H I = {a, 1}, for all a ∈ R. Also(
a ∗H f

)
∗H 1 = {a, f (a), f ′(a)} ∗H 1

= {a, f (a), 1(a), f ′(a), 1′(a), 1( f (a)), 1( f ′(a)), 1′( f (a)), 1′( f ′(a))}.
a ∗H

(
f ◦ 1

)
= a ∗H { f , 1, f1}

=
{
a, f (a), 1(a),

(
f1

)
(a), f ′(a), 1′(a),

(
f1

)′ (a)
}
.

As,
(
a ∗H f

)
∗H 1 ∩ a ∗H

(
f ◦ 1

)
, ∅, therefore R is an Hv-C1(R)-act.

Remark 1. As every hypermonoid is an Hv-monoid, we can compare generalized hyperaction and weak hyperaction
of a hypermonid on a non-empty set. For a hypermonoid (S, ◦), every right GHS-act is an Hv-S-act but the converse
is not true in general. Consider the hypermonoid (S, ◦), where S =

{
e, s, t, q

}
and ◦ is defined in Table 3.

◦ e s t q
e e s t q
s s s {s, t} s
t {s, t} s t s
q q s s q

Table 3
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Let A = {a, b} and hyperaction ∗H of S on A is presented in Table 4.

∗H e s t q
a a a b A
b A a A A

Table 4

Then (AS, ∗H ) is a right Hv-S-act over hypermonoid (S, ◦) which is not a GHS-act because a ∗H (s ◦ t) , (a ∗H s) ∗H t.

All properties of Hv-S-acts are also true for subsets. Therefore, we have the following result.

Proposition 1. Let A be a non-empty set, (S, ◦) be an Hv-monoid and ∗H be a weak hyperaction of S on A. Then
(AS, ∗H ) is an Hv-S-act if and only if for all A′ ∈ P∗(A) and S1,S2 ∈ P

∗(S) the following conditions hold:

(i) A′ ∗H (S1 ◦ S2) ∩ (A′ ∗H S1) ∗H S2 , ∅,

(ii) A′ ⊆ A′ ∗H e.

Proof. Suppose (AS, ∗H ) is an Hv-S-act. Then for A′ ∈ P∗(A) and S1,S2 ∈ P
∗(S), we have

A′ ∗H (S1 ◦ S2) = ∪
a∈A′
s1 ,s2∈S

a ∗H (s1 ◦ s2)

(A′ ∗H S1) ∗H S2 = ∪
a∈A′
s1 ,s2∈S

(a ∗H s1) ∗H s2.

As (AS, ∗H ) is an Hv-S-act, therefore A′ ∗H (S1 ◦ S2) ∩ (A′ ∗H S1) ∗H S2 , ∅. Also A′ ⊆ A′ ∗H e for A′ ∈ P∗(A).
Converse is obvious.

Remark 2. If (S, ◦) is a commutative Hv-monoid, then every left Hv-S-act can be considered as a right Hv-S-act.
Indeed, if (SA, ∗H ) is a left Hv-S-act, we may define a right multiplication by elements of S as:

a > s = s ∗H a for a ∈ A, s ∈ S.

Then a ∈ a > e = e ∗H a for all a ∈ A and (a > s1) > s2 ∩ a > (s1 ◦ s2) , ∅ for all s1, s2 ∈ S and a ∈ A.

Proposition 2. Let (AS, ∗H ) and (BS, ∗′
H

) be two right Hv-acts over an Hv-monoid (S, ◦). Then A× B can induce an
Hv-S-act.

Proof. Define the weak hyperaction ~ of S on Cartesian product A × B by

(a, b) ~ s = (a ∗H s) ×
(
b ∗′
H

s
)

for (a, b) ∈ A × B and s ∈ S.

Then for all (a, b) ∈ A × B and s, t ∈ S, we have

((a, b) ~ s) ~ t = ∪
(a′,b′)∈(a,b)~s

(a′, b′) ~ t

= ∪
a′∈a∗H s
b′∈b∗

H
s

(a′ ∗H t) ×
(
b′ ∗′
H

t
)

= ((a ∗H s) ∗H t) ×
((

b ∗′
H

s
)
∗H t

)
.

(a, b) ~ (s ◦ t) = (a ∗H (s ◦ t)) ×
(
b ∗′
H

(s ◦ t)
)
.

As (a ∗H s) ∗H t ∩ a ∗H (s ◦ t) , ∅ and
(
b ∗′
H

s
)
∗H t ∩ b ∗H (s ◦ t) , ∅, we have ((a, b) ~ s) ~ t ∩ (a, b) ~ (s ◦ t) , ∅.

Also a ∈ a ∗H e and b ∈ b ∗′
H

e imply that (a, b) ∈ (a ∗H e) × (b ∗H e) = (a, b) ~ e. Hence ((A × B)S ,~) is an
Hv-S-act .



S. Shaheen, M. Shabir / Filomat 33:18 (2019), 5777–5789 5782

Sen et al. (2011) defined the Cartesian product of two hypermonoids. In a similar way, we can define
Cartesian product of two Hv-monoids.

Let (S, ◦) and (T,◦′) be two Hv-monoids with identities e and e′, respectively. Then their Cartesian
product S × T can induce an Hv-monoid with respect to the hyperoperation ⊗ defined as:

(s1, t1) ⊗ (s2, t2) = (s1 ◦ s2) × (t1 ◦
′ t2) = {(s, t)|s ∈ s1 ◦ s2, t ∈ t1 ◦

′ t2}.

Identity element of S × T is (e, e′). The Hv-monoid S × T is called the direct product of S and T, written as
(S × T,⊗) .

Proposition 3. Let (AS, ∗H ) and
(
BT, ∗′

H

)
be an Hv-S-act and an Hv-T-act, respectively. Then A × B can induce an

Hv-(S × T)-act.

Proof. Define ~ : (A × B) × (S × T) −→ P∗ (A × B) by

(a, b) ~ (s, t) = (a ∗H s) ×
(
b ∗′
H

t
)

for all (a, b) ∈ (A × B) and (s, t) ∈ S × T.

Then for all (a, b) ∈ A × B and (s1, t1) , (s2, t2) ∈ S × T, we have

((a, b) ~ (s1, t1)) ~ (s2, t2) = ∪
a′∈a∗H s1
b′∈b∗′

H
t1

(a′, b′) ~ (s2, t2)

= ∪
a′∈a∗H s1
b′∈b∗′

H
t1

(a′ ∗H s2) ×
(
b′ ∗′
H

t2

)
= ((a ∗H s1) ∗H s2) ×

((
b ∗′
H

t1

)
∗
′

H
t2

)
.

(a, b) ~ ((s1, t1) ⊗ (s2, t2)) = (a, b) ~ ((s1 ◦ s2) × (s2 ◦
′ t2))

= (a ∗H (s1 ◦ s2)) ×
(
b ∗′
H

(t1 ◦
′ t2)

)
As (AS, ∗H ) is an Hv-S-act and

(
BT, ∗′

H

)
is an Hv-T-act, we have (((a, b) ~ (s1, t1)) ~ (s2, t2))∩(a, b)~((s1, t1) ⊗ (s2, t2)) ,

∅. Also, a ∈ a ∗H e and b ∈ b ∗′
H

e′ imply that (a, b) ∈ (a ∗H e) ×
(
b ∗′
H

e′
)

= (a, b) ~ (e, e′). Hence, A × B is an
Hv-(S × T)-act.

Definition 12. Let (XS, ∗) be an Hv-S-act. An element θ of X is called an absorbing element of X if θ ∈ θ ∗ s for all
s ∈ S.

Note that an Hv-S-act may have several absorbing elements, it may also have no absorbing element. In
order to understand the concept, consider the following example in which every element is an absorbing
element.

Example 4. Let (S, ◦) be an Hv-monoid, where S = {e, p, q, s, t, v} and ◦ is defined in Table .

◦ e p q s t v
e e {e, p} {e, q} {e, s} {e, t} {e, v}
p {e, p} p {s, t} t p {s, v}
q {e, q} {s, v} q {p, t} {e, t} v
s {e, s} s {t, v} s t v
t {e, t} {q, s} t {p, q} t v
v {e, v} {s, t} {s, t} {s, t} {s, t} v

Table 5
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Let X = {x, y, z} and the weak hyperaction ∗ of S on X is exhibited in Table .

∗ e p q s t v
x x {x, y} {x, z} x

{
x, y, z

}
{x, z}

y y {x, y} {x, y} {x, y} {x, y} {x, z}
z z

{
x, y, z

}
z z z

{
x, y, z

}
Table 6

Then (xs, ∗) is an Hv-S-act and X ∈ X ∗ s for all x ∈ x and s ∈ S.

Proposition 4. Let (AS, ∗H ) and (BS, ∗′
H

) be two Hv-S-acts. If θ and θ′ are absorbing elements of A and B,
respectively, then (θ, θ′) is an absorbing element of A × B, which is an Hv-S-act with weak hyperaction ~.

Proof. As θ and θ′ are absorbing elements of A and B, we have θ ∈ θ ∗H s and θ′ ∈ θ′ ∗H s for all s ∈ S
which implies (θ, θ′) ∈ (θ ∗H s) × (θ′ ∗H s) = (θ, θ′) ~ s for all s ∈ S. Hence (θ, θ′) is an absorbing element of
A × B.

Proposition 5. Let (AS, ∗H ) and
(
BT, ∗′

H

)
be an Hv-S-act and an Hv-T-act, ∗H . If θ and θ′ are absorbing elements of

A and B, respectively, then (θ, θ′) is an absorbing element of A×B, which is an Hv-(S × T)-act with weak hyperaction
~.

Proof. Directly follows from Proposition 3.

Definition 13. Let (AS, ∗H ) be a right Hv-S-act. A subset A′ , ∅ of A is called an Hv-S-subact of A if A′ ∗H S ⊆ A′,
that is, a′ ∗H s ⊆ A′ for all a′ ∈ A′ and s ∈ S.

Proposition 6. Let (AS, ∗H ) be an Hv-S-act and A1 and A2 be any two Hv-S-subacts of A. Then A1 ∩ A2 is also an
Hv-S-subact of A if A1 ∩ A2 is non-empty.

Proof. The proof is straightforward.

By the definition of an Hv-S-act and the product of Hv-S-acts we have the next proposition.

Proposition 7. Let (AS, ∗H ) and (BT, ∗′
H

) be two Hv-S-acts and A′ and B′ be Hv-S-subacts of A and B, respectively.
Then A′ × B′ is an Hv-S-subact of A × B, which is an Hv-S-act with weak hyperaction ~.

Definition 14. Let (XS, ∗) and (YS, ∗′) be two Hv-S -acts. A mapping f : X→ Y is called
(i) weak S-homomorphism, if f (X ∗ s) ∩

(
f (X) ∗′ s

)
, ∅ for all x ∈ X, s ∈ S.

(ii) inclusion S-homomorphism, if f (X ∗ s) ⊆
(

f (x) ∗′ s
)

for all x ∈ X, s ∈ S.
(iii) strong S-homomorphism, if f (x ∗ s) = f (X) ∗′

H
s for all x ∈ X, s ∈ S.

Obviously, every s-S-homomorphism is i-S-homomorphism and every i-S-homomorphism is w-S-
homomorphism. But the converse is not true in general. An w-S-homomorphism (resp. i-S-homomorphism,
s-S-homomorphism) f : A→ B is called w-S-isomorphism (resp. i-S-isomorphism, s-S-isomorphism) if f is
bijective and in this situation it is denoted by AS ∼ BS (resp. AS ' BS, AS=̃BS).

Proposition 8. Let f : (AS, ∗H ) −→ (BS, ∗′
H

) be an i-S-homomorphism of Hv-S-acts. If θ is an absorbing element of
AS, then f (θ) is an absorbing element of BS.

Proof. As θ is an absorbing element, we have θ ∈ θ ∗H s for all s ∈ S. Then

f (θ) ∈ f (θ ∗H s) ⊆ f (θ) ∗′
H

s for all s ∈ S.

Therefore, f (θ) is an absorbing element of (BS, ∗′
H

).
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Proposition 9. Let f : (AS, ∗H ) −→
(
BS, ∗′

H

)
be an s-S-homomorphism of Hv-S-acts. Then the followings are

satisfied.

(i) If A′ is an Hv-S-subact of A, then f (A′) is an Hv-S-subact of B.

(ii) If f is surjective and B′ is an Hv-S-subact of B, then f−1 (B′) is an Hv-S-subact of A.

Definition 15. Let (XS, ∗) be a right Hv-S-act. An element s ∈ S acts on X weakly injective if

x ∗ s = x′ ∗ s =⇒ x = x′ for all x, x′ ∈ X.

And s ∈ S acts on x strongly injective if

x ∗ s ∩ x′ ∗ s , ∅ =⇒ x = x′ for all x, x′ ∈ X.

Remark 3. Clearly, an element which acts strongly injective also acts weakly injective but the converse is not true
in general. Let (S, ◦) be an Hv-monoid, where S =

{
e, s, t, q

}
and ◦ is defined in Table .

◦ e s t q
e e {a, t} t {e, q}
s {s, t} {s, t} {s, t} {s, t}
t t t t t
q {e, q} {s, q} {e, q} q

Table 7

Let x =
{
x1, y1, x2, y2, x3, y3

}
and weak hyperaction ∗ of S on X is defined in Table .

∗H e s t q
x1 x1 y1 y1 {x1, y1}

y1 y1 y1 y1 y1

x2 {x2, x3} {y2, y3} {y2, y3} {x2, x3, y3}

y2 y2 y2 y2 y2

x3 {y1, x3} {y1, x3} {y1, x3} {y1, x3}

y3 y3 y3 y3 y3

Txble 8

Then (xS, ∗) is an Hv-S-act. The elements e and q of S acts on x weakly injective but not strongly injective because(
y1 ∗ e

)
∩ (x3 ∗ e) , ∅ and

(
x1 ∗ q

)
∩

(
y2 ∗ q

)
, ∅.

Proposition 10. Let (AS, ∗H ) and (BS, ∗′
H

) be two Hv-S-acts. If s ∈ S acts strongly injective on A and B, then s also
acts strongly injective on A × B, which is an Hv-S-act with weak hyperaction ~.

Proof. If (a, b) ~ s ∩ (a′, b′) ~ s , ∅ for all (a, b), (a′, b′) ∈ A × B, then (a ∗H s) × (b ∗′
H

s) ∩ (a′ ∗H s) × (b′ ∗′
H

s) , ∅
which implies a ∗H s ∩ a′ ∗H s , ∅ and b ∗′

H
s ∩ b′ ∗′

H
s , ∅. As s ∈ S acts strongly injective on A and B, we

have a = a′ and b = b′. Therefore, s acts strongly injective on A × B.

Proposition 11. Let (AS, ∗H ) be an Hv-S-act and
(
BT, ∗′

H

)
be an Hv-T-act. If s and t acts strongly injective on A and

B, respectively, then (s, t) acts strongly injective on A× B, which is an Hv-S× T-act A× B with weak hyperaction ~.

Proof. The proof is straightforward.
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4. Relationship Between Hv-S-Act and GHS-Act

This section is devoted to the study of congruence and quotients of hyperaction which relates Hv-S-
act and GHS-act. Throughout this section, unless otherwise stated, (S, ◦) is a hypermonoid with identity
element e.

Definition 16. [21] An equivalence relation σ on a right GHS-act (AS, ∗) is called a congruence relation if for every
a, b ∈ A and s ∈ S

aσb =⇒ [a ∗ s]σ = [b ∗ s]σ

where, for B ⊆ A, [B]σ = {[b]σ : b ∈ B} and [b]σ is the equivalence class of b with respect to σ.

Note that for every A1,A2 ⊆ A, [A1]σ = [A2]σ if and only if for every a1 ∈ A1 there exists a2 ∈ A2 such that
a1σa2 and for every a2 ∈ A2 there exists a1 ∈ A1 such that a1σa2.

The set of all equivalence relations on AS is denoted by Eq(AS) and the set of all congruences on AS is
denoted by Con(AS).

Define hyperaction � of S on A/σ = {[a]σ : a ∈ A} by

[a]σ � s = ∪
x∈[a]σ

[x ∗ s]σ for all a ∈ A and s ∈ S.

Firstly, we prove that� is well-defined. Suppose that [a]σ = [b]σ imply that aσb. Let [y]σ ∈ [a]σ�s = ∪
x∈[a]σ

[x∗s]σ.

So

[y]σ ∈ [x ∗ s]σ for some x ∈ [a]σ.

As σ is an equivalence relation, we have xσb which imply that [y]σ ∈ [b]σ � s. Similarly, [b]σ � s ⊆ [a]σ � s.
Therefore, � is well defined. Also, (A/σ,�) is an Hv-S-act. Indeed, [a ∗ s]σ ⊆ [a]σ � s for a ∈ A and s ∈ S. So

[(a ∗ s) ∗ t]σ ⊆ ([a]σ � s) � t,
[a ∗ (s ◦ t)]σ ⊆ [a]σ � (s ◦ t) for s, t ∈ S.

Thus, (([a]σ � s) � t) ∩ ([a]σ � (s ◦ t)) , ∅ and [a]σ ⊆ [a]σ � e which implies that (A/σ,�) is an Hv-S-act.
Notice if σ is a congruence on (AS, ∗), then

[a]σ � s = [a ∗ s]σ for all s ∈ S.

If σ is a congruence relation, then (A/σ,�) is a GHS-act.
The above arguments have been summarized in the following theorem.

Theorem 1. Let (AS, ∗) be a right GHS-act. Then

(i) (A/σ,�) is an Hv-S-act if σ ∈Eq(AS).

(ii) (A/σ,�) is a GHS-act if σ ∈Con(AS).

The above theorem establishes a link between GHS-act and Hv-S-act. If (AS, ∗) is a right Hv-S-act and
σ ∈Con(AS), then we have the following result.

Lemma 1. Let (AS, ∗) be a right Hv-S-act and σ ∈Con(AS). Then (A/σ,�) is an Hv-S-act.

Theorem 2. Let (XS, ∗) be a right GHS-act and σ ∈Eq(AS). Then we have the following:

(i) The natural map π : X→ X/σ given by π (x) = [x]σ for x ∈ X is an i-S-homomorphism.

(ii) The natural map π : X→ X/σ is an s-S-homomorphism if and only if σ ∈Con(XS).
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Proof. (i) For a ∈ A and s ∈ S, π (a ∗ s) = [a ∗ s]σ ⊆ ∪
x∈[a]σ

[x ∗ s]σ = [a]σ � s = π (a) � s.

(ii) For σ ∈Con(AS), a ∈ A and s ∈ S π (a ∗ s) = [a ∗ s]σ = [a]σ � s = π (a) � s. Thus π is strong
S-homomorphism.

Conversely, suppose that π is a strong s-S-homomorphism, a, b ∈ A, aσb and s ∈ S. Then [a ∗ s]σ ⊆
∪

x∈[b]σ
[x ∗ s]σ = [b]σ � s = π (b) � s = π (b ∗ s) = [b ∗ s]σ. Similarly, [b ∗ s]σ ⊆ [a ∗ s]σ and hence σ ∈Con(AS).

Theorem 3. Let (XS, ∗) and (XS, ∗′) be two GHS-acts and f : (XS, ∗) −→ (XS, ∗′) be w-S-homomorphism, then
σ = {(x, x′) : f (x) = f (x′)} is an equivalence relation on X. If f is an s-S-homomorphism, then σ is a congruence on
X.

Proof. The proof is straightforward.

Theorem 4. Let (XS, ∗) and (YS, ∗′) be two GHS-acts, f : (X, ∗) −→ (Y, ∗′) be a w-S-homomorphism and σ = {(x, x′) :
f (x) = f (x′)}. Then there exists a unique w-S-homomorphism α : X/σ → Y defined by α([x]σ) = f (x) for all x ∈ X
such that α ◦ π = f .

Figure 1

Proof. Let [a]σ = [b]σ in A/σ. Then, aσb implies f (a) = f (b). Therefore, α([a]σ) = f (a) is well-defined. Also, α
is w-S-homomorphism. Indeed, for [a]σ ∈ A/σ and s ∈ S

α([a]σ � s) = α( ∪
x∈[a]σ

[x ∗ s]σ)

= ∪
x∈[a]σ

α ([x ∗ s]σ) = ∪
x∈[a]σ

f (x ∗ s) .

And

α([a]σ) ∗′ s = f (a) ∗′ s.

So α([a]σ � s) ∩ α([a]σ) ∗′ s , ∅.

Corollary 1. If f : (AS, ∗) −→ (BS, ∗′) be a w-S-epimorphism, then A/σ ∼ B.

The above result remains valid if (AS, ∗) and (BS, ∗′) are Hv-S-acts and f is an s-S-homomorphism.

Theorem 5. Let (XS, ∗) be a right GHS-act and ρ ∈Eq(XS) and σ ∈Con(XS) such that ρ ⊆ σ. Then σ/ρ =
{([x]ρ, [x′]ρ) ∈ X/ρ × X/ρ : (x, x′) ∈ σ} is a congruence relation on X/ρ and (X/ρ)/(σ/ρ)=̃X/σ.

Proof. From Theorem 1 (A/ρ,�) and (A/σ,�′) are Hv-S-acts. Define α : A/ρ −→ A/σ by α([a]ρ) = [a]σ. Firstly,
we show that the map α is s-S-homomorphism. Let a ∈ A and s ∈ S. Then

α([a]ρ � s) = α( ∪
x∈[a]ρ

[x ∗ s]ρ)

= ∪α
x∈[a]ρ

(
[x ∗ s]ρ

)
= ∪

x∈[a]ρ
[x ∗ s]σ

α([a]ρ) �′ s = [a]σ �′ s
= ∪

x∈[a]σ
[x ∗ s]σ.
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But σ is a congruence on AS. So we have α([a]ρ � s) = [a ∗ s]σ = [a]σ �′ s = α([a]ρ) �′ s which implies α is an
s-S-homomorphism. Obviously, α is a bijection. Now it remains to prove that

σ/ρ = {([a]ρ, [b]ρ) ∈ A/ρ × A/ρ : α([a]ρ) = α([b]ρ)}.

Let ([a]ρ, [b]ρ) ∈ A/ρ × A/ρ such that α([a]ρ) = α([b]ρ)⇐⇒ [a]σ = [b]σ ⇐⇒ aσb ⇐⇒ ([a]ρ, [b]ρ) ∈ σ/ρ. Thus
σ/ρ is a congruence by Theorem 3. Hence by Corollary 1 (A/ρ)/(σ/ρ) ∼ A/σ.

5. Actions Obtained from Hv-S-Acts

The main tools in the theory of an Hv-structures are fundamental relations. These relations were
introduced and first studied by Vougiouklis [17]. In this section, we studied the fundamental relations for
Hv-S-act. This establishes a link between weak hyperactions and the corresponding classical actions.

Let (S, ◦) be an Hv-monoid and V be the set of all expressions consisting of finite hyperoperations of
elements of S. Define a binary relation β on S by

sβt ⇐⇒ there exists v ∈ V such that {s, t} ⊂ v

and denote by β̄ the transitive closure of the relation β [2].

Proposition 12. [2] Let (S, ◦) be an Hv-monoid. Then β is the smallest equivalence relation such that S/β is a monoid.

The relation β is the fundamental equivalence relation on S and S/β is the fundamental monoid.
Following the similar technique.

Let (AS, ∗H ) be an Hv-S-act andU denote the set of all finite hyperactions of elements of S on A.
Define the relation γ on A as follows:

aγb ⇐⇒ {a, b} ⊂ u for some u ∈ U.

Clearly, γ is reflexive and symmetric but not a transitive relation. Let us denote γ the transitive closure of
relation γ. The relation γ is an equivalence relation and [a]γ is an equivalence class of the element a.

We can rewrite the definition of γ on A as follows:

aγb ⇐⇒ ∃ a1, a2, ..., an+1 ∈ A with a = a1, b = an+1 and
∃ u1,u2,u3, ...,un ∈ U such that {ai, ai+1} ⊂ ui for i = 1, 2, ...,n.

Theorem 6. Let (AS, ∗H ) be an Hv-S-act. Then γ is the smallest equivalence relation defined on A such that A/γ̄ is
an S/β̄-act.

Proof. First we prove that the quotient set A/γ̄ is S/β̄-act. On A/γ̄, the operation ~ using β̄ classes in S is
defined as follows:

[x]σ ~ [s]β = {[c]σ : c ∈ [a]σ ∗ [s]β̄}

for [x]σ ∈ X/σ and [s]β̄ ∈ S/β̄.

Firstly, we prove that [a]γ ~ [s]β̄ is a singleton. For this, let a′ ∈ [a]γ and s′ ∈ [s]β̄. We have

a′γ̄a =⇒ ∃ a1, a2, ..., an+1 ∈ A with a′ = a1, a = an+1 and
∃ u1,u2,u3, ...,un ∈ U such that {ai, ai+1} ⊂ ui, for i = 1, 2, ...,n.

And

s′β̄s =⇒ ∃ s1, s2, ..., sm+1 ∈ S with s′ = s1, s = sm+1 and
∃ v1, v2, v3, ..., vm ∈ V such that {s j, s j+1} ⊂ v j, for j = 1, 2, ...,m.
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From these we obtain

{ai, ai+1} ∗H s1 ⊂ ui ∗H v1, i = 1, 2, ...,n − 1
an+1 ∗H {s j, s j+1} ⊂ un ∗H v j, j = 1, 2, ...,m.

Here the sets

ui ∗H v1 = ti, i = 1, 2, ...,n − 1 and un ∗H v j = tn−1+ j, j = 1, 2, ...,m

are elements ofU. Now, pick up elements z1, z2, ..., zn+m such that

zi ∈ ai ∗H s1, i = 1, 2, ...,n and zn+ j ∈ an+1 ∗H s j+1, j = 1, 2, ...,m.

Using the above relation, we have

{zk, zk+1} ⊂ tk, k = 1, 2, ...,m + n − 1.

Thus, every element z1 ∈ a1 ∗H s1 = a′ ∗H s′ is γ̄ equivalent to every element zm+n ∈ a ∗H s. Thus [a]γ ~ [s]β̄ is
singleton. So, we can write

[a]γ ~ [s]β̄ = [c]γ for all c ∈ [a]γ ∗H [s]β̄.

Obviously A/γ̄ is an S/β̄-act.
Let σ be any other equivalence relation on A such that A/σ is an S/β̄-act. Then [a]σ ~ [s]β̄ are singletons,

that is

[a]σ ~ [s]β̄ = [c]σ for all c ∈ [a]σ ∗H [s]β̄.

Thus, we can write for a ∈ A, s ∈ S and A′ ⊂ [a]σ, S′ ⊂ [s]β̄

[a]σ ~ [s]β̄ = [A′ ∗H S′]σ = [a ∗H s]σ.

Let aγa′. Then {a, a′} ⊂ u for some u ∈ U. Take u = x ∗H s for some x ∈ A and s ∈ S. Then, using relation
σ, x ∗H s is a subset of one class, say [ui]σ, for some i, so u = x ∗H s ⊂ [ui]σ =⇒ [a]σ = [a′]σ =⇒ aσa′and as σ is
transitive, we have

aγ̄a′ =⇒ aσa′.

Therefore, γ̄ is the smallest equivalence relation such that quotient is an S/β̄-act.

Remark 4. From Theorem 6, we conclude that γ̄ is the smallest equivalence relation such that A/γ̄ is an S/β̄-act.
The relation γ̄ is a fundamental relation on A and the quotient is said to be a fundamental S/β̄-act.

Theorem 7. Let (AS, ∗H ) and (BS, ∗′
H

) be two Hv-S-acts, f : A −→ B be an s-S-homomorphism and γ̄1, γ̄2 and β̄
be the fundamental relations on A,B and S, respectively. Then the map f̄ : (A/γ̄1,�) −→ (B/γ̄2,�′) defined by
f̄ ([a]γ1

) = [ f (a)]γ2
is an S/β̄-homomorphism of S/β̄-acts.

Proof. Clearly, A/γ̄1 and B/γ̄2 are S/β̄-acts. First we show that f̄ is well-defined. Suppose that

[a]γ1
= [b]γ1

.

Then aγ̄1b =⇒ ∃ a1, a2, ..., an+1 ∈ A with a′ = a1, a = an+1 and ∃ u1,u2,u3, ...,un ∈ UA such that {ai, ai+1} ⊂ ui,
for i = 1, 2, ...,n. Since f is an s-S-homomorphism and ui ∈ UA, we get f (ui) ∈ UB. Therefore f (a)γ̄2 f (b)
which implies [ f (a)]γ2

= [ f (b)]γ2
, and so f̄ ([a]γ1

) = f̄ ([b]γ1
). Thus f̄ is well-defined. Now,

f̄ ([a]γ1
� [s]β) = f̄ ([a ∗H s]γ1

)

= [ f (a ∗H s)]γ2

= [ f (a) ∗′
H

s]γ2

= [ f (a)]γ2
∗
′

H
[s]β

= f̄ ([a]γ1
) �′ [s]β.
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Theorem 8. Let (A, ∗H ) and (B, ∗′
H

) be Hv-S-acts, f : A −→ B be a s-S-homomorphism and γ̄1, γ̄2 and β̄ be the
fundamental relations on A,B and S, respectively. Then the diagram

X
f
−→ Y

↓ 1X ↓ 1Y

X/σ̄1
f̄
−→ Y/σ̄2

Figure 2.

is commutative, where 1A , 1B are the natural projections of (A, ∗H ) and (B, ∗′
H

), respectively.

6. Conclusion

The class of hyperstructures called Hv-structures has been studied from numerous aspects as well as
in association with many other topics of mathematics. Here, in this paper, we introduced the concept of
Hv-S-act and investigated some basic properties. A link between Hv-S-act, GHS-act and S-act ( action notion
in classical theory) have been established.

In future, we will focus on application of Hv-S-act in biology, chemistry, physics and social sciences
mainly the use of Hv-S-act in questionnaire. We will also characterized Hv-S-act in term of primeness.
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